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Kramers Problem for a Multiwell Potential

M. Arrayás,1,2 I. Kh. Kaufman,1,3 D. G. Luchinsky,1,3 P. V. E. McClintock,1 and S. M. Soskin4

1Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
2Instituut-Lorentz, Universiteit Leiden, Postbus 9506, 2300 RA Leiden, The Netherlands

3Russian Research Institute for Metrological Service, Ozernaya 46, 119361 Moscow, Russia
4Institute of Semiconductor Physics, Ukrainian National Academy of Sciences, Kiev, Ukraine

(Received 22 September 1999)

Fluctuational escape from a multiwell potential is shown to display new features, as compared to the
conventional single-well case. The flux J may depend on friction G exponentially strongly, over an
exponentially long period; for small enough temperatures, J�G� undergoes marked oscillations in the
range of small G, and the time evolution of J changes drastically as G exceeds a critical value.
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In his celebrated work [1], Kramers considered noise-
induced escape from a single metastable potential well.
His principal result was that, after a short period of time
during which quasiequilibrium is formed within the well,
the escape flux decays exponentially,

J � ae2at , (1)

where the escape rate a is the product of an Arrhenius
factor [2] exp�2DU�T � and a preexponential factor that
depends only weakly on temperature T , friction G, and the
details of the potential U�q�,

a � A�T , G, �U�� exp

µ
2

DU
T

∂
, T ø DU . (2)

Kramers derived explicit formulas for A in the ultra-
underdamped and moderate-to-overdamped limits.

In the ensuing developments and generalizations of
the Kramers problem [3,4] (see [5] and [6] for some
recent developments), there were two activities that are of
present relevance. The first was the problem of filling the
“gap” between the ultra-underdamped and moderate-to-
overdamped limits of the expressions for the preexponen-
tial factor A. This activity was crowned by the work by
Mel’nikov [7]. The second activity includes recent studies
[8,9] of the flux dynamics during a short initial period
while quasiequilibrium in the well is forming.

The subject of our paper is the escape flux from a
multiwell metastable potential during the period preceding
the formation of quasiequilibrium, which takes exponen-
tially longer than in the single-well case. This will in prac-
tice be the only relevant time scale for low temperatures
where the quasistationary stage (1) is never attained. We
emphasize also that our discussion relates to exponentially
strong effects rather than just to a (weak) preexponential
factor. The results are immediately applicable to inter-
well transition rates in stable potentials with more than
two wells, e.g., to rf SQUIDs [10], ionic channels [11],
and numerous other systems in nature that can be described
as classical multiwell potential systems subject to a linear
friction and white noise.
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Figure 1 presents the results of a computer simulation of
the escape (first-passage) flux. The system is put initially
into the bottom of the well 1 [12] [i.e., q�0� � q1, �q�0� �
0] and then follows the stochastic equation,

q̈ 1 G �q 1 dU�dq � f�t� , (3)

� f�t�� � 0, � f�t�f�t0�� � 2GTd�t 2 t0� ,

U�q� �

Ω
0.06�q 1 1.5�2 2 cos�q� at q , ql � 4.5
2` at q . ql

,

until either the coordinate limit ql (equivalent to an ab-
sorbing boundary) or the time limit tl � 1000 is reached
[13], after which it is reset to the bottom of the well 1
and everything is repeated. Once the statistics are deemed
adequate, we calculate the flux

J�t� �
1

Nreset

DN�t�
Dt

(4)

as a function of time. Here, Nreset is the overall number
of resettings, and DN�t� is the number of escapes during
the interval �t, t 1 Dt� (the escape is defined as a reaching
ql), where Dt is chosen to be much larger than the typical
interval between two successive escapes, but much smaller
than the characteristic time scales over which the flux (4)
may change significantly.

One can resolve in Fig. 1(b) three distinct stages: a
rapid initial growth of J on a time scale tin (related to
the formation of quasiequilibrium within the initial well),
followed by a slow decay with a characteristic decay
time ts ¿ tin (related to the formation quasiequilibrium
between wells 1 and 2), and then a yet slower exponential
(quasistationary) decay with a decay time tqs ¿ ts

[where, on the scale of the figure, J�t� appears constant].
Given the hierarchy tin ø ts ø tqs, the processes of

interattractor [14] transitions may be considered at the
second and third stages as being instantaneous [15] and,
correspondingly, one may readily use the approximation
of kinetic equations for the well populations Wi , with con-
stant interattractor transition rates aij . These equations are
easily solved and the flux is
© 2000 The American Physical Society
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FIG. 1. (a) The potential (3) and a sketch of direct (dotted
line) and indirect (dashed line) escape paths 1 ! s2; thin dashed
lines indicate positions of the local minima �q1, q2� and maxima
�qs1, qs2�; (b) simulations of a dependence of the escape flux
on time J�t� (thin line) for the model (3) at G � 0.15, T � 0.4.
The thick solid and dashed lines show the approximation of
J�t� by Eq. (5) in which a12, a21, and aqs are calculated by
the Kramers-Melnikov formula [4], and, for the thick solid
line, a13,23 � aqs���1 1 	V1V

21
2 exp��U1 2 U2��T �
61�������1 1

	m exp�kSmin�s2 ! s1��T�
61���, where V1,2 are the frequencies
of eigenoscillation in the bottom of wells 1,2, respectively, k

is equal to 1, 21 for the ranges G providing s2
nf
! 2, 1, respec-

tively, Smin�s2 ! s1� is calculated by the theory [17], and m is
the only adjustable parameter (m � 1.1 for these parameters);
for the dashed line, a13 � 0 and a23 � aqs�1 1 a21�a12�.

