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Zero-dispersion stochastic resonance in a model
for a superconducting quantum interference device
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It is demonstrated that the signal-to-noise ratio for a weak periodic signal in a superconductive loop with a
Josephson junctiofa superconducting quantum interference device, or SQ0dD be substantially enhanced,
over a wide range of frequencies, by the addition of noise. This manifestatimarofdispersion stochastic
resonancé€ZDSR) is shown to occur for a wide variety of loop parameters and signal frequencies. Unlike most
earlier examples of stochastic resonance, ZDSR does not depend on fluctuational transitions between coexist-
ing stable states. Rather, it exploits the noise-enhanced susceptibility that arises in underdamped nonlinear
oscillators for which the oscillation eigenfrequency possesses one or more extrema as a function of energy. The
phenomenon is investigated theoretically, and by means of analog and digital simulations. It is suggested that
ZDSR could be used to enhance the sensitivity of radio-frequency SQUIDs and other SQUID-based devices. In
the course of the work, two additional useful results were obtaif@dan asymptotic expression describing
ZDSR for the general case in the limit of weak dissipati@); a method for the numerical calculation of
fluctuation spectra in bistable or multistable underdamped sys{&h863-651X97)08112-9

PACS numbes): 05.40+j, 85.25.Dq, 03.20+i, 05.45+b

I. INTRODUCTION the strong definition aboyeould not be demonstrated in the
analog electronic experiment8]. It was noted iff15], how-

Stochastic resonand&R) has been the subject of inten- ever, that a model superconducting quantum interference de-
sive investigation over the last decade: for recent reviews sedce (SQUID) appeared to be much more promising, in this
[1,2]. The idea of SR was originally introduc¢d,4] in re-  respect, because ZDSR was to be anticipated for consider-
lation to a noise-induced enhancement of the amplitude of ably larger damping values. Our recent investigatiph@]
low frequency periodic signal in a bistable system. It washave confirmed this hypothesis, both experimentally and
subsequently realizel®,6], however, that a stronger defini- theoretically. In the present work, not only has the general
tion of SR in the same system was also possible: it washeory of ZDSR been developed in detail, but we have also
shown that, for small enough signals, not only the signabeen able to investigate some interesting features of ZDSR
amplitude but also the signal-to-noise rat®NR) could in-  that are peculiar to SQUIDs. The results could be of interest
crease with noise intensititemperaturg within a certain  in terms of applications, given that SQUIDs are frequently
range. It is this latter definition of SR that is probably now used in practical devicgd7]. It will become apparent that
the more widely used and accepted, and which we will applyZDSR can in principle be used to enhance the output SNR of
below. a SQUID at moderate and high frequencies, in very much the

A general theory of SR, not confined to the conventionalsame way as conventional SR has already been used to en-
bistable casg6], was introduced ifi7]. It was predicted8,9] hance the output SNR of multistable SQUIDKS] in the
on this basis that SR could also occur in monostable systemew-frequency range.
[10]. In this perception of the phenomenon, SR is to be an- The structure of the paper is as follows. General expres-
ticipated in any system whose fluctuation spectrum in thesions for the SNR in terms of the fluctuation spectrum, and
absence of a periodic signal displays at least one narrow pedke asymptotic theory of ZDSR, are presented in Sec. Il. The
that grows quickly enough with increasing noise intensity. Ingeneral theory of fluctuation spectra for underdamped mo-
the particular case considered 89|, the SR was associated tion is developed in Sec. lll. Analog electronic experiments
with zero-dispersion pead2-15 in systems whose eigen- on a SQUID model, and their results, are described in Sec.
frequency as a function of energy possesses an extremum: ig, In Sec. V they are compared with the theory and dis-
distinguish it from conventional bistable SR, it was namedcussed. The work is summarized and conclusions drawn in
zero-dispersion stochastic resonan@®SR). Sec. VI.

