
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1999 1215

Stochastic Resonance in Electrical Circuits—II:
Nonconventional Stochastic Resonance

Dmitrii G. Luchinsky, Riccardo Mannella, Peter V. E. McClintock, and Nigel G. Stocks

Abstract—Stochastic resonance (SR), in which a periodic sig-
nal in a nonlinear system can be amplified by added noise,
is discussed. The application of circuit modeling techniques to
the conventional form of SR, which occurs in static bistable
potentials, was considered in a companion paper. Here, the
investigation of nonconventional forms of SR in part using similar
electronic techniques is described. In the small-signal limit, the
results are well described in terms of linear response theory. Some
other phenomena of topical interest, closely related to SR, are
also treated.

Index Terms—Fluctuations, noise, nonlinear.

I. INTRODUCTION

I N AN EARLIER companion paper [1], the stochastic
resonance (SR) phenomenon was introduced and reviewed

briefly. It was pointed out that linear response theory (LRT)
shows that SR need not be restricted to the systems with static
bistable potentials in which it was originally discovered. It is
to be anticipated in any system whose susceptibility increases
rapidly with noise intensity. In the case of thermal equilibrium
systems (e.g., those subject to white noise, in the absence of
external forces), this means that the possibility of SR can be
assessed by examination of the spectral density of fluctuations
(SDF) in the absence of the weak periodic force. Where the
SDF contains peaks that rise rapidly with noise intensity, the
fluctuation dissipation relations show immediately that SR is
to be anticipated.

In the next section, we consider several examples of non-
conventional SR, both in the small signal limit where LRT
is applicable and also for stronger signals where different
theoretical approaches are required. In Section III, we describe
some phenomena, closely related to SR, that have also been
investigated through analog electronic experiments, and in
Section IV, we draw conclusions.
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II. UNUSUAL FORMS OFSTOCHASTIC RESONANCE

A. SR for Coexisting Periodic Attractors

The system considered by Dykmanet al. [2], [3] was the
underdamped single-well Duffing oscillator

(1)

where the oscillator is driven by a periodic force of amplitude
frequency and is the zero-mean white Gaussian

noise of intensity such that

(2)

The oscillator is driven by a nearly resonant force
with the frequency close to the oscillator eigenfrequency

such that

(3)

It is of particular interest in view of its importance in nonlinear
optics [4]–[7] and its relevance to experiments on a confined
relativistic electron excited by cyclotron resonant radiation
[8], [9]. Provided that and that the
noise is weak, the resultant comparatively small amplitude

oscillations of can conveniently be
discussed in terms of the dimensionless parameters [10]

(4)

which characterize, respectively, the frequency detuning, the
strength of the main periodic field, and the noise intensity.
The bistability [11] in which we are interested corresponds
to a coexistence of stable states with large or small amplitude
limit cycles, and it arises for a restricted range ofand . The
effect of weak noise is to cause small vibrations about
the attractors, and to induce occasional transitions between
them within the bistable regime. Since the system is far away
from thermal equilibrium, the transition probabilities are not
given by the classical Kramers [12] theory. The inter-attractor
transitions give rise to a stationary distribution of the oscillator
over the attractors. They also give rise to an SR effect which,
as we shall see, occurs in the close vicinity of the kinetic phase
transition (KPT) [10], [13], where the stationary populations of
the two attractors are equal, . The phenomenon can be
discussed in terms of the LRT in [1, eqs. (16), (18)]; but, since
the system now under consideration is of the nonequilibrium
type, the susceptibility cannot now be obtained through the
fluctuation dissipation relations of [1, eqs. (19), (20)].
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Fig. 1. The SNRR of the response of the system (1)–(3) to a weak trial force at frequency
; as a function of noise intensity�; in experiment and theory
[2]: at the trial frequency
 (circle data and associated theoretical curve); and at the “mirror-reflected” frequency(2!F �
) (squares) . For noise intensities
near those of the maxima inR(�); the asymptotic theory is only qualitative and so the curves are shown dotted.

