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Observation of Saddle-Point Avoidance in Noise-Induced Escape
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The first measurements of an exit location distribution are reported for an overdamped nonconser-
vative system perturbed by weak white noise, modeled both numerically and by an analog electronic
circuit. In the weak-noise limit the distribution is increasingly concentrated near a saddle point of the
dynamics and is increasingly well approximated by a Weibull distribution, in agreement with theoretical
predictions. A physical explanation for this behavior is given, which should facilitate the computation
of corrections to the limiting form. [S0031-9007(99)08581-6]
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A fundamental problem in the fluctuational dynamics ofskewed, is localized on a much broader length scale near
randomly perturbed multistable systems is that of computthe saddle point than the(e'/?) length scale that dimen-
ing anexit location distribution,i.e., the probability dis- sional analysis would predict. Maier and Stein [15] have
tribution of exit points on the boundanf) of the domain  shown that ifu < 1, O(e*/?) is the correct length scale.
of attraction{) of a stable state. This problem appearsThey have also predicted that as— 0, the exit location
in many areas of science and technology, e.g., in statistdistribution ono() typically converges on this length scale
cal physics [1,2], chemical physics [3—5], fluid mechanicsto a Weibull, or “stretched exponential” distribution. Itis
[6], ecology [7,8], and telecommunications [9,10]. aone-sidedlistribution: In the weak-noise limit, the sys-

In the familiar case of a noise-perturbed overdampedem state in most noise-perturbed nonequilibrium models
system in equilibrium, exit from the domain of attraction tends to avoid the saddle point, by exiting fréna small
Q) preferentially takes place in the vicinity of a saddle distance to one side of it. This is a more fundamental form
point of the deterministic (zero-noise) dynamics. In theof “saddle-point avoidance” than the type seen in conser-
two-dimensional case, the exit location distributionddd  vative systems [5].
typically converges in the limit of weak noise to a Gaussian Direct comparison with experiment has become desir-
centered on the saddle point, whose width decreases witible. In this Letter we use analog and digital experiments
noise intensity. Deviations from this behavior are of par-to seek the predicted phenomenon of skewing, and we re-
ticular interest to the chemical physics community [3—5],late it to the geometry of the most probable escape path
but are usually due to a comparatively large noise intensityMPEP) from the stable state &), as it approaches the
and/or anisotropic diffusion. saddle point. The anomalously broad exit location distri-

More recently, attention has focused on the problenbutions whenu < 1 are predicted to have a simple physi-
of noise-induced exit in an overdampethnequilibrium  cal origin: the MPEP grazeX) as it approaches the saddle
system (e.g., one whose noise-free dynamics are noncopeint [15]. (See, e.g., Fig. 1.)
servative, so that even in stationarity there is nonzero The system we investigate is a bistable one: an
probability current [11]). The boundary of the domain overdamped particle moving in the symmetric, two-
of attraction of a stable point may then contain no saddlelimensional drift field
points. More typically, the boundary contains one or
more saddle points, and noise-induced exit tends to oc- ulx,y) =[x — x* — axy®, —uy(1 + x»], ()
cur preferentially in the vicinity of one of them. But the
phenomenology of escape differs considerably from thevherea andy are parameters [16]. This system has stable
equilibrium case [12,13]. In general, the exit location dis-points at(*=1,0), a separatrix or “ridge” (i.e.9{}) along
tribution on 9{) is now skewedit no longer resembles a they axis, and a saddle point &3,0). If isotropic white
Gaussian, even in the limit of weak noise [9,10,14-18]. noisef(t) = ( f., f,) of strengthe is added, the equations

In two-dimensional nonequilibrium systems, the skew-of motion of the particle become
ing behavior is largely determined py = [A,|/A,, the ra-
tio of the stable and unstable eigenvalues of the linearized x=x—x — axy’ + f (1),
deterministic dynamics at the saddle point [14—18]. The . )

u < 1 case is particularly striking in that the exit location y = —uy(l+27) + f,0), 2)
distribution in thee — 0 (weak-noise) limit, besides being (fi(t)y =0, (fils)fj(2)) = €6;;6(s — 1).
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Our prediction for the exit location distribution relies

on an approximation te; that is increasingly valid as

e — 0. The approximation also yields predictions for the
limiting MPEPs. The appropriate tool for constructing
this approximation is the method of matched asymptotic
0.2 1 approximations [7,22]. Away from the stable state and
the y axis, p;(x,y) should take on, to leading order, a