Unfortunately, the model analyzed ir8,9], the tilted
single-well Duffing oscillator, typically requires such very
small values of the damping parameter that @Rterms of Il. THEORY OF ZERO-DISPERSION STOCHASTIC

RESONANCE
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i . du so-called zero-dispersion peakKzZDP) [12,13 which, for
q+I'g+ dq f(t) +AcogQt), small enough, is described by the asymptotic formula
' ' Q-
(F(1))=0, (f(OF(t"))=2Ta(t—t"), &) Q(‘”(Q):Q(ZDF’)(Q):Csca|es(vwm),

whereU(q) is a potential, and the noise intensifycorre-
sponds to temperature in cases where the noise is of therméhere

origin. We introduce the SNR6] in terms of the power _
spectrum, S(x) =|Re[ S(x)]],

@ O . exp(—ix7)
S(X) de {(l_i)sinr[(l_i)T]}lIZ’

(6)
2
Q(w)=Ilim (477)~* .

T—®

fﬁ dt q(t)expliot)

Q(w) consists ofd spikes at the frequend) of the periodic  gngc,.,.andAw are frequency-independent scale factors,
force, and its harmonics, superimposed on a smooth fluctua-

tional ba_ckground that correspond_s tp the power spectrgm 4\/;|Q1m|2 exg —E,,/T)
Q(w) in the absence of the periodic force. The SNR is Cocalc e —,
then defined as the ratio of the intensigquarg of the & om(|”]) Z(I'Tg3)v
spike at() to the fluctuational background & [6], so that
Aw=sgrw")(T|w"|Tg3)Y?, @)
I 5(€2)
Q) ,_ o(En)
w=—

As shown in[7], the SNR(R) can be written in terms of the dE;,

complex susceptibility which, in turn, can be expressed in . _ o
terms of Q©(Q) using the fluctuation dissipation theorem Wherew(E) is the frequency of an eigenoscillation as a func-
and the Kramers-Kronig relations tion of its energy,

1.
R= %A2|X(Q)|2/Q(O)(Q), E:§q2+u(q)’ (8)

andE,, is the energy at whiclw(E) has an extremum,

oc exp(—E/T)
zzzwf dE—w(E) 9

2

2 o o
Re[x(Q)]= T PJO da (a2 QZ) Q9(a), 4)

Unin

()
=—0
M Lx()] T QU is the partition functionU i, is the minimum value obJ(q),

2, is g? averaged over one period of the motion when

E=E,,, andq,,=04(E,) is the first Fourier component in
1 o _ the expansion of] as a periodic function of angleé [19] at

Q)= —Re . dt exp(—iQt)Q(t), (5)  the energyE,,,

where P denotes the Cauchy principal part and

[

Q) =([at)— (@) 1[a(0) —(a)]) a= 2 du(E)exp—ing). (10

is the power spectrum in the absence of the periodic force
It was shown in[8] that the SNR can increase withif
Q(Q) has a tall narrow peak that rises rapidly withand
if the frequency() of the driving force lies within the range
of the peak. Just such a situation can be realized for undewe
damped oscillators for which the dependence of an eigeno§fu
cillation frequency on energy possesses an extremum. Th
derivative of the eigenfrequency with respect to energy,
dw(E)/dE (the “dispersion” of the eigenfrequengy is
equal to zero at the extremum. Correspondingly, energy flu

‘As shown in Fig. 1, the functioi®(x) has an asymmetric
peak whose height, half-width, and position have character-
istic values of order unity.

Equations(6)—(10) are valid provided thati) the ZDP is

Il separated from other characteristic peaks in the spec-
m; (i) there is a homogeneous population of the relevant
nergy band aroun&,,; (i) the ZDP is larger than the
elaxational plateau of the spectrum. Thus the conditions for
Ct_he validity of Eqs.(6)—(10) are(cf., [13])

tuations near the extremal energy,, affect the phase much Aw Aw | H2
less than in other energy ranges, so that the correlation of the : , <1,
phase(and of the coordinate oscillations as we#sts much Min(@m | 0m— )| w”Tz‘

longer. ConsequenthR(?)(Q) exhibits a tall narrow peak in
the vicinity of the extremal eigenfrequenay,= w(E,,), the —|Aw|=sgne”)(Q— g <|o"|T?, (11
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3.0 T T T | T the form of the decrease changes withit can be shown that
s R «(—x)%? for large negativex, and that SNRxx /2 for
2.5r large positivex.
Of greater interest in the present context is that the SNR is
201 proportional toCg.e Which increases sharply with for
T<E,,. Consequently, the SNR must increase Wittvithin
18 some rangeg20], just as in the case of SR in conventional
1ok bistable systemib—7,1. The same holds true even when the
' shape of the ZDP is not universal. The only condition is that
05l the magnitude of the ZDP should be sufficiently large in
' comparison to other spectral pedl&. The activation-law
0.0 type dependence of the SNR dnarises because both the

