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Observation of Saddle-Point Avoidance in Noise-Induced Escape

D. G. Luchinsky,1,2 R. S. Maier,3,4 R. Mannella,5 P. V. E. McClintock,1 and D. L. Stein4,3

1Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
2Russian Research Institute for Metrological Service, Ozernaya 46, 119361 Moscow, Russia

3Department of Mathematics, University of Arizona, Tucson, Arizona 85721
4Department of Physics, University of Arizona, Tucson, Arizona 85721

5Dipartimento di Fisica, Università di Pisa and INFM UdR Pisa, Piazza Torricelli 2, 56100 Pisa, Ita
(Received 6 October 1998)

The first measurements of an exit location distribution are reported for an overdamped nonco
vative system perturbed by weak white noise, modeled both numerically and by an analog elec
circuit. In the weak-noise limit the distribution is increasingly concentrated near a saddle point o
dynamics and is increasingly well approximated by a Weibull distribution, in agreement with theore
predictions. A physical explanation for this behavior is given, which should facilitate the computa
of corrections to the limiting form. [S0031-9007(99)08581-6]
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A fundamental problem in the fluctuational dynamics o
randomly perturbed multistable systems is that of compu
ing an exit location distribution,i.e., the probability dis-
tribution of exit points on the boundary≠V of the domain
of attractionV of a stable state. This problem appear
in many areas of science and technology, e.g., in statis
cal physics [1,2], chemical physics [3–5], fluid mechanic
[6], ecology [7,8], and telecommunications [9,10].

In the familiar case of a noise-perturbed overdampe
system in equilibrium, exit from the domain of attraction
V preferentially takes place in the vicinity of a saddl
point of the deterministic (zero-noise) dynamics. In th
two-dimensional case, the exit location distribution on≠V

typically converges in the limit of weak noise to a Gaussia
centered on the saddle point, whose width decreases w
noise intensity. Deviations from this behavior are of pa
ticular interest to the chemical physics community [3–5
but are usually due to a comparatively large noise intens
and/or anisotropic diffusion.

More recently, attention has focused on the proble
of noise-induced exit in an overdamped,nonequilibrium
system (e.g., one whose noise-free dynamics are nonc
servative, so that even in stationarity there is nonze
probability current [11]). The boundary of the domain
of attraction of a stable point may then contain no sadd
points. More typically, the boundary contains one o
more saddle points, and noise-induced exit tends to o
cur preferentially in the vicinity of one of them. But the
phenomenology of escape differs considerably from th
equilibrium case [12,13]. In general, the exit location dis
tribution on≠V is now skewed:it no longer resembles a
Gaussian, even in the limit of weak noise [9,10,14–18].

In two-dimensional nonequilibrium systems, the skew
ing behavior is largely determined bym ­ jlsjylu, the ra-
tio of the stable and unstable eigenvalues of the lineariz
deterministic dynamics at the saddle point [14–18]. Th
m , 1 case is particularly striking in that the exit location
distribution in thee ! 0 (weak-noise) limit, besides being
0031-9007y99y82(9)y1806(4)$15.00
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skewed, is localized on a much broader length scale n
the saddle point than theOse1y2d length scale that dimen-
sional analysis would predict. Maier and Stein [15] ha
shown that ifm , 1, Osemy2d is the correct length scale
They have also predicted that ase ! 0, the exit location
distribution on≠V typically converges on this length scal
to a Weibull, or “stretched exponential” distribution. It i
a one-sideddistribution: In the weak-noise limit, the sys
tem state in most noise-perturbed nonequilibrium mod
tends to avoid the saddle point, by exiting fromV a small
distance to one side of it. This is a more fundamental fo
of “saddle-point avoidance” than the type seen in cons
vative systems [5].

Direct comparison with experiment has become des
able. In this Letter we use analog and digital experime
to seek the predicted phenomenon of skewing, and we
late it to the geometry of the most probable escape p
(MPEP) from the stable state to≠V, as it approaches the
saddle point. The anomalously broad exit location dist
butions whenm , 1 are predicted to have a simple phys
cal origin: the MPEP grazes≠V as it approaches the saddl
point [15]. (See, e.g., Fig. 1.)

The system we investigate is a bistable one:
overdamped particle moving in the symmetric, tw
dimensional drift field

usx, yd ­ fx 2 x3 2 axy2, 2mys1 1 x2dg , (1)

wherea andm are parameters [16]. This system has sta
points ats61, 0d, a separatrix or “ridge” (i.e.,≠V) along
the y axis, and a saddle point ats0, 0d. If isotropic white
noisefstd ­ s fx , fyd of strengthe is added, the equations
of motion of the particle become

Ùx ­ x 2 x3 2 axy2 1 fxstd ,

Ùy ­ 2mys1 1 x2d 1 fystd , (2)

k fistdl ­ 0, k fissdfjstdl ­ edijdss 2 td .
© 1999 The American Physical Society
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FIG. 1. First-quadrant MPEP (thick, solid line) form ­ 0.66
and a ­ 10, compared to a typical escape path (thin, jagg
line) seen using analog simulation. The dashed rectan
represents the length scale nears0, 0d on which the exit location
distribution is localized fore ­ 0.016. Thin straight lines show
separatrixx ­ 0 and the other axis of symmetryy ­ 0.

