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Fluctuations and the Energy-Optimal Control of Chaos
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The energy-optimal entraining of the dynamics of a periodically driven oscillator, moving it from a
chaotic attractor to a coexisting stable limit cycle, is investigated via analysis of fluctuational transitions
between the two states. The deterministic optimal control function is identified with the corresponding
optimal fluctuational force, which is found by numerical and analog simulations.
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The stability of chaotic systems in the presence of noise
and methods for controlling these systems are of intrinsic
interdisciplinary interest and of obvious importance in re-
lation to applications. Methods already available [1] for
the control of chaos include entraining to a chosen “goal
dynamics,” which necessarily requires large modifications
of the system’s dynamics [2,3], and a variety of minimal
forms of interaction [4—6] which have hitherto been re-
stricted by the linear approximations adopted.

The energy-optimal implementation of deterministic
switching from the basin of attraction of a chaotic attractor
(CA) has remained an unsolved archetypal problem [7]
for a long time. Its solution must amount to an important
extension of the range of model-exploration objectives
(cf. [2] and [5]) achievable through minimal control tech-
niques. At the same time, the seemingly separate question
of noise-induced escape from the basin of attraction of a
CA has remained a major scientific challenge ever since
the first attempts to generalize the classical escape problem
to cover this case [8]. These two apparently quite different
problems are usually considered separately within the
distinct subfields of deterministic and stochastic nonlinear
dynamics. See, however, Ref. [9] for a discussion of the
interrelationship between stochastic and control problems,
and, in particular, [9](c) for the analogy between their
variational formulations.

In this Letter we show how the energy-optimal control
of chaos can be effected via an analogy between the varia-
tional formulations of both problems using a statistical
analysis of fluctuational trajectories. The main difficulty
in tackling these problems stems from the complexity of
the system dynamics near a CA and is related, in particular,
to delicate questions concerning the uniqueness of the so-
lution and the boundary conditions at a CA. The approach
proposed below is based on the analysis of an oscillator
interacting with a thermal bath. In the zero-noise intensity
limit, a consistent theoretical development [10,11] from the
microscopic to the macroscopic equations of motion leads
to descriptions of both its deterministic (dissipative) and
fluctuational dynamics within the framework of Hamil-
tonian formalism [12]. It can be shown both on physical
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grounds and rigorously that the Wentzel-Freidlin Hamil-
tonian [12] arising in this approach is equivalent to the
Pontryagin Hamiltonian in the control problem [7] with
an additive linear unrestricted control; the corresponding
optimal control function is equivalent to the optimal fluc-
tuational force [9](c).

We illustrate the approach by analyzing the motion of a
periodically driven nonlinear oscillator

g1 =Ki(q(®)) = q2,
g2 = Ka(q(1)) + u(r) (1)
= -2T¢g, — wéql — ,qu — yq? — hcos(Qt) + u(z).

Here u(z) is the control function. Parameters were chosen
such that the potential is monostable (8% < 4yw3), the
dependence of the energy of oscillations on their frequency
1S nonmonotonic (% > 19—0), and the motion is under-
damped I' < () = 20w0. This model is of interest in a
number of contexts in which theoretical analysis is pos-
sible for a wide range of parameter values [13]. It is a
system in which chaos can be observed at relatively small
values i = 0.1 of the driving force amplitude.

For a given damping (I' = 0.025) the amplitude and fre-
quency of the driving force were chosen so that the chaotic
attractor coexists with the stable limit cycle (SC in Fig. 1).
The chaotic state appears via period-doubling bifurcations
and thus corresponds to a nonhyperbolic attractor (NHA).
Its boundary of attraction 9{) is nonfractal and is formed
by the saddle cycle of period 1 (S1). For details about the
phase diagram, see Ref. [14].

We have considered the following energy-optimal con-
trol problem. The system (1) with unconstrained control
function u(t) is to be steered from the NHA to the stable
limit cycle in such a way that the energy (“cost”) func-
tional R is minimized, with #; unspecified,

1 [
R = inf — f u*(t) dr . 2)
ueyU 2 to

Here the control set U consists of functions (control sig-
nals) which are able to move the system from the NHA to
the SC.
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FIG. 1. The basins of attraction of the stable limit cycle SC
(shaded) and NHA (white) for a Poincaré cross section with
Qr = 0.6 (mod27r), ) = 0.95. The largest Lyapunov expo-
nent for the NHA is 0.0449. The period-1 saddle cycle S1 at the
NHA boundary 9{) is shown by the filled square. The saddle
cycle of period 3 is shown by plusses. Intersections of the actual
escape trajectory with the Poincaré cross section are indicated
by the small filled circles.

It can be shown (see, e.g., Ref. [7]) that, if a solution of
the control problem [i(r), q(¢)] exists, there also exists a
continuous piecewise differentiable function p(z) =

{p1(2), p2(t)} such that

. J0H, . J0H, .
;= —, L= — s — 1’2 s
qi 3 p; Di 9q: l { }
H. = 1/2p3 + piK + paKs. 3)

Here the variables p(¢), po(¢) are not simultaneously zero
and it is assumed that the optimal control function i(t) at
each instant takes those values u(t) = p, that maximize
H. over U.

