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Abstract.
The problem of activated escape in a far-from-equilibrium system is analysed the-

oretically, numerically and by analogue electronic experiments. The process is shown
to occur via optimal fluctuations that are well described, under diverse conditions, in
terms of a new physical quantity, the logarithmic susceptibility (LS).

INTRODUCTION

The question of how a system will respond to an external field is one of the
fundamental problems of physics. Where the system is noisy and metastable, and
the field is strong and of high frequency compared to reciprocal characteristic times
of the system, we have the celebrated nonadiabatic escape scenario - which for
many years represented a major unsolved problem in the physics of noise-driven
systems. We discuss below how it can now be addressed by use of the logarithmic
susceptibility, and we identify two of the (many) related problems remaining to be
tackled.

When the driving force is sufficiently weak, the response is proportional to the
field amplitude and can be analyzed using linear response theory [1]. The analysis
of nonlinear response is more complicated, but can often be extremely interesting
and important, e.g. for nucleation in phase transitions. The mechanism responsible
can readily be understood for low frequency (adiabatically slow) driving where the
system remains in quasi-equilibrium under the instantaneous value of the driving
force. For systems in thermal equilibrium, the probabilities of escape are given by
the activation law, W oc exp[—R/kT] where R is the activation energy of escape.
The driving force modulates the value of R quasistatically and, even where the
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modulation amplitude is small compared to /?, it may still substantially exceed
&T, in which case W will be changed exponentially strongly. We emphasize that
the change of the activation energy is linear in the field amplitude.

For higher field frequencies, where the driving becomes nonadiabatic, one might
think that the change of the escape activation energy R will depend on the intensity
I of the driving field rather than just be linear in the field amplitude A oc I1/2.
In this case, where the system is away from thermal equilibrium, there are no
known universal relationships from which the escape probabilities can be obtained
[2]: much effort has been put into solving the problem, in diverse contexts, and
numerical results have been obtained for specific models (see e.g. [3,4]).

Recent theoretical results [5,6] show, quite counterintuitively, that for high-
frequency driving the change of R should still be proportional to the field am-
plitude, i.e., InW should be linear in A. The proportionality coefficient was called
the logarithmic susceptibility (LS). Just like the conventional linear susceptibility,
the LS relates the response of the system in the presence of external driving to its
dynamics in thermal equilibrium in the absence of the driving field.

THE LOGARITHMIC SUSCEPTIBILITY

The idea underlying the theory of the LS [5,6] is that, although the motion of
the fluctuating system is random, in a large rare fluctuation from a metastable
state to a remote state, or in a fluctuation resulting in escape, the system is most
likely to move along a particular trajectory known as the optimal path (see [7-11]
and references therein). The effect of a comparatively weak field on the escape
probability can therefore be understood in terms of the work that the field does on
the system as it moves along the optimal path. One may expect this work to be
related to the field-induced change in the activation energy R for the corresponding
large fluctuation. This change is linear in the field, provided that the field-induced
change of the optimal path itself is negligible. It follows from these arguments that
in the case of periodic driving F(t) = ̂ k Fk exp(zfcfit), the leading-order correction
6R to the activation energy of escape is

6R = min «?(*<), 6R(tc) = ̂
c k

/
oo

dtqM(t)em,qW = U'(qW). (1)
-00

Here, x(fi) is the LS for escape. It is given [5,6] by the Fourier transform of
the velocity along the most probable escape path qW (t) in the absence of driving
(F(t) = 0). The path qW(t) is an instanton [12]: it starts for t -> -oo at the
metastable minimum qs of the potential U(q) and goes for t -> oo to the top qu
of the potential barrier over which the particle escapes. The minimization over tc
corresponds to choosing the position of the center of the instanton so as to maximize
the work the field F(t) does on the system along the escape path q(°\t — tc). We

516



0.4

FIGURE 1. The dependence of the activation energy R on the amplitude A of the harmonic
driving force F(t] = Acos(1.2£) as determined by electronic experiment (filled circles), numerical
simulations (open circles) and analytic calculation (solid line) based on (1) for an overdamped
Duffing oscillator U(q) = —q2/2 + <?4/4; the dash-dot line, drawn parallel to the full curve, is a
guide to the eye. The inset shows the absolute value of the LS of the system |x(f&)| (1) measured
(filled and open squares for experiment and numerical simulation, respectively) and calculated (full
curve) as a function of frequency H using (2) with x(0) = —1 and rp = 7r/2,M = —(1 + z)(7rcj)1/2

in (2).

note that, for Markov systems in thermal equilibrium, optimal fluctuational paths
are the time-reversed relaxational paths in the absence of noise [13-15].