In the language of chemical physics,x is a reaction coor-
dinate,y is a nonreacting coordinate, and the half-plan
x . 0 andx , 0 (in either order) correspond to the rea
tant and product wells. SinceÙx ø x and Ùy ø 2my near
s0, 0d, jlsjylu equalsm.

Because of the symmetry through thex axis, for many
choices of parameters there are two MPEPs extend
from each stable point to the saddle points0, 0d [19].
Each grazes they axis, and together they yield a limiting
“symmetrized Weibull” distribution on they axis near
y ­ 0. So, one-sidedness of the exit location distributi
should here be replaced bybimodality.

To test these predictions, we have built an analog e
tronic model [20] of (2). We drive it with zero-mean quas
white Gaussian noises from a noise generator, digitize
responsexstd, ystd, and analyze it with a digital data pro
cessor. We have also carried out a complementary d
tal simulation, using a high-speed pseudorandom gener
[21] for the incrementssDx, Dyd because simulation time
necessarily grow exponentially ase ! 0. In both analog
and digital simulations, trajectories from the stable st
s11, 0d to first crossings of they axis were measured, an
the corresponding exit location distributions were built a
analyzed.

Our theoretical prediction for the exit location distribu
tion was based on the following analysis. The phenom
non of noise-induced exit in thee ! 0 limit is governed
by the slowest decaying eigenmoder1sx, yd (quasista-
tionary density) of the Fokker-Planck operatorLe ­
sey2d=2 2 u ? = 2 = ? u corresponding to (2). The
absorption location density of this mode on they axis de-
termines the exit location densitypes yd. With increasing
accuracy ase ! 0,

pes yd ~ ≠xr1s0, yd . (3)
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Our prediction for the exit location distribution relie
on an approximation tor1 that is increasingly valid as
e ! 0. The approximation also yields predictions for th
limiting MPEPs. The appropriate tool for constructin
this approximation is the method of matched asympto
approximations [7,22]. Away from the stable state a
the y axis, r1sx, yd should take on, to leading order,
WKB form const3 expf2W sx, ydyeg. Near the saddle
point s0, 0d, this form should match an approximation o
the “turning point” type.

The eikonal functionWsx, yd of the WKB approxima-
tion (also called a “quasipotential” [12]) has a classica
mechanical interpretation. For any pointsx, yd in the
domain of attraction of either stable state,Wsx, yd is the
action of the least-action zero-energy trajectory of an a
iliary Hamiltonian system that extends from the stab
state tosx, yd. The Hamiltonian functionHsx, pd for the
auxiliary system is1

2 p2 1 p ? usxd.
These zero-energy trajectories satisfy Hamilton’s eq

tions, and are themost probable fluctuational trajectories
of the noise-perturbed system. Such “optimal” trajector
are experimentally observable, and the momentump can
be interpreted as the force applied by the noise [23–2
According to theory, MPEPs are simply optimal traject
ries that extend to the saddle point.

In Fig. 1, the theoretically predicted MPEP of (2) in th
first quadrant, withm ­ 0.66 anda ­ 10 (dotted curve),
is compared with a typical escape path measured in
analog electronic model of (2) ( jagged line). Three im
portant, closely related, features deserve comment: (i)
m , 1 the MPEP approaches the saddle points0, 0d along
they axis “ridge”; (ii) the shape of the MPEP in a bounda
layer near they axis, obtained by linearizing the Hamilton
ian dynamics ats0, 0d, is close toy ~ xm; (iii) the measured
escape path departs from the MPEP and crosses they axis
before reachings0, 0d.

Because of small transverse fluctuations, the MP
may be viewed as being surrounded by a “WKB tub
with an asymptotically (e ! 0) Gaussian profile of width
Ose1y2d (see, e.g., [13,23]). In a sense the WKB tub
is formed from optimal trajectories that are perturbatio
of the MPEP, which are more or less followed durin
actual escape attempts. Because the MPEP grazes ty
axis as it approachess0, 0d, the escaping particle should
with overwhelming probability diffuse across≠V beforeit
reaches the saddle point, as observed (Fig. 1). One exp
that the limiting exit location density will include a facto
exps2const3 y2ymyed, arising from the Gaussian profile
of the WKB tube. The exponent here is proportional
the square of the distance between the points0, yd and the
closest point on the MPEP. One also expects the den
to fall to zero asy ! 01.

The turning point approximation to the quasistationa
densityr1sx, yd that is valid near the saddle points0, 0d
turns out to be consistent with the expected behaviors.
noted, this approximation must match the WKB form th
1807
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is valid elsewhere. It must also satisfy the approxima
Fokker-Planck equationLer1 ø 0, with an absorbing
boundary condition on they axis. It should be symmetric
in y, since there are two incoming WKB tubes, just as the
are two incoming MPEPs: one from the first quadrant a
one from the fourth.