2 o 2 4 6 susceptibility and fluctuation spectrum are determined by
those oscillator vibrations whose energies lie within a narrow

FIG. 1. The universal shape of zero-dispersion peaks, as givefand around the extremal frequency, whose population in-

by the functionS(x) defined in Eq.(6). creases rapidly witfT.
The frequency dependence of the SNR is well described
0.4E by the universal functioR, but only for very small values of
T>——"T I' and in the close vicinity ofw,, (see Sec. ¥ the same
In| "E2/Aw| restrictions apply also to the shape of the ZDP it5&H 15.

~In order to calculate the SNR over a wider range of param-
where w; denotes the frequency of any other characteristiGeters, it is necessary to compute the fluctuation spectrum

peak of the spectrum. These conditions are always satisfiagumerically. The algorithm we have used for this calculation
in the asymptotic limit of small' when(} is close enough to s described in the next section.

@ -
It may be noted from Eqg6)—(10), first, that the height

and width of the ZDP become infinitely large and small, lll. THEORY OF FLUCTUATION SPECTRA
respectively, a§’"—0 and, secondly, that the dependence of FOR UNDERDAMPED MOTION

the height onT is of activation type, i.e., the height grows  An efficient algorithm for the calculation of fluctuation
extremely fast withT if T<E,,. Thus one may expect SR t0 spectra in underdamped oscillators was developef2,

be manifested in the system. Indeed, if E®—(10) are  put was restricted to systems with single-well potentials. Be-

inserted into Eq(4) with account taken of Eq11), cause the potential that describes the dynamics of SQUIDs
5 2 can be of either the single-well or multiwell type, it is nec-
R—R(ZD)=£A2W Om c R(‘Q’_wm) essary to generalize the method [@f1] to treat the case
- 4 T2 scale Aw |’ where the potential may also have one or more local barriers.

Our aim, therefore, is to calcula®®(Q), i.e., the fluc-

32 tuation spectrung5) of the coordinateg whose dynamics is
R(X)= ) (12 governed by Eq(1) with A=0. It is convenient to start from
S(x) the Fokker-Planck equatiqiFPE) for the probability density

w(q,p,t;d9,Po,0) of a transition in the space of coordinates

and momentap=q from the point @o,p,) occupied at
time zero to the pointd,p) occupied at timet (see, e.g.,

[22]),

The functionR(x), plotted in Fig. 2 characterizes the fre-
guency dependence of the SNR. It decreases monotonical
with x (cf. the harmonic oscillator for whic®R«Q~2), but

*r I ' | | d d d (dU(q)
R _W—__ — —q 3
i &q(pw)+ap( dq w)+FLw,
I:——+—(9 +I—(92 =w( t 0), (13
v W=W(Q,P,1,q0,P0,Y),
app p d.P,t:do,Po

w(q,p,0;do,Po,0)= (4 —do) S(P—Po)-
According to the definitior{5), we can express the time cor-

relation functionQ(t) in terms ofw(q,p,t;qo,Po.,0) and the
X stationary distributiorwg(dg,pg) as

FIG. 2. The normalized frequency dependence of the signal-to-

noise ratio in the asymptotic limit of small dissipation, as given by O(t) = fw fw da d _ W t
the functionR(x) defined in Eq(12). QM) ) P(a=(a)W(a.p.b).
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_ oW .
—i QW+ o ——=TLW+(g—(q))ws(q,p),

Ula)
q i

w=0V(E), q=qV(E,¢), p=p"(E,¢),

I:=I:(j)(E b)= i_wﬁ_Qi
B ’ JE JE d¢
X|pl1+T i T 9. 16
p 7E| " TYGE 7a| (16)
q
T T T T . WEWU)(E,gb,Q):f dt exp(i Qt)W(q,p,t).
8k - 0
U(a) 7 (b)
6 - Like q(E,¢) andp(E, ¢), the functionW(E, ¢;Q) is peri-
odic in ¢ with period 2, and so can be expanded in a
4 2 5 - Fourier series,
2 . . * _
WOI(E,¢;:0)= > WI(EQ)exping).  (17)
n=—owx
o -
L | I I l Substituting Eq(17) into Eq. (16), we obtain
-15 -10 5 0 5 10 15
q