Consider the response of the system (1) to an additional
weak trial force . Under stationary conditions, the
response to this field in the presence of the strong driving force
can still be described, in terms of linear response theory, by a
susceptibility. The trial force beats with the main periodic force
and thus gives rise to vibrations of the system, not only at,
but also at the combination frequencies (and also at

for a general nonlinearity). We are interested
in the case where the strong and trial forces are both nearly
resonant; that is, and both lie close to the oscillator
eigenfrequency . This is the case for which the response
to the trial force is strongest. It is at its most pronounced at
frequency and at the nearest resonant combination, which
for (1) is . The amplitudes of vibrations at these
frequencies can be described respectively by susceptibilities

so that trial-force-induced modification of the
coordinate averaged over noise, can be sought in the form

(5)

Within the KPT range, displays a high narrow peak,
whose width is given by the transition rates and is therefore
strongly noise-dependent [10]. The rapid rise in susceptibility
with noise intensity corresponds precisely to SR because,
according to (5), the areas of the peaks in the power spectrum
at frequencies and are

(6)

An intuitive understanding of the mechanism of stochastic
amplification [14] can be gained by noting that the trial
force modulates the driving force (and the coordinate ) at
frequency and that, when is small compared
to the dynamical relaxation rate the dynamical response
of the system is almost adiabatic. The beat envelope then

results [2] in a slow oscillation in the amplitude of the force.
This has the effect of strongly modulating the populations of
the attractors (in the quasi-static limit). Such a modulation
only occurs close to the KPT; away from the KPT line, the
populations are always very different. If the noise intensity
is optimally chosen, then the modulated system will have a
tendency to make inter-attractor transitionscoherently, once
per half-cycle of the beat frequency. The net effect of the
noise is, therefore, to increase the modulation depth of the beat
envelope of the response, thereby increasing the components
of the signal at frequencies and .

The response of the system (1), (2), (4), and the variation
of the signal-to-noise ratio (SNR) with were investigated
[2], [3] through analog experiments on the electronic model
described in Section II-A of [1]. In terms of scaled units,
the circuit parameters were set, typically, to

and,
to seek SR near the KPT, and the amplitude
of the trial force . The SNR’s determined in
the usual way from measurements of the delta spikes and the
smooth background, are plotted (data points) as functions of
noise intensity in Fig. 1 for . It is
immediately evident that there is a range ofwithin which

increaseswith . It is also apparent that, for both the main
signal and that at the “mirror-reflected” combination frequency

the form of in Fig. 1 is remarkably similar
to that observed for conventional SR. A quantitative theory of
the phenomenon is readily constructed through an extension
[3] of the formalism introduced by Dykman and Krivoglaz
[10]. It leads to the two full curves shown in the figure which,
within experimental error, agree with the circuit data.

B. SR in Monostable Systems

In a noise-driven underdamped nonlinear oscillator [14],
the natural frequency vibrations depends on the energy
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Fig. 2. Calculated variation of eigenfrequency!(E) with energyE for the
potential (7) withB = 0:3; xdc = 0 [23]. The first three extrema are at
!m1 = 0:372; !m2 = 0:600; and!m3 = 0:506.

(measured from the bottom of the potential well). The
oscillator has a (Boltzmann) distribution over energy, and
therefore over frequency. With increasing noise intensity this
distribution changes and the response at certain frequencies
can become strongly enhanced by noise. The appearance of
an additionalzero-dispersionspectral peak (ZDP), where the
damping is extremely small and is nonmonotonic as a
function of energy, was predicted and discussed by Soskin
[15], [16]. The exponential rise in the ZDP with increasing
noise intensity can be expected, on the basis of (18)–(20) of
[1], to give rise to SR at nearby frequencies.

The model used for the original prediction and first obser-
vation of SR in monostable systems [17], [18] was the tilted
single-well Duffing oscillator driven by Gaussian white noise
plus a weak periodic force. However, much stronger SR effects
are to be anticipated in underdamped SQUID’s, which we now
consider, even for relatively large values of. The dynamics
of the magnetic flux through a periodically-driven SQUID
loop can be described in terms of a resistively shunted model
[19] whose governing equation, after appropriate changes of
variable (e.g., see [20]) can be written

(7)

corresponding to classical motion in the potential under
influence of the additive noise . We consider the case
where the amplitude of the periodic force is small, where
the constant is also small so that motion in the potential
is underdamped, and where the relative magnitudes of the
constants and are such that the potential has a single
potential well.