J�t� � a13e2t�ts 1 aqs�e2t�tqs 2 e2t�ts �, (5)

ts � a21
12 , tqs � a21

qs � a12��a12a23 1 a21a13�,

T ø Us1 2 U1, t ¿ tin .

Thus, in order to know the flux dynamics, one needs to
find aij . Coefficients a12, a21 and the quasistationary flux
aqs can be calculated from the Kramers-Melnikov formula
[4]. Thus, only one of the four aij coefficients needs to be
found independently. We choose it to be a13.
The theoretical problem of finding a13 is inherently dif-
ficult. The Melnikov method is generally not valid in the
multiwell case [4]. Therefore, the method of optimal fluc-
tuation (see, e.g., [16]) was suggested [17], seeking the
escape rate in the form

a13 � Pe2Smin�T , (6)

where the action Smin does not depend on T and the de-
pendence of the prefactor P on T is relatively weak.

In order to find Smin, one must find the minimum of
certain functional [17,18]

Smin � Smin�1 ! s2� � min�q�t��,ttr �S� , (7)

S � Sttr �q�t�� �
1

4G

Z ttr

0
dt �q̈ 1 G �q 1 dU�dq�2,

q�0� � q1, �q�0� � 0, q�ttr � � qs2 , �q�ttr � � 0 .

The trajectory �q�t�� providing minimal S does not include
attractor 2. It is called [17] the most probable direct tran-
sition path (MPDTP). The main features of Smin and the
MPDTP are illustrated in Figs. 2 and 3 for (3); see [17]
for a rigorous general treatment [19].

From Fig. 2, where the dependence of the excess action

DS � DS�1 ! s2� � Smin�1 ! s2� 2 �Us2 2 U1� (8)

FIG. 2. Theoretical and experimental data on direct escapes /
transitions in the metastable potential (3) [Fig. 1(a)]. The calcu-
lated excess of action (related to the escape rate a13) over a dif-
ference of energies, DS�1 ! s2�, (8) is shown by the solid line.
The calculated 6Smin�s2 ! s1�, related to R (11) by Eq. (12),
is shown by the dotted line (it overlaps the solid line in the
half-plane of positive ordinates). The corresponding quantity
(13) based on data obtained by electronic and computer simu-
lations is shown by squares and crosses, respectively. Values
Gn$1 correspond to noise-free saddle connections with n 2 1
turning points. At G � G0 � 2V2 � 2.1, the turning points in

the noise-free trajectories s2
nf
! 2 and s1

nf
! 2 disappear. The

inset shows the low G range enlarged.
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FIG. 3. Simulated direct transition paths s2 ! 1 (thin
solid lines) in the energy-coordinate plane E 2 q [where
E � �q2�2 1 U�q�], corresponding to Eq. (3) at different G:
(a) 0.5, (b) 0.05, and (c) 0.04 [T � 0.05 for (a) and T � 0.005
for (b) and (c)]. The noise-free trajectories s2

nf
! 2 and

s1
nf
! 1, 2 are shown by dashed lines. The MPDTPs s2 ! s1

are shown by thick dotted lines.
2558
on G is considered over the whole range of G from very
strong damping to the ultra-underdamped case, one can
resolve three distinct regions of G.

In the overdamped region, G $ G0 � 2V2 (where V2
is the frequency of eigenoscillation in the bottom of well
2), there is no MPDTP 1 ! s2 at all so that a13 � 0.

In the moderate-friction region �G1, G0�, DS�G� is
monotonic and undergoes the largest variation: from 0
to Us1 2 U2. The MPDTP [see Fig. 3(a)] is the time

reversal of the trajectory s2
A�A2
! s1

nf
! 1. The latter is

just the noise-free relaxation from s1 to 1, whereas the
former is the solution of (cf. also [18])

q̈d 1 G
1 1 AeGt

1 2 AeGt
�qd 1 dU�qd��dqd � 0 ,

qd�0� � qs2 , �qd�0� � 0 ,
(9)

where A � A2 is a negative constant providing for the
minimal S among all values of A for which �qd�t�� reaches
s1 [in general, there may be an infinite set of A providing
�qd�t�� connecting the saddles: the corresponding trajecto-
ries differ by their number of turning points].