(N0 W =TS LR+ (g () o,
FIG. 3. The effective potential for a SQUID, E(6), plotted m
for (@) B=0.3, gy4.=0; (b) B=0.1, q4.= — 1.0. The numbers ifb)
identify different regions of phase space corresponding to motion o 1 (2= o

confined within energy ranges of three different kinds, separated by L%Z_ﬂ_f d¢ exp(—ing)LVexpime), (18
the dashed lines: between local energy maxima adjacent in height; 0

between a local maximum and the local minimum adjacent in co-

ordinate; or between the highest local maximum and infinity. ) 1 (2«

n _27T 0 d¢ eX[I(—In(j))q(J)(E,qS),

\7V(q,p,t)=f J ddo dpo (do—(d)) . o _ .
—od e where 8, is a Kronecker delta. Our aim is to find the)

since the fluctuation spectrum can be written in terms of

X y |t| [} 10 1 ' 14
w(g,p,t;do,Po,0)Ws{(do,Po) (14 them as
We(g,p)=Z""exp(—E/T). |
N Q(O)(Q):Z 2 Re fE%;xq—E
Like w(q,p,t;do,Po.0), the functionW(q,p,t) satisfies the ) i " (E)

FPE (13), but with a different initial condition

_ X D(E)* -0 WI(E,Q)|,

W(a,p,0=(a—(a))ws(a,p). (15) 2, (@O — (DI ED)

o : , : (19

For further analysis, it is convenient to rewrite Ef3) in an

energy-angle representatipf9] and to make a half Fourier i) ) . .

transform with respect to time. Unlike the single-well caseVNere Emin and Erz, are, respectively, the minimum and

[21], however, the energy-angle representation must be dif@Ximum energies of thith region. _

ferently defined in different regions of the phase space, di- !f we consider the underdamped cdsmalll') and if, as

vided by separatrices corresponding to the barrier energy levs usually the case, itis the peaks@¢(2) that are of interest

els[cf. Fig. 3Ab)]. rather than low fluctuational plateaus, then we need retain
Tagging each such region with an indgxwe can write  only the diagonal terms in Eq18) (i.e., termsxL) [21],

the equation for the half Fourier transfoMin the jth phase thus obtaining a closed set of ordinary differential equations

space region as for W) [23],
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. d d d? Ld
i _ J): + + i) q __q . _
i(Q—nw)W 1+p dE)(l TdE)W LC_d7'2+RN g, Ta+Bsina)=qe,
aq\? ® (OR 2L,
— 2021 (j) = — = — =
I'Tr’e (aE) W (20) q 277(1)0, de qu)o, B o, (23
+(Cn— Sno(q)) Wy Here ® is the full magnetic flux through the lood, is the

flux of the external magnetic fieldpy=h/2e is the flux
where the bar implies averagirid1/2m) [3"d¢ -] over ~ quantumilL is the inductance of the loop; ar@, Ry, and

the angle. J. are, respectively, the capacitance, normal resistivity, and
In order to solve Eq(20), we also need to know the critical supercurrent of the junction. _
boundary conditions aE!) andE{), for each region. Ifn The external flux usually includes a noisy component
#0 [25], W vanishes at the boundaries ®\(7), to which can formally be added an additional contri-
bution due to thermal fluctuations within the loop itself and
wiED 0)y=wl(EU. 0)=0. (21)  tonoise in the Josephson junction. In addition, there is often

a constant componen®dy. and a small periodic signal
The case wher&{)) corresponds to a local minimum in the PsCoSks7). We will therefore assume that

otential may be treated similarly to the single-well ¢
ipn deriving E)c/| (21): Eq.(20) can Pz/ave two S(?Iutions ngz;rﬂthe De=De(7) = Pyt PsCOLwsT) + P (7), (4
minimum, W o (E—EV) )1’2 orW(J)oc(E EU))~12 given
the necessary finiteness W , we choose the convergent
solution and thus arrive at qul). The validity of the con-  Taking account of Eq(24) and introducing the normalized
dition is obvious wherE{}) is equal to infinity. WherE{),  variables
or EU). correspond to a barrier, Eq21) is derived in the
following way. It is straightforward to demonstrate that, for _ 1 @s