WKB form constXx exd—W(x,y)/e]. Near the saddle

0.3

F---

0 point (0,0), this form should match an approximation of
the “turning point” type.
0 S The eikonal functionW (x, y) of the WKB approxima-

) ) ) ) ) tion (also called a “quasipotential” [12]) has a classical-
0 02 0.4 0.6 08 1 mechanical interpretation. For any poifit,y) in the
x domain of attraction of either stable stat€(x,y) is the
FIG. 1. First-quadrant MPEP (thick, solid line) fer = 0.66  action of the least-action zero-energy trajectory of an aux-
and @ = 10, compared to a typical escape path (thin, jaggediliary Hamiltonian system that extends from the stable

line) seen using analog simulation. The dashed rectanglgigie to(x,y). The Hamiltonian functior (x, p) for the
represents the length scale néar0) on which the exit location auxiliary system i%lpz +p - u®)

distribution is localized foe = 0.016. Thin straight lines show / ) . —
tions, and are thenost probable fluctuational trajectories

of the noise-perturbed system. Such “optimal” trajectories

In the language of chemical physiosjs a reaction coor- are experimentally observable, and the momenpugan
dinate,y is a nonreacting coordinate, and the half-planede interpreted as the force applied by the noise [23-26].
x > 0 andx < 0 (in either order) correspond to the reac- According to theory, MPEPs are simply optimal trajecto-
tant and product wells. Since= x andy =~ —uy near ries that extend to the saddle point.
(0,0), |As1/ A, equalsw. In Fig. 1, the theoretically predicted MPEP of (2) in the

Because of the symmetry through thexis, for many first quadrant, withu = 0.66 anda = 10 (dotted curve),
choices of parameters there are two MPEPs extending compared with a typical escape path measured in the
from each stable point to the saddle poift0) [19]. analog electronic model of (2) (jagged line). Three im-
Each grazes the axis, and together they yield a limiting portant, closely related, features deserve comment: (i) for
“symmetrized Weibull” distribution on the axis near u < 1the MPEP approaches the saddle pgin0d) along
y = 0. So, one-sidedness of the exit location distributionthey axis “ridge”; (ii) the shape of the MPEP in a boundary
should here be replaced bymodality layer near the axis, obtained by linearizing the Hamilton-

To test these predictions, we have built an analog eledan dynamics a0, 0), is close toy o x#; (iii) the measured
tronic model [20] of (2). We drive it with zero-mean quasi- escape path departs from the MPEP and crosses éxes
white Gaussian noises from a noise generator, digitize thibefore reaching0, 0).
responsex(z), y(¢), and analyze it with a digital data pro- Because of small transverse fluctuations, the MPEP
cessor. We have also carried out a complementary digmay be viewed as being surrounded by a “WKB tube”
tal simulation, using a high-speed pseudorandom generatarith an asymptoticallyd — 0) Gaussian profile of width
[21] for the increment$Ax, Ay) because simulation times O(e!/?) (see, e.g., [13,23]). In a sense the WKB tube
necessarily grow exponentially as— 0. In both analog is formed from optimal trajectories that are perturbations
and digital simulations, trajectories from the stable statef the MPEP, which are more or less followed during
(+1,0) to first crossings of the axis were measured, and actual escape attempts. Because the MPEP grazes the
the corresponding exit location distributions were built andaxis as it approache®, 0), the escaping particle should
analyzed. with overwhelming probability diffuse acros€) beforeit

Our theoretical prediction for the exit location distribu- reaches the saddle point, as observed (Fig. 1). One expects
tion was based on the following analysis. The phenomethat the limiting exit location density will include a factor
non of noise-induced exit in the — 0 limit is governed  exp(—constX y%#/¢), arising from the Gaussian profile
by the slowest decaying eigenmoge(x,y) (quasista- of the WKB tube. The exponent here is proportional to
tionary density) of the Fokker-Planck operatdi. =  the square of the distance between the p@ing) and the
(e/2)V> —u -V — V - u corresponding to (2). The closest point on the MPEP. One also expects the density
absorption location density of this mode on thexis de- to fall to zero asy — 07

termines the exit location densip.(y). With increasing The turning point approximation to the quasistationary
accuracy ag — 0, density p;(x, y) that is valid near the saddle poifd, 0)
turns out to be consistent with the expected behaviors. As
Pe(y) © 9,p1(0,y). (3) noted, this approximation must match the WKB form that
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is valid elsewhere. It must also satisfy the approximate To facilitate quantitative comparison with the theory,
Fokker-Planck equationf.p; = 0, with an absorbing measurements were madepafitial componentsf the exit
boundary condition on the axis. It should be symmetric location distribution. Individual escape trajectories from
in y, since there are two incoming WKB tubes, just as therghe x > 0 half-plane (Fig. 1) were selected according to
are two incoming MPEPs: one from the first quadrant andheir quadrants of origin and separately ensemble-averaged

one from the fourth. to build partial exit location distributions (whose sum
Whenu < 1, the appropriate approximation gq(x,y)  obviously corresponds to the standard exit location dis-
near(0, 0) is necessarily [15] tribution). Each partial component should display one-

sidedness, i.e., saddle-point avoidance, described by
p1(x,y) o |y|V/#~ sinh2x| y/Al'#/ €)