The corresponding dependence calculated for the
SQUID potential (7) with and shown in
Fig. 2, exhibits a local maximum and two local minima within
the range plotted. Each of these extrema may be expected to
produce a ZDP in that could in principle give rise to
SR. This inference [20] was tested with an analog electronic
model of (7), as shown in block form in Fig. 3. and

are respectively a signal and an external noise applied

Fig. 3. Block diagram of the analog electronic circuit model of (7). Its
behavior can conveniently be analyzed in terms of the voltagesVA; VB ;

VC ; andVD at the points indicated (see text) [23].

to the underdamped nonlinear oscillator. is the amplitude
of the signal in volts, is the value of the noise voltage
applied to the circuit, and and are the real frequency
and time in units of Hertz and seconds. Setting to zero the
total currents at the inputs of the operational amplifiers whose
outputs are and respectively, we obtain

(8)

(9)

The trigonometric integrated circuit (IC) was configured to
give an output of where the two inputs
and are in volts and the argument of the sine is in degrees.
The IC operation is restricted to lie within the range500 .
In order to increase the dynamic range ofencompassed by
the model, an analog multiplier was used as shown to convert
the argument to the double angle. The voltage at its output, in
terms of the voltage at the input of the trigonometric IC
and the constant voltages and and allowing for internal
scaling by a factor of 0.1, is

(10)

or, in terms of the double angle now expressed in radians

(11)

The voltage is just

(12)

Eliminating and from (8), (9), (11), and (12), and
writing the differential equation for the voltagein
the circuit can therefore be written

(13)
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Fig. 4. Spectral density of fluctuationsQ(!) measured (jagged lines) for the
analog electronic model of (7) withA = 0; B = 0:3; xdc = 0; compared
with the calculated behavior (dashed curves), for three noise intensitiesD[23].
One ZDP is seen forD = 1:0; and three forD = 3:1. Note the differing
ordinate scales.

where we have chosen: k
k k k

M nF; V. The
multiwell and single-well cases of the potential (7) correspond
to different values of the parameters and . For example,
on introducing k V, the time
constant and the damping
constant (13) can be reduced to

(14)

whose parameters are readily related to those in the model (7)
by means of the scaling relations

with .
The nominal value of was 0.001 44; the actual value,
measured experimentally by two independent methods [21],
was found to be .

When the model was driven by quasi-white noise from an
external noise generator, with the measured spectral
density underwent dramatic changes of shape with
increasing , as shown in Fig. 4. The three ZDP’s appeared

Fig. 5. Signal/noise ratioR measured (data points) as a function of noise
intensityD for the analog electronic model of (7) withA = 0:016;
 = 0:62;
B = 0:3; xdc = 0; compared with the behavior predicted (full curve) by
LRT, [1, eqs. (18)–(20)], using the calculated spectraldensitiesQ(!); of which
three examples are plotted as dashed lines in Fig. 4 [23].

sequentially as “tuned” the oscillator to different ranges
of . When the weak periodic force was also
added, with chosen to lie close to the frequency of the local
maximum of and the corresponding ZDP where is
expected to be strongly noise dependent, the SNR was found to
vary with increasing as shown by the data points of Fig. 5.
At first the SNR falls, as one might expect on intuitive grounds;
but there follows a range of within which the SNR markedly
increaseswith increasing i.e., a strong manifestation of
SR, before falling again at very high . The theory of these
phenomena, developed [20], [22], [23] on the usual LRT basis
and shown by the full curves of Figs. 4 and 5, is in satisfactory
agreement with the measurements. Note that ifis made small
enough, there is in principle no limit to the rise in SNR that
can be achieved, and that zero-dispersion SR also occurs in
SQUID’s with multiwell potentials [22], [23] where it exhibits
some interesting features.

These circuit measurements strongly imply that zero-
dispersion SR is to be anticipated in underdamped SQUID’s.
The performance of a high-frequency SR device based on
an underdamped SQUID would probably be comparable with
that of low-frequency SQUID-SR devices [24], and it would
have the additional advantage of being tunable over a wide
range of frequencies by adjustment of the static magnetic field
and/or the inductance of the loop.

