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Abstract. Noise-induced escape from a metastable potential is considered on time-
scales preceding the formation of quasi-equilibrium within the metastable part of the
potential. It is shown that the escape flux may then depend exponentially strongly,
and in a complicated manner, on time and friction.

INTRODUCTION

In his seminal work [1], Kramers considered the noise-induced flux from a single
metastable potential well i.e. he considered a stochastic system

G+ Tq+dUjdg = f(t), (1)
() =0, (fFOf()) =2IT6(t—1"),

which was put initially into the bottom of a metastable potential well U(g) and
then he calculated the quasi-stationary probability flux beyond the barrier. There
have been many developments and generalizations of the Kramers problem (see
[2,3] for reviews) but both he and most of those who followed him considered just
the quasi-stationary flux, 1.e. the flux established after the formation of a quasi-
stationary distribution within the well (up to the barrier). The quasi-stationary
flux is characterized by a slow exponential decay, an Arrhenius dependence on
temperature T, and a relatively weak dependence on friction I':

AU
Jqs(t) = aescapee_aescaPEt: Qlescape = Pe_T7 (2)

where P depends on I" and T in a non-activation manner.
But how does the flux evolve from its zero value at the initial moment to its
quasi-stationary value at time-scales exceeding the time ¢; for the formation of
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quasi-equilibrium? 1t is obvious that the answer may depend on initial conditions.
The most natural are those corresponding to the stable stationary state of the
noise-free system i.e. (¢ = Goottom, ¢ = 0) where gpostom 15 the coordinate of the
bottom of the potential well. Just such an initial state is assumed in this paper®.
If the noise is switched on suddenly (e.g. if the thermal isolation of a frozen system
is broken) then the time evolution of the escape flux from the noise-free metastable
initial state is highly relevant. It might seem natural that the evolution from zero
to the quasi-stationary value should be smooth. Such an assumption might also
seem to have been confirmed recently by Schneidman [4] who found that, for both
the strongly underdamped and overdamped cases, the escape flux from a single
metastable well grows with time ¢ smoothly, at ¢t ~ ¢;. But does this exhaust the
preblem? We prove theoretically, and demonstrate experimentally, that there are
two generic situations when the escape flux? behaves in a different manner.

The theoretical approach which we use for this is the method of optimal fluctu-
ation (c.l. e.g. [5]) within which an escape rate is sought in the form

Qlescape = Pe_% (3)

where the action S does not depend on T’; the prefactor P does depend on T, but
relatively weakly. The action 5 is related to a certain optimal fluctuation which,
in turn, corresponds to the most probable escape path (MPEP).

Theoretical results are verified by computer and electronic simulations.

SHORT TIME-SCALES

The quasi-stationary flux is formed by optimal fluctuations which bring the sys-
temn from the bottom of the (initial) well to a relevant saddle for an optimal time

(5, (1

fops ~ ————
°P* " min(T, wo)

where wy is the frequency of eigenoscillation in the bottom of the well.
At much shorter time-scales,

t << topta (5)

1) Note that, for the relatively large time-scales considered below in the section for the multi-
well case (c.f. Fig. 2), such a restriction is not essential: the results remain valid for any initial
distribution within one well. The case of arbitrary initial conditions, for the smaller time-scales
as considered in the next section (c.f. Fig. 1), will be explored elsewhere.