/w1 exp(— Al » , =>0:
X exp(—|y/AP/#/e), @ pely) x| I EET AR O,y =0 g
and it yields an exit location distribution of the above-; o 4 unsymmetrized, one-sided Weibull density.

mentioned symmetrized Weibull form, Partial exit location distributions obtained by digital
@/ u)—1 B 2 simulation for smalle are compared directly with the
pe(y)dy = |yl exp=ly/Al"*/e)dy. (5)  \weipull density (6) in Fig. 3. Agreement between theory

. L i i /2
Here the constant of proportionality is chosen to ensurL§nd gxpenment is reasonable on tée*’") length scale
and improves ag decreases. On a smaller length scale

unit total probability, andd is the constant that appears 3 S X . X
in the behavior of the MPEPs near the saddle point (i.e 1620, 0), some “rounding” is evident as in Fig. 2, but it

y = +Ax*), This distribution is localized on the(e#/2) ~ decreases asdecreases.

length scale and contains the expected Gaussian factor. \}\t/T_here IS a.s'”?p'e physical explanation of the limiting
is also bimodal. eibull distribution, not dependent on the method of

Clear experimental evidence for the predicted splittin at_ched asymptotic approximations, which can be refl_ned
of the exit location distribution can be seen in the analod® Y!€!d @ prediction for the length scale on which rounding
data of Fig. 2. It is evident that, for > 1 [Fig. 2(a)] °c¢curs. Since
escape occurs on average through the saddle point (0, 0) i=x+ i) )
whereas, foru < 1 [Figs. 2(b) and 2(c)] it does not: ’

the bimodality of the exit location distribution is well y = —uy + fr0) (8)
demonstrated. Significant rounding of the minimum of
pe aty = 0 where the theory predicis. = 0 is evident,
however, in Fig. 2(b). This can be attributed to the nois
intensities used in the experiment: the chain of reasonin
leading to (5) is valid only in thee — 0 limit. The
rounding becomes less pronouncedasand the angle
of approach to the saddle decrease. The= 0.2 curve

of Fig. 2(c) already resembles a symmetrized Weibull s
distribution. @

near(0, 0), thex andy motions decouple. So exit through

ethey axis is (in a sense) @ne-dimensionactivation phe-
omenon. Moreover, the figures show thas typically
uch larger thanx during an escape event, so to a first

approximationf, may be disregarded. This implies that
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/\\\ FIG. 3. Partial exit location distributions in digital simulation
(full curves) compared with the theoretically predicted Weibull

08 04 ?, 04 08 distributions (6) (dashed curves) far = 10 and u = 0.66,
with (a) e = 0.04 and (b)e = 0.015. All curves, being graphs
FIG. 2. Exit location distributions in analog simulation for of probability density functions, are normalized to total area
a =10 with () u = 2.0, € = 0.034; (b) u =0.67, € = unity. The solid and dashed curves approach each other as

0.011; and (c)u = 0.20, € = 0.009. € — 0.

1808



VOLUME 82, NUMBER 9 PHYSICAL REVIEW LETTERS 1 MRcH 1999

y(t) = yoe™#! for someyy, and that the exit location dis- [4] M.M. Kiosek-Dygas, B.M. Hoffman, B.J. Matkowsky,
tribution (i.e., the randomness jnat exit time) is simply A. Nitzan, M. A. Ratner, and Z. Schuss, J. Chem. Phys.
due to the variability of the exit time. 90, 1141 (1989).