(Pn(T)DN(T"))=2DS(7—7").

t=w,7, '=——5—=, Q=—,
energies close to one of the barrier levEls, “p7 wpR\C wp
o 27D
aq\? 1 A= —S _2f e
— RS - v ac™ ’
(aE) N 22 Hle o
1/2
The solution of Eq(20) near the barrier can thus be of two T= 2mDRy - ( 277‘]0) (25)
types: Wconvergen?c|E Eb| and Wdlvergen?c(lE Eb|) ! . Al- q)OLZJc P Cq)o
lowing for the finiteness ofW{)) as before, we choose the _
convergent solution and arrive at EQJ). Eq. (23 takes the same form as E@,), with

Equation(20) can easily be solved numerical(gf. [21])
for the boundary condition§21), enabling the power spec- E
trum, susceptibility, and SNR to be calculated via EG$) B
and(4), respectively; the algorithm for calculation of certain
parameters in Eq$19), (20) follows directly from their defi-  The frequency of eigenoscillations in the potentiglq) of
nition and is described in detail [115,21]. In Secs. IVand V  EQ. (26) possesses extrema as a function of enerdy=fl
below we report the results of such calculations for a systeriFig. 4. Consequently, the system should display the full
of practical importance, the SQUID, and compare them wittfange of zero-dispersion phenomena including, in particular,
measurements made with an ana|og electronic model. ZDSR. The criterion for the smallness of the amplitude of
the periodic signal can in practice easily be found experi-
mentally by finding the maximum amplitude for which the
response is linear.

The circuit used to model Eq$l) and (26), shown in

The aim was to try to test some of the ideas of the preoutline by the block diagram of Fig. 5, was designed accord-
ceding section by modeling a superconductive loop containing to a standard prescriptig27,28, using operational am-
ing a Josephson junction. This is the simplest type ofplifiers, an analog multiplief29], and a trigonometric inte-
SQUID. It forms the central element of a radio-frequencygrated circuit (IC) [30] to perform the necessary
SQUID, is often used in more complicated SQUID devicesmathematical operations. In the diagraficod)'t’ and
[17], and, as we shall see, may be expected to display ZDSI'(t') are, respectively, a signal and an external noise ap-
for an appropriate choice of parameters. plied to the underdamped nonlinear oscillatt.is the am-

The dynamics of the loop is described in many cases bylitude of the signal in voltsf’(t") is the value of the noise
the resistively shunted model, in terms of which the timevoltage applied to the circuit, anfl’ andt’ are the real
evolution of the phase of the order parameter, or of the magfrequency and time. Setting to zero the total currents at the
netic flux ®(t) threading the loop, cail7] be described by inputs of the operational amplifiers whose outputs\grend
the equation Vg, respectively, we obtain

B
U(q)=§(q—qdc)2—cos(q), B= (26)

IV. ANALOG ELECTRONIC EXPERIMENTS
FOR A SQUID MODEL



57 ZERO-DISPERSION STOCHASTIC RESONANCE IN. .. 83

x(t) —> x(t)

'@ty

Alcos(Q't')

R7

R¢

X 10sin[SO(V{- V)]
A\%») V,
T C

Va A%1

FIG. 5. Block diagram of the analog electronic circuit model. Its
behavior can conveniently be analyzed in terms of the voltages

| \ Va,Vg,Ve, andVy at the points indicatesee text
1.0P =
au
0.8~ (b) — VD=5< 1—cos{1—_8(vl—vc) +Vs. (30
0.6 — ..
() The voltageV is just
R R A N Ry
0.2 6
0.0 | | Eliminating V.A., V¢, andVp from Eqs.(27), (28),.(30), and
) 1 > 3 4 5 6 7 8 (31), and writing Vg=Xx, the differential equation for the
E voltagex in the circuit can therefore be written
FIG. 4. Dependences of the frequensfE) of eigenoscillation d?x R; dx R4Rs
on energ)E for the potentials shown in Fig. 3a) B=0.3, q4.=0; R1C1R3C; _dt’2 + R_GR3C2@ + _R2R4X