C. SR for Periodically Modulated Noise Intensity

SR phenomena can also arise [25] in a bistable system when
the noise and the periodic force are introduced multiplicatively,
so that the former is modulated by the latter. Periodically
modulated noise is not uncommon and arises, for example, at
the output of any amplifier (e.g., in optics or radio-astronomy)
whose amplification factor varies periodically with time. It
is of obvious importance, therefore, to establish whether or
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not a modulated zero-mean noise can give rise to a periodic
signal in the system it is driving. Such an effect would not,
of course, occur in a linear system where the signal is directly
proportional to the driving noise so that they must both, on
average, vanish. In anonlinear system, however, a periodic
signal does arise; furthermore, where the system is bistable
a form of SR can occur for periodically modulated noise
intensity. It has some novel features that are strikingly different
from those in conventional SR. Dykmanet al. [25] addressed
the problem through analytic approximation and an electronic
model of an overdamped Brownian particle in moving in an
asymmetric bistable potential

(15)

Here, characterizes the asymmetry of the potential. For
the potential has two min-

ima, i.e., the system is bistable. The function represents
white Gaussian noise of intensity so that

(16)

i.e., the intensity of the driving force is periodic in time.
The modulation was assumed to be weak, so that the
term in in (16) could be neglected.

Both the approximate theory and measurements of sig-
nal/noise ratio in the electronic model immediately demon-
strated [25] the occurrence of SR: the rate of increase of
was faster than , so that it did not represent merely the
proportionality of the modulation to in (16). The most
striking feature was that the SR effect occuredonly when the
bistable potential was made asymmetric, with wells of different
depths, whereas conventional SR can be regarded (see above)
as a kinetic phase transition (KPT) phenomenon that is at its
most pronounced for equally populated stable states i.e., for
equal well depths.

D. SR in Threshold Devices

It is interesting to notice that the first experimental evidence
of SR was obtained in an electronic bistable system working
as a threshold detector (a Schmitt trigger) [26]. The electronic
device used was fairly simple, consisting of an operational
amplifier with feedback, subject to random noise and a periodic
forcing. Although the work of [26] was prompted by [27], so
that the authors had in mind a continuous system, they realized
that their system had hysteresis and was actually behaving
more like a threshold system.

After a period during which work on SR was focused mainly
on continuous systems, SR in threshold systems again became
of interest when it was realized that the latter were perhaps
more appropriate for the description of neuronal dynamics. At
the same time, in an attempt to work on minimal systems able

to display SR, attention turned to the so-called level crossing
detector (LCD), which is basically a threshold device. The new
wave of electronic simulations and theoretical explanations
for this class of system were reviewed in [28], [29]. A fairly
general theoretical approach able to account for their behavior
in terms of simple quantities was developed in [30]. It was
soon realized, however, that the dynamics of this class of
systems is closely connected to the dithering effect, already
well known in digital signal processing, as explained in [31].

More recently, SR in threshold devices has been redis-
covered in an electronic simulation [32]; the authors study
a two-state threshold comparator fed by white noise and a
periodic signal; they show that the cross-correlation between
output and input can be enhanced in the appropriate range of
input noise intensity.

E. Aperiodic SR and Information Transmission

Traditionally, SR has been quantified in terms of a noise-
induced maximum in the SNR [1]. For systems subject to
a periodic signal, this is a simple and convenient quantity
to measure experimentally. The output signal power and
background noise intensity can easily be determined from a
measurement of the power spectrum of the response. However,
spectral methods cannot be easily applied if the input signal
is broadband. Recently, SR has been extended to encompass
broadband signals [33], so-calledaperiodic SR. Although the
term was first coined in a study of a parallel array, it was
already known that broadband signals could exhibit SR type
effects [34], [35]. In fact, aperiodic SR can occur in any system
that displays conventional SR.

Due to the broadband nature of the signals, information-
theoretic measures have started to be employed. The most
commonly used measure is the average mutual information
[35]–[40], although other quantities have also been considered
[41].

Using this type of approach, the SR system is treated as a
noisy communication channel with an input signal and
an output . The average mutual information (transmitted
information) is then computed for these quantities.
For threshold-type systems, such as a simple comparator or
Schmitt trigger, there often exists a countable number of output
states. In this case the system can be treated as a semi-infinite
channel. The average mutual information is then given by

(17)

is the information content (or entropy) of and
can be interpreted as the amount of encoded information

lost in the transmission of the signal. Enumerating the possible
output states by where ( being the
number of output levels), is then the probability of the
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Fig. 6. Plot of the transmitted information against� for three different
settings of the threshold,� = 0 (circles), � = 0:4 (pluses), and� = 0:6

(crosses). The data points are from digital simulations and the solid lines are
guides to the eye.

output being in state and is the conditional
probability density given knowledge.

To illustrate the use of this approach, consider what happens
in a simple comparator circuit. It is assumed that two possible
output states exist, labeled 0 and 1. In the absence of any noise,
state 1 is accessed if the signal exceeds the threshold level

otherwise, the system remains in state 0. If noise is now
added to the signal, the system will only change state when
both the signal plus the noise exceeds.