In any one-dimensional escape process activated b)[5] A. M. Berezhkovskii, V.Y. _Zitserman, S.-Y. Shew, D.-Y.
white noise, precise results are available on the weak- 2(1%%%)1 Kuo, and S.-H. Lin, J. Chem. Phy€17, 10539
T acape e o eren 25 0] £ Ston and . mbrstr, s and O() Ampluc

; o . i Effects on Heteroclinic Cycles, Utah State University
exponentially ase — 0, but the duration of_ the. final, Report No. 980289 (to be published).
successful escape attempt grows only logarithmically. If (71 p. | udwig, SIAM Rev.17, 605 (1975).
x = x nearx = 0 whene = 0, the time for the particle  [8] M. Mangel, Theor. Population Biok5, 16 (1994).
to reachx = 0 in its final escape attempt will grow in the [9] B.-z. Bobrovsky and Z. Schuss, SIAM J. Appl. Mat2,

e — 0 limit as 5 log(1/€) + 7, with 174 (1982).
o [10] A.L. Welti and B.-Z. Bobrovsky, IEEE Trans. Sel. Areas
P(r=1t) =exp—e ) 9) Comm.8, 809 (1990).

[11] R. Landauer, Physica (Amsterdad94A, 551 (1993).

defining the cumulative distribution function of the com- [12] R. Graham. in Ref. [1], Chap. 7.

paratively small random quantity. _ [13] R.S. Maier and D. L. Stein, Phys. Rev.4B, 931 (1993).
Togethery = yoe *' and (9) imply that the exit loca- [14] m.v. Day, in Diffusion Processes and Related Problems

tion density on the axis must be of the Weibull form (6), in Analysis, edited by M. Pinsky (Birkhauser, Boston

with A = y,. A slight refinement oy = yge *’ yields a Basel, 1990), Vol. 1, pp. 55-71.

prediction for the rounding. Taking the force terfp(r)  [15] R.S. Maier and D. L. Stein, SIAM J. Appl. Matb7, 752

into account turng = y(¢) into an Ornstein-Uhlenbeck (1997).

process. The deterministic quantifye ' must be re- [16] R.S. Maier and D.L. Stein, Phys. Rev. Leftl, 1783

placed by a Gaussian random variable of mgan # and (1993).

0(61/2) standard deviation, thus smearing out the WeibuII[17] B.-Z. Bobrovsky and O. Zeitouni, Stoch. Process. Appl.
distribution on theO(e'/?) length scale, in qualitative 41, 241 (1992).

. LI [18] M.V. Day, Stochasticg8, 227 (1994).
agreement with the rounding in Figs. 2 and 3. In future[19] R.S. Maier and D. L. Stein, J. Stat. Phy& 291 (1996).

experlmental yvo_rk, it may be possible to make the COmIZO] D.G. Luchinsky, P.V.E. McClintock, and M.I. Dykman,
parison quantitative. Rep. Prog. Phys1, 889 (1998).

The research of R.S.M. and D.L.S. was supported in21] R. Mannella, in Supercomputation in Nonlinear and
part by NSF Grants No. DMS-9500792 and No. PHY- Disordered Systemsdited by L. Vazquez, F. Tirando,
9800979; that of D.G.L. and P.V.E.McC. in part by and |. Martin (World Scientific, Singapore, 1997),
the U.K. Engineering and Physical Sciences Research pp. 100-130.

Council (Grants No. GR.01978, No. GRL38875, and [22] T. Naeh, M. M. Klosek, B.J. Matkowsky, and Z. Schuss,
No. GR/L99562), INTAS (Project No. INTAS-96-0305), SIAM J. Appl. Math.50, 595 (1990). _

and the Royal Society of London; and that of R. M. [23] M.I. Dykman, D..G. Luchinsky, P.V.E. McClintock, and
and P.V.E.McC. in part by the Commission of the . . Y-N-Smelyanskiy, Phys. Rev. Le@7, 5229 (1996).

. . [24] D.G. Luchinsky and P.V.E. McClintock, Nature (Lon-
European Community Directorate General Xl (Contract don) 389, 463 (1997).

No. ERBCHBGCT940738). [25] D.G. Luchinsky, J. Phys. 80, L577 (1997).
[26] D.G. Luchinsky, R.S. Maier, R. Mannella, P.V.E. Mc-
Clintock, and D.L. Stein, Phys. Rev. Let79, 3109

[1] Noise in Nonlinear Dynamical Systeneslited by F. Moss (1997).

and P.V.E. McClintock (Cambridge University Press, [27] D. Ludwig, in Nonlinear Phenomena in Physics and

Cambridge, England, 1989), Vol. 1. Biology, edited by R.H. Enns, B.L. Jones, R.M.
[2] M. Marder, Phys. Rev. B4, 3442 (1996). Miura, and S.S. Rangnekar (Plenum, New York, 1981),
[3] N. Agmon and R. Kosloff, J. Phys. Chen®1, 1988 pp. 549-566.

(1987).

1809