Whenm , 1, the appropriate approximation tor1sx, yd
nears0, 0d is necessarily [15]

r1sx, yd ~ j yjs1ymd21 sinhs2xj yyAj1ymyed
3 exps2j yyAj2ymyed , (4)

and it yields an exit location distribution of the above
mentioned symmetrized Weibull form,

pes yd dy ~ j yjs2ymd21 exps2j yyAj2ymyed dy . (5)

Here the constant of proportionality is chosen to ensu
unit total probability, andA is the constant that appear
in the behavior of the MPEPs near the saddle point (i.
y ­ 6Axm). This distribution is localized on theOsemy2d
length scale and contains the expected Gaussian factor
is also bimodal.

Clear experimental evidence for the predicted splittin
of the exit location distribution can be seen in the analo
data of Fig. 2. It is evident that, form . 1 [Fig. 2(a)]
escape occurs on average through the saddle point (0
whereas, form , 1 [Figs. 2(b) and 2(c)] it does not:
the bimodality of the exit location distribution is well
demonstrated. Significant rounding of the minimum o
pe at y ­ 0 where the theory predictspe ­ 0 is evident,
however, in Fig. 2(b). This can be attributed to the noi
intensities used in the experiment: the chain of reason
leading to (5) is valid only in thee ! 0 limit. The
rounding becomes less pronounced asm and the angle
of approach to the saddle decrease. Them ­ 0.2 curve
of Fig. 2(c) already resembles a symmetrized Weibu
distribution.
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FIG. 2. Exit location distributions in analog simulation fo
a ­ 10 with (a) m ­ 2.0, e ­ 0.034; (b) m ­ 0.67, e ­
0.011; and (c)m ­ 0.20, e ­ 0.009.
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To facilitate quantitative comparison with the theory
measurements were made ofpartial componentsof the exit
location distribution. Individual escape trajectories fro
the x . 0 half-plane (Fig. 1) were selected according
their quadrants of origin and separately ensemble-avera
to build partial exit location distributions (whose sum
obviously corresponds to the standard exit location d
tribution). Each partial component should display on
sidedness, i.e., saddle-point avoidance, described by

pes yd ~

Ω
j yjs2ymd21 exps2j yyAj2ymyed, y $ 0 ;
0, y , 0 ,

(6)

i.e., an unsymmetrized, one-sided Weibull density.
Partial exit location distributions obtained by digita

simulation for smalle are compared directly with the
Weibull density (6) in Fig. 3. Agreement between theo
and experiment is reasonable on theOsemy2d length scale
and improves ase decreases. On a smaller length sca
nears0, 0d, some “rounding” is evident as in Fig. 2, but i
decreases ase decreases.

There is a simple physical explanation of the limitin
Weibull distribution, not dependent on the method
matched asymptotic approximations, which can be refin
to yield a prediction for the length scale on which roundin
occurs. Since

Ùx ø x 1 fxstd , (7)

Ùy ø 2my 1 fystd (8)

nears0, 0d, thex andy motions decouple. So exit through
they axis is (in a sense) aone-dimensionalactivation phe-
nomenon. Moreover, the figures show thaty is typically
much larger thanx during an escape event, so to a fir
approximationfy may be disregarded. This implies tha
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FIG. 3. Partial exit location distributions in digital simulation
(full curves) compared with the theoretically predicted Weibu
distributions (6) (dashed curves) fora ­ 10 and m ­ 0.66,
with (a) e ­ 0.04 and (b)e ­ 0.015. All curves, being graphs
of probability density functions, are normalized to total are
unity. The solid and dashed curves approach each other
e ! 0.



VOLUME 82, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 1 MARCH 1999

s.

e
y

s

l.

,

,

-

.
),
ystd ø y0e2mt for somey0, and that the exit location dis-
tribution (i.e., the randomness iny at exit time) is simply
due to the variability of the exit time.

In any one-dimensional escape process activated
white noise, precise results are available on the wea
noise limit of the escape time, considered as a rando
variable [13–15,27]. The expected time to escape gro
exponentially ase ! 0, but the duration of the final,
successful escape attempt grows only logarithmically.
Ùx ­ x nearx ­ 0 when e ­ 0, the time for the particle
to reachx ­ 0 in its final escape attempt will grow in the
e ! 0 limit as 1

2 logs1yed 1 t, with

Pst # td ­ exps2e22td (9)

defining the cumulative distribution function of the com
paratively small random quantityt.

Together,y ­ y0e2mt and (9) imply that the exit loca-
tion density on they axis must be of the Weibull form (6),
with A ; y0. A slight refinement ofy ­ y0e2mt yields a
prediction for the rounding. Taking the force termfystd
into account turnsy ­ ystd into an Ornstein-Uhlenbeck
process. The deterministic quantityy0e2mt must be re-
placed by a Gaussian random variable of meany0e2mt and
Ose1y2d standard deviation, thus smearing out the Weibu
distribution on theOse1y2d length scale, in qualitative
agreement with the rounding in Figs. 2 and 3. In futur
experimental work, it may be possible to make the com
parison quantitative.
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