Fig. 6 shows results from a digital simulation of this model.
The signal was uniformly distributed between the limits0.5
and the noise was Gaussianly distributed with standard de-
viation . It can be seen that SR effects (a maximum in
the transmitted information) are observed when the signal is
entirely subthreshold i.e., when .

The appearance of SR can be understood as follows. If all
information is lost in transmission, (which
occurs as ), and hence . Alternatively, if all
encoded information is transmitted,
and . Given that it is straightforward to show that
for any non-zero it would seem to
follow that maximum information transfer occurs when there
is no internal noise. However, as we have seen, this is not
necessarily the case. This is because internal noise also serves
to increase . In effect, when the signal is subthreshold,
the noise facilitates access to additional bits of information.
Consequently, the maximization of by internal noise is a
balance between additional information generated by the noise
and the increased loss in information transmitted through the
system with increasing .

It should be noted that this is not the only way of defining
. In neurophysiological experiments, it is common practice

to measure the time between successive firings of a neuron.
The same idea can be applied to simple threshold systems
by measuring the time between generated events; this gives
rise to a set of times . This enables the average mutual

information to be constructed. A number of authors
have used this approach to make connection with neurophys-
iological applications [35]–[37]. Similar SR type effects are
observed using this approach.

F. SR in Networks

To date, the majority of studies on SR have tended to
focus on the dynamics of single elemental systems. However,
recently there has been a growth of interest in connecting
together a number of such elemental systems to form arrays or
networks. A wide range of network design, using different el-
ements and connectivity, has been investigated; these include,
globally coupled networks [42]–[45], randomly connected
networks [46], linear chains [47]–[53] and parallel arrays [33],
[54]–[58]. Possible applications include pattern segmentation
[59], perceptual interpretation of ambiguous figures [60], the
modeling of biological sensory system [33], [55], modeling of
neuropsychiatric disorders [61], and nanoscale subthreshold
magnetic field detection [62].

Studies of networks have demonstrated that SR is not solely
a temporal effect, it can also manifest itself in the spatiotempo-
ral domain. Indeed, the global response of a network can lead
to an enhanced SR effect, as exemplified in array-enhanced
SR (AESR) [47]. The existence of AESR, which occurs in
a linear chain of coupled bistable oscillators, has recently
been confirmed experimentally in a diode resonator connected
diffusively into an array of nonidentical resonators [48], [50],
[51]. In these systems, in addition to the usual temporal
synchronization, a spatial synchronization of the chain to the
signal also occurs. The maximum in the SNR is observed to
coincide with the optimal spatiotemporal synchronization of
the chain [48]. Similar enhancements of the SR effect have also
been found in globally coupled networks [42], [43]. Again,
SR enhancements over and above that displayed by a single
element were observed.

The motivation behind studying parallel arrays of elements
comes primarily from neurophysiological applications. Sen-
sory neurons tend to be arranged in a highly parallel structure.
They also possess significant amounts of internal noise and
are highly nonlinear. Consequently, they have all the features
necessary for exhibiting SR. Indeed, SR type effects have been
observed in a number of real neurophysiological experiments
[63], [64].

Parallel arrays differ from other types of network in that the
elements are not actually coupled. Generally, each element is
subject to the same signal but evolves under the influence of
its own internal noise. The elements are only connected at
a common summing point. The action of the summing point
leads to an ensemble averaging over the noise. Consequently,
the SNR at the output can be simply improved by increasing
the number of elements. In addition to displaying SR, the
dynamics of each element linearises with increasing noise
intensity (see Section III-B). Therefore, such arrays are capable
of transmitting a high-fidelity reproduction of the signal,
despite the nonlinearity of individual elements. It is the ability
of these arrays, to display SR effectsand a high-fidelity
linear response, that makes them so intriguing as signal
processing systems.
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Fig. 7. A summing network ofN threshold devices. Each device is subject to
the same signal (a Gaussianly distributed signal with zero mean and standard
deviation�x) but independent Gaussian noise.