Unlike the standard linear susceptibility [1] which, on causality arguments, is
given by a Fourier integral over time from 0 to oo, the LS x(£i) is given by an integral
from — oo to oo. The analytic properties of x(fl) therefore differ from those of
the standard susceptibility, and in particular their high-frequency asymptotics are
qualitatively different. The standard susceptibility for damped dynamical systems
decays as a power law for large fi (e.g., as l/[U"(qs) — i&], for the model of damped
Duffing oscillator). In contrast, from (1) the LS decreases exponentially fast,

Im f dq/U'(q) (2)

Here, the integral is taken from any point in the interval (qs,qu) to the (complex)
position qp of the appropriate singularity of U'(q). Note that q^(t — tc) for given
real tc has a pole or a branching point at Im t = rp. The prefactor M depends on
the form of U(q) near qp and can be obtained in a standard way. In particular, for
a polynomial potential (\qp\ —> oo) with U(q) = Cqn/n for \q\ -» oo, we have

ifThis expression applies also for finite \qp\, with U(q) « C/p,(q — qPY for q -
n in (3) is replaced by — //: note that |M| then decreases with increasing fi.
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For weak damping, |x(£2)| displays sharp peaks, and may have a multiply-peaked
structure [5]. It can be understood if one writes the velocity on the MPEP as

= P(t) = Re^ Pn(E(t)) exp[-m0(t)], (4)
n>0

E

where F is the damping of the oscillator, u(E) is the eigenfrequency of the vibrations
that have energy E in the absence of dissipation, I(E) is the action for these
vibrations, and Pn(E) is the amplitude of the nth overtone of the momentum P;
terms oc F in the equation for the phase, and fast-oscillating terms in that for the
energy, have been dropped.

Resonant contributions to |x(u;)| come from the vibrations of energy En(u)) for
which ncj(En) = fi. In the range of fi where the contribution from an overtone with
a given n is much larger than from other overtones, we may approximate |x(ttf)| by
the function |xn(o;)| calculated from Eqs. (1) taking into account in (4) the term
with one n only. Evaluating the integral over time in (1) by the steepest descent
method, we obtain

\Pn(E}\

-1/2-

7T dE
E=En

(5)

To test these predictions, we have built an analog electronic model [16] of the
overdamped motion of a Brownian particle in the double-well Duffing potential.
We drive it with zero-mean quasi-white Gaussian noise from a shift-register noise
generator, digitize the response q(t\ and analyse it with a digital data processor.
We have also carried out a complementary digital simulation [17]. Numerical sim-
ulations in the case of small damping are currently in progress: preliminary results
indicate a resonant behaviour of the LS. The analogue and digital measurements of
R involved noise intensities in the ranges D == 0.028 - 0.036 and D = 0.020 - 0.028
respectively; the lowest (real time [16]) driving frequency used was 460 Hz. The
results are plotted in Fig. 1. The major observation is that, as expected, R is
indeed linear in the force amplitude (R = 1/4 for A = 0). The slope yields the
absolute value of the LS. Its frequency dependence, a fundamental characteristic of
the original equilibrium system, is compared with the theoretical predictions (2) in
the inset of Fig. 1.

OPEN PROBLEMS

There are, of course, numerous related problems of obvious importance that can
now be addressed through use of our new theoretical, experimental and numerical
techniques. Two that we are considering are: noisy escape from a strange attractor;
and large fluctuations in systems that have limit cycles.
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FIGURE 2. (a) Basins of attraction of the quasi-attractor (QA) and stable limit cycle
shown by the large black dot) for (6) are shown as white and shaded regions in Poincare section
for Vft = 0.67r,u>0 = 0.579,/3 = 1,7 = 1,T = 0.05, w/ = 0.95, h = 0.13. The intersections of an
actual fluctuational escape trajectory with this Poincare section are shown by the small black
dots. The unstable limit cycle (U) at the boundary of the QA is shown by the filled square. The
saddle limit cycle which can be considered as a boundary of the QA itself is shown as crosses,
(b) Three optimal escape paths found in numerical simulations with T = 0.002 using the method
of optimal trajectories are shown by dotted, full and dashed lines; their relative probabilities are
9.5 : 4 : 1 respectively. One period of the unstable saddle cycle (53) and unstable limit cycle
(U) are shown by triangles and thick black dots respectively; 15 measured fluctuational escape
trajectories corresponding to the middle-probability optimal path are shown by thin full lines.

Preliminary experiments on the first of these indicate that escape over the basin
boundary of a strange attractor involves only a few periodic limit cycles that can
be found numerically: Fig. 2 shows results for a periodically-driven weakly damped
oscillator

q = K(q, t) + f (t), K =
>= (6)

The oscillator was monostable (7 > 0, ft2 < ^UJQ) and the energy dependence of
its eigenfrequency was nonmonotonic (^ > ^)-

In the case of systems with limit cycles, it has been shown [18] that, in the vicinity
of the unstable focus inside the cycle, the flow field of optimal paths generically
displays a pattern of singularities. It contains a self-similar switching line that
separates areas to which the system arrives along optimal paths of topologically
different types. We have already been able to show how this topological pattern
emerges as one moves away from the detailed balance condition assumed in a large
body of previous work.
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