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Abstract� Noise�induced escape from a metastable potential is considered on time�
scales preceding the formation of quasi�equilibrium within the metastable part of the
potential� It is shown that the escape �ux may then depend exponentially strongly�
and in a complicated manner� on time and friction�

INTRODUCTION

In his seminal work ���� Kramers considered the noise�induced �ux from a single
metastable potential well i�e� he considered a stochastic system

	q 
 � �q 
 dU�dq  f�t�� ���

hf�t�i  �� hf�t�f�t��i  ��T��t� t���

which was put initially into the bottom of a metastable potential well U�q� and
then he calculated the quasi�stationary probability �ux beyond the barrier� There
have been many developments and generalizations of the Kramers problem �see
����� for reviews� but both he and most of those who followed him considered just
the quasi�stationary �ux� i�e� the �ux established after the formation of a quasi�
stationary distribution within the well �up to the barrier�� The quasi�stationary
�ux is characterized by a slow exponential decay� an Arrhenius dependence on
temperature T � and a relatively weak dependence on friction ��

Jqs�t�  �escapee
��escapet� �escape  P e�

�U
T � ���

where P depends on � and T in a non�activation manner�
But how does the �ux evolve from its zero value at the initial moment to its

quasi�stationary value at time�scales exceeding the time tf for the formation of



quasi�equilibrium� It is obvious that the answer may depend on initial conditions�
The most natural are those corresponding to the stable stationary state of the
noise�free system i�e� �q  qbottom� �q  �� where qbottom is the coordinate of the
bottom of the potential well� Just such an initial state is assumed in this paper��
If the noise is switched on suddenly �e�g� if the thermal isolation of a frozen system
is broken� then the time evolution of the escape �ux from the noise�free metastable
initial state is highly relevant� It might seem natural that the evolution from zero
to the quasi�stationary value should be smooth� Such an assumption might also
seem to have been con�rmed recently by Schneidman ��� who found that� for both
the strongly underdamped and overdamped cases� the escape �ux from a single
metastable well grows with time t smoothly� at t � tf � But does this exhaust the
problem� We prove theoretically� and demonstrate experimentally� that there are
two generic situations when the escape �ux� behaves in a di�erent manner�
The theoretical approach which we use for this is the method of optimal �uctu�

ation �c�f� e�g� ���� within which an escape rate is sought in the form

�escape  P e�
S
T ���

where the action S does not depend on T � the prefactor P does depend on T � but
relatively weakly� The action S is related to a certain optimal �uctuation which�
in turn� corresponds to the most probable escape path �MPEP��
Theoretical results are veri�ed by computer and electronic simulations�

SHORT TIME�SCALES

The quasi�stationary �ux is formed by optimal �uctuations which bring the sys�
tem from the bottom of the �initial� well to a relevant saddle for an optimal time

topt �
�

min��� ���
ln�

�U

T
�� ���

where �� is the frequency of eigenoscillation in the bottom of the well�
At much shorter time�scales�

t� topt� ���

�� Note that� for the relatively large time�scales considered below in the section for the multi�
well case �c�f� Fig� �	� such a restriction is not essential
 the results remain valid for any initial
distribution within one well� The case of arbitrary initial conditions� for the smaller time�scales
as considered in the next section �c�f� Fig� �	� will be explored elsewhere�
�� Our major results are not sensitive to the concrete de�nition of the �ux� It could e�g� be
the full �ux through a boundary or just a �rst passage �ux� the boundary may e�g� be a given
coordinate �as in ����	� or a boundary of a basin of attraction �relevant to an escape rate	� or the
boundary of a close vicinity to another attractor �relevant to inter�well transition rates	�
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FIGURE �� �a	 Examples of MPEPs �plotted in the energy�coordinate plane E � q where

E � �q��� � U �q		 for an escape from the bottom of the metastable well U �q	 � q��� at q �
p
�

�thick solid line	 to beyond the barrier at q �
p
� �U �q	 � �� at q �

p
�� which is equivalent to

the absorbing wall indicated by triangles	� at � � ����� �b	 the corresponding theoretical �thick

solid line	 and experimental �thin jagged line	 dependences of the action S on the escape time t�

The dashed and dotted lines indicate
 in �b	 the �st and �nd in�ection point with dS�dt � �� and

in �a	 the corresponding MPEPs� The thin solid line shows
 in �b	 the large�time asymptote level

equal to the barrier height �U � and in �a	 the corresponding MPEP �which is the time�reversal of

the noise�free trajectory from the top of the barrier into the bottom of the well	� The dash�dotted

line shows in �a	 the MPEP corresponding to some arbitrarily chosen time t � ���� �see �b		 and

demonstrates� in particular� that the escape velocity is generally non�zero� The inset shows the

experimental dependence of the �ux on time� for T � ����

the �ux is necessarily formed by optimal �uctuations strongly di�ering from those
of duration topt� and the smaller t the more marked this di�erence becomes� Thus�
in the range ���� S is dependant on t� Moreover� we can show rigorously that if
� � �c where �c is typically equal to ��� then S�t� is a step�wise function� see the
example� in Fig� �� The vertical and horizontal positions of the center of the step
S�t� number n �counted from the left� equal respectively �U����n��� and n�����
provided n��� ��� Generally� when the shape of the potential well departs from
parabolicity� the equalities turn into approximations� Thus� in the range ���� J
depends exponentially strongly both on � and on t �c�f� the inset��

�� Although we present just one example �chosen for its simplicity	� we emphasize that a step�wise
dependence of S�t	 is typical for any potential� including those which possess a saddle or several
wells� and that it remains valid for any reasonable boundary �c�f� footnote �	� We have developed
a rigorous �and simple	 procedure for obtaining a numerical solution provided the metastable
part of the potential is a single well and the absorbing boundary is not too close to a saddle� A
qualitative analysis shows that if the boundary is close enough to a saddle �or just includes it	
then S�t	 possesses folds at certain critical values of t corresponding to switching between MPEPs
of di�erent topologies�
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FIGURE �� �a	 a double�well metastable potential U �q	 � f�����q���	���cos�q� at q�ql
��	�
�� at q�ql �

and schematically shown direct �dotted line	 and indirect �dashed line	 transitions �� � i�e� es�

capes from the well � beyond the coordinate ql� �b	 simulations of the escape �ux J�t	 � � ql

�thin jagged line	 at � � ����� T � ���� compared with the approximation of J�t	 by Eq� ��	 �thick

full line	� ���� ��� and �qs are calculated by the Kramers�Melnikov formula �� while ���� ��� are

calculated by Eq� ��	 with m � ����

MULTI�WELL METASTABLE POTENTIAL

Unlike the single�well case� where the formation time of quasi�equilibrium is of the
order of topt ���� its formation in the multi�well case �e�g� as in Fig� �� proceeds via
two distinct stages� �rst� quasi�equilibrium is formed within the initial well which
as in the single�well case� takes � topt� secondly� quasi�equilibrium between wells
becomes established which takes exponentially longer �� topt exp��U�T � � topt
where �U means a minimal internal barrier�� During the latter stage �as well as
during the subsequent quasi�stationary stage�� the �ux J�t� can be described via a
solution of kinetic equations for the well populations� using the concept of constant
inter�attractor� transition rates �ij �c�f� �����

J�t�  ���e
�

t
ts 
 �qs�e

�
t
tqs � e�

t
ts �� ���

ts � ����� � tqs � ���qs � ����������� 
 ��������

T � US� � U�� t� topt	

The physical meaning of the two terms in ��� is easily understood �c�f� Fig� ��b���
The �rst one corresponds to direct escapes �i�e� those ones which do not go via the
bottom of well��� and dominates before the quasi�equilibrium is established� where�
as the second term� corresponding to indirect escapes� dominates in the ensuing
quasi�stationary stage� it is the asymptotic part of this latter �ux� �qs exp��t�tqs��
that is called the quasi�stationary �ux�
Although the coe�cients ���� ���� �qs can readily be obtained from the Kramers�

Melnikov theory ���� ��� and ��� cannot be found ��� in this way� One of us ��� has
developed a theory of ���� ��� based on the concept of optimal �uctuation�

�� For the sake of brevity� we refer to region � as an �attractor� too�
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FIGURE �� Dependence of the action for the transition s� � s� on the damping constant �� at

time�scales t� topt� in the system ��	 with U �q	 shown in Fig� ��a	� The solid line is calculated

numerically from the theory ��� The horizontal and vertical dashed lines indicate respectively

the upper limit for Ss��s� and the value of � at which the cuto� of direct transitions s� � s� and

escapes �� s� occurs� The crosses and squares represent digital and analogue simulation data

respectively� The inset shows an expanded plot of the region of small damping�

������  �qs�� 
 ����
��
� exp��U� � U���T ��

������ 
 �m exp�kSs��s��T ��
���� ���

where� ��� �� are the frequencies of eigenoscillation in the bottom of wells �� ��
k  � or �� for ranges of � providing the noise�free relaxation from s� respectively
into � or �� the action Ss��s� for the transition s� � s� is calculated from the theory
���� and m is the only adjustable parameter� related to the prefactor�
As seen from Eq� ��� and Fig� �� the rates ��� and ��� depend on friction ex�

ponentially strongly� at su�ciently small temperatures� Moreover� they oscillate�

in the underdamped range� and ��� has a cuto� at a certain friction �� � ���

i�e� ���  � for � � ��� The oscillations are related to an alternation between
ranges of friction in which a noise�free trajectory from the external saddle s� goes
into either well�� or well��� in accordance with the principle of detailed balance�
the noise�induced escape �� s� is the time�reversal of s� � �� so that its probabil�
ity is characterized by the Arrhenius factor if a noise�free trajectory s�

nf
�� exists�

otherwise the probability is exponentially smaller� The cuto� at large � is related
to the absence of turning points in the noise�free trajectories s�

nf
��� s�

nf
���

CONCLUSIONS AND OPEN PROBLEMS

We conclude that� �i� escape from a metastable potential di�ers markedly after
and before the formation of quasi�equilibrium within the metastable part of the

	� Typically� the scale of oscillation of S is small in comparison with Us� � U� �corresponding to
the Arrhenius dependence on T 	 but� in some cases� it can equal or even exceed Us� � U� ���



potential� �ii� at time�scales much less than the optimal duration of a �uctuation
topt� the escape �ux J grows exponentially strongly with time and� moreover� if
the friction � is small� it does so in a step�wise manner and depends exponentially
strongly on �� and �iii� if the metastable part of the potential consists of more
than one well� then the formation of quasi�equilibrium takes an exponentially long
period of time and the escape �ux during the most of this period is formed from
direct escapes and depends exponentially strongly on friction and� moreover� J���
undergoes oscillations in the underdamped range and may drop drastically if �
exceeds a critical value �� � ����
Open problems yet to be addressed include� �i� for the range t � topt� �a�

the transition from a smooth S�t� �with in�ection points only� to an S�t� pos�
sessing folds� �b� additional features characteristic of the multi�well case� �c� the
pre�exponential factor� �ii� the pre�exponential factor for inter�attractor transition
rates in the multi�well case� and �iii� a generalization for non�potential systems for
which� unlike potential systems where a switching between di�erent MPEPs gives
rise only to folds in S�t�� we anticipate the possibility of jumps in S�t��
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