2) Qur major results are not sensitive to the concrete definition of the flux. It could e.g. be
the full flux through a boundary or just a first passage flux; the boundary may e.g. be a given
coordinate (as in {1,3]), or a boundary of a basin of attraction (relevant to an escape rate), or the
boundary of a close vicinity to another attractor (relevant to inter-well transition rates).
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FIGURE 1. (a) Examples of MPEPs (plotted in the energy-coordinate plane E — g where
E = §?/2+U(g)) for an escape from the bottom of the metastable well U(g) = ¢2/2 at ¢ < /2
{thick solid line) to beyond the barrier at ¢ = +/2 (U(g) = —co at ¢ > v/2, which is equivalent to
the absorbing wall indicated by triangles), at I' = 0.05; (b) the corresponding theoretical (thick
solid line) and experimental (thin jagged line) dependences of the action S on the escape time ¢.
The dashed and dotted lines indicate: in (b) the 1st and 2nd inflection point with dS/dt = 0; and
in (a) the corresponding MPEPs. The thin solid line shows: in (b) the large-time asymptote level
equal to the barrier height AU; and in (a) the corresponding MPEP (which is the time-reversal of
the noise-free trajectory from the top of the barrier into the bottom of the well). The dash-dotted
line shows in (a) the MPEP corresponding to some arbitrarily chosen time ¢ = 4.51 (see (b)) and
demonstrates, in particular, that the escape velocity is generally non-zero. The inset shows the

experimental dependence of the flux on time, for 7= 1.0.

the flux is necessarily formed by optimal fluctuations strongly differing from those
of duration £,p, and the smaller ¢ the more marked this difference becomes. Thus,
in the range (5), S is dependant on ¢. Moreover, we can show rigorously that if
[' < T'; where I'; is typically equal to 2wg then S(t) is a step-wise function: see the
example® in Fig. 1. The vertical and horizontal positions of the center of the step
S(t) number n (counted from the left) equal respectively AUwg/{nnT') and nm/wq,
provided nml’ < wqy. Generally, when the shape of the potential well departs from
parabolicity, the equalities turn into approximations. Thus, in the range (3), J
depends exponentially strongly both on I' and on ¢ (c.f. the inset).

3) Although we present just one example (chosen for its simplicity), we emphasize that a step-wise
dependence of 5(t) is typical for any potential, including those which possess a saddle or several
wells, and that it remains valid for any reasonable boundary (c.f. footnote 2). We have developed
a rigorous (and simple) procedure for obtaining a numerical solution provided the metastable
part of the potential is a single well and the absorbing boundary is not too close to a saddle. A
qualitative analysis shows that if the boundary is close enough to a saddle (or just includes it)
then S(t) possesses folds at certain critical values of ¢ corresponding to switching between MPEPs
of different topologies.
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FIGURE 2. (a) a double-well metastable potential U(q) = {{igs(q-l-lﬁ)z—cos(q) A qqiq;:L}'E"

and schematically shown direct (dotted line) and indirect (dashed line) transitions 1 — 3 i.e. es-
capes from the well 1 beyond the coordinate ¢;; (b) simulations of the escape flux J(¢) 1 — ¢
(thin jagged line) at I' = 0.15, T' = 0.4, compared with the approximation of J(¢) by Eq. (6) (thick
full line); a13, @21 and oy, are calculated by the Kramers-Melnikov formula [3] while a3, a2z are
calculated by Eq. (7) with m & 1.1.

MULTI-WELL METASTABLE POTENTIAL

Unlike the single-well case, where the formation time of quasi-equilibrium is of the
order of topt (4), its formation in the multi-well case (e.g. as in Fig. 2) proceeds via
two distinct stages: first, quasi-equilibrinm is formed within the initial well which
as in the single-well case, takes ~ #,,; secondly, quasi-equilibrium between wells
becomes established which takes exponentially longer (~ tqpexp(AU/T) > top
where AU means a minimal internal barrier). During the latter stage (as well as
during the subsequent quasi-stationary stage), the flux J(¢) can be described via a
solution of kinetic equations for the well populations, using the concept of constant
inter-attractor® transition rates o, (c.f. [6]):

J(t) = Quge T 4 aqs(e_“?Ls — e_é): (6)
t.s ~ 051_21, tqs ~ aq_sl ~ 0112/(0[120123 + 01210[13>7
T <« Us, — Uy, t > topi

The physical meaning of the two terms in (6) is easily understood (c.f. Fig. 2(b)).
The first one corresponds to direct escapes (i.e. those ones which do not go via the
bottom of well-2) and dominates before the quasi-equilibrium is established; where-
as the second term, corresponding to indirect escapes, dominates in the ensuing
quasi-stationary stage: it is the asymptotic part of this latter flux, ags exp(—t/t,),
that is called the quasi-stationary flux.