(b) B=0.1, q4c= — 1.0. Dashed lines indicate the positions of the
first three extrema in each cas@) w;=0.372, wm,=0.600,

@ma=0.506; (b) wm;=0.385,w,=0.380,wnz=0.321. . Ry ~
5(1 00{1.8 Vi+ R6x v,
v dVa f'(t') A’cogQ't’)
Re"Ciay * R, Ry
Rg dt’ Ry Re :_A’COﬂ't’+—f'(t’), (32)
Re Ry
- W E: where we have chosen
R, R;
Ryv=Rg=100 K2, R;=R3;=100 K2,
dVg Va
o TR (28 R;=Rs=Rs=10 kO, R,=11.459 K,

The trigonometric IC was configured to give an output of ~ R6=22 MO, C;=C,=10 nF, V;=-09 V.

10sif50(y,— where the two inputy,; andy, are in . .
voltsr{angllthgzglggument of the sing is&yiln deg>r/ées. The ICThe multiwell and single-well cases of the potentiab)

operation is restricted to lie within the range500°. In order ~ cO'respond to different values of the paramefssand V.
to increase the dynamic range gf[see Eq.(26)] encom- For gxample, on ’|ntroducm@2=100 K2, V,=—3.93,
passed by the model, an analog multiplier was used as showh€ time constant’ = RiC1/\5=RsC,/15, and the damp-
to convert the argument to the double angle. The voltage 49 constant’™” = R;/(Re\5), Eq.(32) can be reduced to
its output, in terms of the voltag¥. at the input of the ) i
trigonometric IC and the constant voltages and V,, and 7' 2X+T" 7' x+0.2x— 1.07) + sin(2x)
allowing for internal scaling by a factor of 0.1, is

=0.2A'cod)’t'+0.2f'(t'), (33

Vp=0.4{10sif 50(V;— V) 12+ V, (29
whose parameters are readily related to those in the model

or, in terms of the double angle, now expressed in radians,(1) by means of the scaling relations
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~B'?). Thus, in addition to the increase in magnitude of

gq=2x, 7= T—, t=—, Q=Q'7, I'=s—, each successive partial ZDP, many of the ZDPs will overlap;
V2 T V2 and the higher the noise intensity, the greater the number of
overlapping peaks. Thus the noise-induced increase in the

B=0.1, Q.=2.14, magnitude of the spectral peak is especially pronounced in

the multiwell case. As shown by the analysis®yf.,.(7) for
small B, the maximum magnitude of the peak growsks
decreases, asB~ %2, until it reaches the limit~T" 1.

A=0.2A", f(t)=0.2f'(t").

The nominal value of” was 0.001 44. However, for such . ) X .
small damping, the actual value usually differs from the. Let us now turn _to the S|gnal-to-2)())|se ratlo._As discussed
nominal one due to the effects of stray capacitance and othd} hSec. I, 'fba Z.DP In t?]e spectrur@. (ﬁ) d'o'm.lnates r(])ver
nonidealities of the circuit. In the present case, the actugfther contributions to the spectrum in t e vicinityof, then

- B 2 . . . .
value, measured experimentally by two independent methootge. SNR IS proportional t@“a.'e/T in the vicinity of w,
[15], was found to bd =0.0012 for the multiwell case and which provides a resonance-like dependence of the SNR on
F=6.0011 for the single-WeII case. T: it first sharply increases witffi, like the ZDP magnitude,

The circuit model was driven by noise from a feedbackand then, when the temperature becomes of the ordey, of

shift-register noise generatf27,31 and by a sinusoidal pe- the sharp growth o€, with T saturates and the increase

riodic force from a Hewlett-Packard model 33258 frequency®f the SNR changes into a slow decrease. Although the spec-

synthesizer. The response of the circuit to stochastic and pér_um in a SQUID typically manifests more than one ZDP,
riodic forces was analyzed with the aid of a Microstar 2Nd the ZDPs often overlafef. Fig. 6, the dependence of

DAP3200a/415 ADC card3?] installed in a Pentium 133 the SNR onT may still be characterized qualitatively
personal computer. (though not quantitativelyby Eq. (12) using parameters of