G. Suprathreshold SR

SR is commonly understood to be the enhancement, by
noise, of the response of a system to aweak signal [1]. By
weak, one normally means with reference to an appropriate
scale of the system. In a threshold-type system, the scale
would be taken as the threshold level. Normally, SR is only
observed if the signal is smaller than this scale i.e., it is
subthreshold. For signals of sufficient magnitude, the SR effect
disappears. However, it has recently been observed [65] that,
in parallel networks of threshold devices, SR-type effects can
occur for any magnitude of signal—including suprathreshold
signals. For this reason, this form of SR has been termed
suprathreshold SR (supra-SR).

Consider the summing network of threshold devices
shown in Fig. 7. Each threshold device is subject to the same
input signal but to an independent Gaussian noise
with a standard deviation . The devices are modeled as
Heaviside functions, the outputs being given by the
response function

if
otherwise

(18)

where are the threshold levels and . The
response of the network is obtained by summing the individual
responses of each device. Consequently, is the number of
devices that are triggered at any instant of time.

Although other studies have considered similar networks
[33], this model differs in that each threshold can be chosen
independently. This enables the thresholds to be adjusted
to optimize the information transmission for a given signal
distribution. Uniformly placing the thresholds across the signal
space mimics the signal encoding abilities of a flash analog-
to-digital converter (ADC)—this is the optimal threshold dis-
tribution for a uniformly distributed signal. For other signal
distributions, the optimal threshold distribution can be found
using the method ofoptimal quantization[65]–[67]. If such
a procedure is undertaken, one finds that the transmitted
information is generally maximized at zero levels of noise.

Fig. 8. Plot of transmitted information against� = ��=�x for variousN
and all�i = 0. The data points are the results of a digital simulations of the
network and the solid lines were obtained by numerically evaluating (19).

However, this is not the case if every threshold is adjusted to
coincide with the dc component of the signal. Fig. 8 illustrates
what happens for a broadband Gaussianly distributed input sig-
nal with standard deviation and zero mean. Each threshold
level has been set to zero to coincide with the mean of
the signal. It can be seen that an SR-type effect is observed,
providing even though the signal is suprathreshold.
Indeed, it was found that the effect remained for any magnitude
of signal. Consequently, in contrast to single element threshold
systems, noise can optimize the performance of parallel arrays
to suprathreshold as well as to subthreshold signals.

The mechanism giving rise to supra-SR is quite different to
that of conventional SR. In the absence of noise, all devices
switch in unison and consequently the network acts like a
single-bit ADC . Finite noise results in a distribution
of thresholds that gives access to more bits of information;
effectively the noise is accessing more degrees of freedom
of the system, and hence, generating information. Using (17),

can be calculated analytically to give

(19)

where is the Binomial coefficient.
The signal distribution,

and is the conditional prob-
ability of for a given (note all devices are identical)
and similarly is the probability of a zero given

. is the complementary error function [68]. The integrals
and summation were calculated numerically to give the solid

Authorized licensed use limited to: Lancaster University Library. Downloaded on February 28,2010 at 05:33:11 EST from IEEE Xplore.  Restrictions apply. 



1222 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1999

lines in Fig. 8. Good agreement between simulation and theory
is obtained confirming the suprathreshold SR effect.

Such networks could have direct engineering applications.
This is particularly true in the design of ADC’s when the
signal is highly nonstationary and weak with respect to the
internal noise of the system. The nonstationarity of the signal
precludes the possibility of fixing the threshold levels in an
optimal configuration. In this situation, some advantage can
be gained by simply adjusting the levels to coincide with the
mean of the signal and exploiting the supra-SR effect [69].

III. RELATED PHENOMENA

A. Noise-Enhanced Heterodyning (NEH)

In the well-known phenomenon of heterodyning, two high-
frequency fields—an “input signal” and a “reference sig-
nal”—are mixed nonlinearly to generate a heterodyne signal
at the difference frequency. The addition of noise usually
results in a decrease in the amplitude of the heterodyne
signal (and its SNR), because the frequency response of
the system becomes correspondingly broadened. Nonetheless,
it has been shown [70] that, in bistable systems of the
kind that exhibit SR, the heterodyne signal (and SNR) can
sometimes be enhanced by an increase in the noise intensity.
Consider an overdamped bistable system driven by three time-
dependent forces representing respectively the reference and
input signals, and noise

(20)

Here, the terms and are respectively the high-
frequency reference signal corresponding to a local oscillator
of frequency (applied multiplicatively), and the modulated
high-frequency input signal (applied additively). The functions

and vary slowly compared to and it is their
variation in time that has to be revealed via heterodyning. The
heterodyning can be characterized by the low-frequency signal
at the output, (the overbar stands for averaging
over the period ), for and
with i.e., for a monochromatic input signal whose
frequency is slightly different from the frequency .