Although the coeflicients ayq, o91, oy can readily be obtained from the Kramers-
Melnikov theory [3], a3 and a3 cannot be found [3] in this way. One of us {7] has
developed a theory of ay3, g3 based on the concept of optimal fluctuation:

4) For the sake of brevity, we refer to region 3 as an “attractor” too.
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FIGURE 3. Dependence of the action for the transition s; — s; on the damping constant T, at
time-scales ¢ 3 tope, in the system (1) with U(g) shown in Fig. 2(a). The solid line is calculated
numerically from the theory [7]. The horizontal and vertical dashed lines indicate respectively
the upper limit for Ss,,s, and the value of I' at which the cutoff of direct transitions s; — s; and
escapes 1— sy occurs. The crosses and squares represent digital and analogue simulation data

respectively. The inset shows an expanded plot of the region of small damping.

o323 = 0gs(1 + (5" exp((Uy — Ua)/T))=) /(1 + (mexp(kSe,ns, /T))*), (7)

where: Q;, {13 are the frequencies of eigenoscillation in the bottom of wells 1, 2;
k =1 or —1 for ranges of I' providing the noise-free relaxation from sy respectively
into 2 or 1; the action S;,—, for the transition s; — s is calculated from the theory
[7]; and m is the only adjustable parameter, related to the prefactor.

As seen from Eq. (7) and Fig. 3, the rates a;3 and o33 depend on friction ex-
ponentially strongly, at sufficiently small temperatures. Moreover, they oscillate®
in the underdamped range, and ;3 has a cutoff at a certain friction Iy > 28,
i.e. a3 = 0 for ' > I'y. The oscillations are related to an alternation between
ranges of friction in which a noise-free trajectory from the external saddle s; goes
into either well-1 or well-2: in accordance with the principle of detailed balance,
the noise-induced escape 1 — s; 1s the time-reversal of s; — 1, so that its probabil-
ity is characterized by the Arrhenius factor if a noise-free trajectory s, ™%,1 exists;
otherwise the probability is exponentially smaller. The cutoff at large I' is related
to the absence of turning points in the noise-free trajectories s; "%,2, s, "/,2.

CONCLUSIONS AND OPEN PROBLEMS

We conclude that: (i) escape from a metastable potential differs markedly after
and before the formation of quasi-equilibrium within the metastable part of the

8) Typically, the scale of oscillation of S is small in comparison with Uy, — U; (corresponding to
the Arrhenius dependence on 7') but, in some cases, it can equal or even exceed Us, — Uy [T7].
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potential; (ii) at time-scales much less than the optimal duration of a fluctuation
topt, the escape flux J grows exponentially strongly with time and, moreover, if
the friction I' is small, it does so in a step-wise manner and depends exponentially
strongly on T; and (iii) if the metastable part of the potential consists of more
than one well, then the formation of quasi-equilibrium takes an exponentially long
period of time and the escape flux during the most of this period is formed from
direct escapes and depends exponentially strongly on friction and, moreover, J(I')
undergoes oscillations in the underdamped range and may drop drastically if I’
exceeds a critical value I'y > 20),.

Open problems yet to be addressed include: (i) for the range t < tope: (a)
the transition from a smooth S(¢) (with inflection points only) to an S(¢) pos-
sessing folds, (b) additional features characteristic of the multi-well case, (c) the
pre-exponential factor; (ii) the pre-exponential factor for inter-attractor transition
rates in the multi-well case; and (iii) a generalization for non-potential systems for
which, unlike potential systems where a switching between different MPEPs gives
rise only to folds in S(¢), we anticipate the possibility of jumps in S(#).
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