The underdamped region, G # G1, is divided by char-
acteristic values of friction, Gn$1. Each value Gn provides

for the noise-free saddle connection s2
nf
! s1 and the latter

possesses n 2 1 turning points. In this region, DS�G� un-
dergoes oscillations which correspond to an alternation be-
tween two situations. In the first, �G2m, G2m21� �m $ 1�, a
noise-free trajectory s2

nf
! 1 exists and the MPDTP is just

its time reversal, with DS � 0. In the second situation,
�G2m11, G2m� �m $ 1�, the action varies nonmonotonically
with G, and has cusps. This is due to a competition be-
tween the two paths which are the time reversals, respec-

tively, of s2
A2
! s1

nf
! 1 and s2

A1
! s1

nf
! 1, where s2

A6
! s1

are given by the solutions of (9) with A1 � A1�G� . 0
and A2 � A2�G� , 0, respectively [see Figs. 3(b) and
3(c), respectively]. As G varies, S along one path be-
comes equal to S along another, at a certain G, leading to
switching between the paths and to the cusp in DS�G� (cf.
discontinuities in the nonequilibrium potential [18] and
fluctuational separatrix [16]).

Thus, [17] predicts an exponentially strong dependence
on friction (including such nontrivial features as oscilla-
tions and cusps) for the escape rate a13 at t ¿ tin. To
establish whether these (and the properties of MPDTPs
described above) occur in reality, we have undertaken ana-
log electronic [20] and computer [21] simulations. A nec-
essary condition is smallness of the temperature: T ø
DS, �Us1 2 U1�. However, to obtain reasonable statistics
at such a small temperature would require an unrealisti-
cally long time ���~ exp��Us2 2 U1 1 DS��T ���� [22]. We
have overcome this difficulty by exploiting the property of
detailed balance [23], which implies [17] that the MPDTP
s2 ! 1 is just the time reversal of the MPDTP 1 ! s2,
with the corresponding actions differing by Us2 2 U1, i.e.,
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DS�1 ! s2� � Smin�s2 ! 1�

�

(
0 at s2

nf
! 1

Smin�s2 ! s1� at s2
nf
! 2 , (10)

so that information about the transition s2 ! 1 is equiva-
lent to that for 1 ! s2, but the experimental time re-
quired is of course much smaller in the former case
�~ exp�DS�T�� than in the latter.

Figure 3(a) demonstrates that, for G [ �G1, G0�, most
of the direct paths s2 ! 1 do indeed concentrate near

s2
A2
! s1

nf
! 1. Figures 3(b) and 3(c) demonstrate switch-

ing of the MPDTP from s2
A1
! s1

nf
! 1 to s2

A2
! s1

nf
! 1 as

G decreases in the range �G3, G2�.
In order to study Smin we use the following technique.

The system is put at s2 and then follows its stochastic
dynamics (3) until either the bottom of one of the wells is
approached or the coordinate ql is reached. After that, the
system is reset to s2 and the operation is repeated. Once
adequate statistics have been obtained, we calculate the
ratio of transitions to the wells 1 and 2:

R � R�T � �
Ns2!1

Ns2!2
. (11)

It is easy to see that R ~ exp�6Smin�s2 ! s1��T � [where

�1, 2� correspond to ranges of G providing s2
nf
! 1, 2,

respectively]. So, Smin�s2 ! s1� is related to R (11) as

6Smin�s2 ! s1� � lim
T!0

	T ln�R�T ��
 , (12)

where �1, 2� correspond to s2
nf
! 1, 2, respectively.

However, there is always a lower limit for T in simu-
lations, Tl , because the overall simulation time must not
become unrealistically long. That is why the use of (12)
may, in practice, introduce significant inaccuracy. To re-
duce the influence of the preexponential factor we measure
R both at Tl and at a slightly higher temperature, Tl 1 DT
�Tl ¿ DT � T2

l �Smin�s2 ! s1��, so that

6Smin�s2 ! s1� �
T2

l

DT
ln

µ
R�Tl 1 DT �

R�Tl�

∂
. (13)

The quantities on the left and right of Eq. (13) are shown
in Fig. 2, respectively, by the dotted line (theory) and by
squares and crosses (electronic and computer simulations
respectively). The agreement is satisfactory (given that
5 � Smin�Tl � 7).

Note that the magnitude of the largest oscillation in ac-
tion may significantly exceed Us2 2 U1. This occurs if the
initial well 1 is adjacent to an external saddle s2 while its
depth is much less than that of the other well.

Finally, we comment on the experimental consequence
of the cutoff of the MPDTP, namely, the drastic change
of the time evolution of J for tin � t ø ts: at G , G0,
one may, in principle, make T small enough that the sharp
growth of J�t� at t � tin turns into a nearly constant value
at tin ø t ø tina13��a12a23�, while, at G . G0, J�t� �
a12a23t over the whole relevant time scale [cf. thin solid
and dashed lines in Fig. 1(b)]. Another drastic change oc-
curs with the time evolution of the transition flux s2 ! 1:
at G , G0, it has a high narrow peak at t � tin, whereas,
at G . G0, it is a monotonically (and very slowly) grow-
ing function of t, at t ø ts.
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