The evolution of the fluctuation spectra with increasingthat €xtremum ofw(E) corresponding to the ZDP which

noise intensity was measured for the two cases of a Sing|éj_ominates_ within the relevant ranges of temperature and fre-
well and a multiwell potentiaiwith four wells as shown in  duency. Figure 8 dem_on_strates resonancelike dependences of
Figs. 3a) and 3b). The results are shown in Fig. 6. the SNR onT. The rapid increase of the SNR aglecreases

The SNR was calculated as a function of both noise in@t SmallT occurs because the SNR is determined at small
tensity and signal frequency, for both single-well and multi-t€mperatures by oscillations near the bottom of the lowest
well cases, yielding the results shown in Fig. 7. The depenPotential well, resulting in a dependence proportional ©.

dences of the SNR ofi for fixed O, and onQ for fixed T, Thus, when the signal frequency is close to one of the ex-

both measured and calculated, are shown in Figs. 8 and §€me eigenfrequencies, the temperature dependence of the
respectively. SNR is very similar to that for conventional §R,6,1,3.

It should be emphasized that an increase of SNR With
would still have been observed, even if the damping constant
had been considerably larger than the vallie-(L0™ ) used

It is immediately evident from the results of Figs. 7 and 8in the present experiments: the relevant criterionlfaan be
that a substantial noise-induced increase in the SNR can owwitten approximately as
cur for the SQUID model: note the satisfactory agreement r<pl2<1 (34)
between the theory and the analog experimental @fga 8). -
It is to be expected, therefore, that underdamped SQUID
will display closely similar behavior.

The special features of ZDSR peculiar to SQUIDs are Ry>(L/IC)Y2  p=1. (35)
closely related to corresponding features in their fluctuation
spectra which, in turn, are determined by the characteristic A characteristic feature of the frequency dependence of
form of w(E). The latter may have several extrema, asthe SNR in a SQUID is its rapid increase in the direction of
shown in Fig. 4. Thus there could be several ZDPs correa ZDP’s steepest decrease. The reason is that the real part of
sponding to the different extrema. They become activatethe susceptibility (and also|y|?) decreases much more
sequentially with increasing. This is most clearly seen in slowly than the spectral densifg.f. Eq.(12)]. As a rule, the
the single-well case where the extremal frequencies are weBNR passes through a maximum and then decreases again.
separated. The higher the extremal energy, the higher thEhe physical reason is that the spectral density is then being
noise intensity at which the spectral contribution from a ZDPdetermined by energy regions far from the extremal energy:
becomes comparable with those from other energy rangethe SNR increase therefore saturates and changes to a de-
At the same time, the higher the extremal enekyythe crease as the signal frequency moves even further away from
larger the amplitude of the oscillations and, in most caseshe extremal eigenfrequency. Note that the frequency range
the flatter w(E) becomes. The latter effect broadens thewithin which the SNR increases is typically much larger than
range of energies that contribute significantly to the ZDPthe width of the associated ZDP itself.

[12,13,19 and causes the correlation time of the oscillation The frequency dependence of the SNR is described quite
to lengthen. Taken together, the two effects result in thevell by our numerical algorithm, as can be seen in Fig. 9. In
maximum magnitude of each successive ZDP increasinig. 9a), which corresponds to the monostable SQUID, the
markedly[cf. Fig. 6a)]. left (sharply decreasingsection of the dependence is mostly

In the case of a multiwell potentiaB(< 1), most of the due to the minimum otv(E) at about 0.4; the left wing of

extremal eigenfrequencies are very close to each dider the peak is mostly due to the ZDP @t=0.6 while the right

V. DISCUSSION

8r, in terms of SQUID parameters,



(a)

ZERO-DISPERSION STOCHASTIC RESONANCE IN. .. 85

T=0.3

T=1.0

T=31

0

-
'

=2.15

oh

,d IIIIIIIIIIIIIIIIIIIIIII

(a)

T Q
8 6 4 203 045 06 075

SNR

T 0
4 3 2 1 015 03 045 06
| | |
20 -20
/ .
% Z
z 10 A
10
-0
0 J
?
0.15 g
0. .
3 0.45 b !
0 0.6

FIG. 7. The dependence of the signal-to-noise ratmrmalized
by a squared signal amplituden the noise intensityir and the
signal frequency), calculated using Eq(4) and the numerical
algorithm described in Sec. lll, fd@) the single-well SQUID po-
tential of Fig. 3a); and (b) the multiwell SQUID potential of Fig.
3(b).