Dykman et al. [70] considered the case where the double-
well potential has equally deep wells, as in standard SR,
and for convenience chose it to be the quartic potential

(21)

For the case where vary slowly over the time
, the equations describing the dynamics of the system turn

out to be identical to those of conventional SR. The system
can thus be well-described in terms of LRT provided only that

is small enough. It was thus demonstrated theoretically and
by use of a circuit model that, in close analogy to conventional
SR, NEH in a bistable system can produce a very substantial
enhancement of the heterodyne signal over that obtained by
heterodyning in e.g. a single-well nonlinear system.

Building on the understanding gained from studies of the
analog electronic model, both SR and NEH were subsequently
observed in a nonlinear optical system [71], [72].

B. Noise-Induced Linearization

The phenomenon ofnoise-induced linearizationwas iden-
tified in the course of experiments on SR, using analog
electronic models [73]. The unexpected observation was that
the signal distortion introduced by passage through a nonlinear
system could be reduced by the addition at the input of
external white (or weakly colored) noise of sufficient intensity.
The scenario was found to hold experimentally for many
different nonlinear systems, including monostable as well as
bistable, underdamped as well as overdamped, chaotic as well
as regular, and for signals of various shapes. Because the
resultant linearized output is inevitably noisy, we consider
how the ensemble average of the output varies with
relevant parameters, for example with the noise intensity at
the input.

The basic idea of linearization by added noise is, of course,
already familiar from specific observations and applications in
science and engineering, e.g. the removal of digitization steps
in the output of an ADC, or the linearization of periodic signals
in neurophysiological experiments [74], or the linearization of
the response of ring-laser gyroscopes at low angular velocities
[75]. The results under discussion suggested, however, that
noise-induced linearization may exist as a more general phe-
nomenon than had been appreciated, thus further illustrating
the idea [76] that the role of noise in a dynamical system may
often be, in a sense, creative.

The linearization occurred in two different senses. First, a
sinusoidal input was able to pass through the system without
significant change of shape, demonstrating a proportionality
between the amplitudes of output and input; this need not
necessarily imply that the constant of proportionality must
be frequency-independent, however. Secondly, the undistorted
passage of a sawtooth waveform, containing not only the
fundamental frequency but also its higher harmonics, implies
the occurrence of linearization in the “Hi-Fi” sense that the
system becomes nondispersive within a certain frequency
range when the noise intensity is large enough.

The physical origin of both forms of signal restoration can
readily be understood, at least qualitatively, in the following
terms. Where the amplitude response of a system to a periodic
force is nonlinear, this arises because the amplitude of the
vibrations induced by the force is comparable with, or larger
than, some characteristic nonlinear length scale of the system,
determined by the structure of the region of phase space
being visited. The effect of noise is to smear the system
over a larger region of phase space, so that a variety of
different scales and frequencies then become involved in the
motion, even in the absence of periodic driving, and the
effective characteristic scale will usually increase as a result.
For sufficiently large noise intensities, therefore, the amplitude
of the force-induced vibrations will become small compared
to the scale (e.g., small compared to the average size of the
noise-induced fluctuations), so that the nonlinearity of the
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response is correspondingly reduced. Because the system is
then spending an increasing proportion of its time far away
from its attractor(s), at coordinate values where the timescale
that characterizes the motion will in general be quite different
and sometimes shorter than for small noise intensities, there
will be one or more ranges of frequency for which dispersion
is likely to decrease [77]. Although the linearization and the
suppression of the dispersion arise, ultimately through the
same physical processes, there is no reason to expect that they
will become important at the same noise intensity. Dykman
et al. [73] and Stockset al. [77] have given detailed analyzes
of noise-induced linearization phenomena in the standard SR
system, with overdamped Brownian motion in the bistable
quartic potential (21).

IV. CONCLUSION

The above examples are intended to convey some idea of
the versatility, convenience, and power of analog electronic
modeling as a complement to analytic and numerical methods
for the investigation of SR and related phenomena. It is equally
useful for other phenomena involving noise and nonlinearity
where theoretical treatments are necessarily approximate and
direct experimental tests are therefore essential. Despite its
simplicity, the technique can be applied usefully to problems
at the forefront of statistical mechanics as well as to a wide
range of applied research.
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