(decreasingwing of the peak is due to the relaxational pla-
teau dominating in the spectrum at these frequencies. Figure
9(b), which corresponds to the multistable SQUID, exhibits
two peaks in the SNR. The left-hand wing of the right-hand
peak is associated with the ZDP ne&ar0.38, whereas the
opposite wing of this peak is associated with the intrawell
peak of the spectrum. The decrease of the SNR as the fre-
quency decreases changesa+0.3 into an increase, con-
trary to Eq.(12), because the spectrum in this range of fre-
quencies is governed by energies close to one of the barrier

FIG. 6. Evolution of the fluctuation spectra with increase of levels where the parabolic approximation is inapplicable and
noise intensityT, measuredfull curves and calculated using the the spectrum decreases much more rapidly than predicted by

numerical algorithm of Sec. ll{dashed curvesfor (a) the single-
well SQUID potential of Fig. 8); and (b) the multiwell SQUID

Eq. (6). The opposite wing of this peak of the SNR depen-
dence is associated with the zero-frequency peak of the spec-

potential of Fig. 8v). Dash-dotted lines mark the positions of the trum [33].
relevant extrema ok (E) (see Fig. 4.

Thus, the frequency dependence of the SNR in ZD oscil-
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FIG. 8. The dependence of the signal-to-noise ratio on noise FIG. 9. The experimentaldata points and numerically calcu-
intensity for(a) the single-well SQUID potential of Fig.(8), with  lated(solid ling) frequency dependence of the SNR at fixed noise
0=0.62 andA=0.016; and(b) the multiwell SQUID potential of intensity for(a) the monostable potential arfd) the multiwell po-

Fig. 3(b), with =0.39 andA=0.005. The results of the electronic tential. Dash-dotted lines mark the positions of the relevant extrema
experiments and numerical calculations are shown, respectively, b§f ©(E) (see Fig. 4
the circles and the solid lines.

damped superconducting loop with a Josephson junction can
lators quite generally displays a resonantlike behavior, ile achieved by the addition of noise. This ZDSR phenom-
contrast to the behavior of the SNR in conventional systemsenon arises in SQUIDs because of extrema in the depen-
At the same time, the width of each resonance is generalldence of their frequencies of eigenoscillation on energy
much larger than the band of frequencies within which conwhich give rise, in turn, to characteristic asymmetz&ro-
ventional SR is manifested in overdamped SQUIDs. dispersionpeaks in the fluctuation spectrum whose magni-
Finally, in this section, we comment that the extremaltude sharply increases with temperature. Thus the increase of
frequencies can be varied over a wide range by adjustment §NR can be very largénfinite, in the limit of zero dissipa-
the parameterB andqqc, i.e., by changing the inductance or tion). The SNR also exhibits a rapid increase with changing

critical supercurrent and the external magnetic field. frequency in the direction of the steepest decrease of the
associated ZDP; and this increase usually occurs over a
VI. SUMMARY AND CONCLUSIONS broader range of frequencies than the width of the ZDP it-

self. The evolution of fluctuation spectra with increasing
We have demonstrated above, both theoretically and exaoise intensity takes place through sequential activation of
perimentally, that a substantial increase of SNR in an underthe zero-dispersion peaks corresponding to different extrema
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of w(E) and exhibits an increasing magnitude for each sucebtained, as byproducts, two useful resu(®: a universal
cessive peak. Thus, the SNR increase can take place overagymptotic functior(12) describing the SNR in any ZD sys-
wide range of signal frequencies and SQUID parameters; theem, valid for the limit of a small dissipation; an@dh) a
SQUID can be designed to suit a given signal frequencyonvenient method for the numerical computation of fluctua-
through adjustment of its inductance or critical supercurrentiion spectra in underdamped bistable and multistable sys-

and also tuned by varying the external magnetic field.  tems, as a generalization of the method developed earlier for
Given that a superconductive loop with a Josephson juncthe monostable cage1l].

tion constitutes the central element of a radio-frequency

SQUID and of a variety of other SQUID-based devices, it is

clear that ZDSR could in principle be used to improve the ACKNOWLEDGMENTS
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