The function R in (2) coincides (up to a constant scal-
ing factor) with the definition of the activation energy for
fluctuational transitions between the NHA and the SC if
the control signal u(¢) in (1) is substituted with zero-mean
white Gaussian noise &(r) [12] such that

€@0)=0, (£0)&0) =Do@). 4)

Correspondingly, the function H, (3) coincides with the
Hamiltonian H of an auxiliary Hamiltonian system (3)
which determines the optimal fluctuational paths (see, e.g.,
Refs. [12,15]). Thus the optimal control signal &(z) can
be identified with the optimal fluctuational force [9](c)
which drives the system from the NHA to the SC. We
note that both #(¢) and the optimal force are related to p,
in (3). This interrelationship is intuitively clear because,
in thermal equilibrium (D = 4I'kpT), the probability of
fluctuations is determined by the minimum work from the
external source needed to produce the given change in the
thermodynamic quantities p « exp(—Rmin/ksT) [16]. We

therefore suggest that the optimal control function #(¢) can
be found experimentally by measurement of the optimal
fluctuational force [17,18].

We have tested this idea through analog electronic
modeling [18] of (1) and digital simulation following the
prescriptions of [19]. Qualitatively similar results were
obtained but, because precision is of particular importance
here, the data reported below are those from the digital
simulations. The underlying idea is that, when the system
(1) is driven by a random force £(¢) (4) instead of u(z), it
will occasionally fluctuate to 9€2. In doing so, in the limit
where the noise intensity tends to zero, the system will
follow very closely the deterministic trajectories of (3).

For the technique to be applicable a solution of (3) mov-
ing the system from the NHA to 9{) must exist, and one
has to be able to identify the boundary conditions for this
solution on the NHA. Earlier numerical simulations [20]
demonstrated that a solution does indeed exist and that it
is typically unique in the limit D — 0.

The method involves monitoring the system continu-
ously and collecting all successful realizations [g7> (1),
g5 (t), £55¢(¢)], moving it from the NHA to (). From
these realizations, a time-dependent prehistory distribu-
tion is built [17]. In the present case, this distribution
turns out to be characterized by a narrow ridge, as the
noise intensity is decreased, allowing us to define an ap-
proximate solution #(¢) for the control function [the ex-
act solution is &(f) = limp—g &t(#)], corresponding to the
maximum of the distribution. The boundary conditions are
found by analysis of how the energy-optimal escape path
g™ (1)), (g5 (t))] merges with the NHA. Note that the
topological features of the prehistory distribution yield di-
rect insight into the control problem: where the prehistory
distribution does not develop a well-defined ridge in the
D — 0 limit, we may infer that control via a simple func-
tion is not achievable.

An actual escape trajectory is indicated in Poincaré cross
section by the filled circles in Fig. 1. A typical optimal
escape path and the corresponding optimal force, obtained
by averaging a few hundred such trajectories, are shown in
Fig. 2. Analysis of the optimal path reveals that the sys-
tem leaves the NHA along the unstable manifold of the
saddle cycle of period 5 (S5 with multipliers u; =
0.04157 <1 and wu, = 4.60403728 > 1) embedded in
the NHA. At this moment the optimal fluctuational
force (£°%°(¢)) switches on, driving the system to d{) via
the saddle cycle of period 3 (S3 with multipliers u; =
0.04873 < 1 and py = 7.608312 > 1). Near the saddle
cycle S1 that forms the boundary of the basin of attraction
the optimal force dies out. Note that no action is required
to bring the system from S1 to the stable limit cycle. As
discussed above, this path is an approximation (because
of the finite intensity of the noise) of the optimal control
function u(z).

It can be seen from Fig. 1 that the saddle cycle S3 is not
embedded in the NHA. It is probably the nearest saddle
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FIG. 2. The most probable escape path (bottom solid curve)
from the NHA to SC, found in numerical simulations with & =
0.13, ws = 0.95, @y = 0.597, and T = 0.0005. Single periods
of the saddle cycles of period 5, 3, and 1 are shown by open
circles, squares, and triangles, respectively; the stable limit cycle
is shown by diamonds. Top curve: the corresponding optimal
force after filtration. The optimal path and optimal fluctuational
force found by the solution of the boundary value problem are
shown in each case as dotted lines.

cycle to the boundary of the basin of attraction of the NHA
in terms of the action variable, and can be considered as
the boundary of the NHA itself.

Thus we conclude that the solution #(#) and the cor-
responding boundary conditions can be found using our
new experimental method. Moreover the escape problem
has in this case been reduced to the analysis of transitions
between three saddle cycles S5 — S3 — S1, in qualitative
agreement with the well known statement that saddle
cycles provide detailed invariant characterizations for
dynamical systems of low intrinsic dimension (see, e.g.,
[21,22]). We note that the solution found is independent of
the initial conditions on the chaotic attractor: the transient
time required for the system to reach S5 (in the presence
of noise) from arbitrary initial conditions is exponentially
smaller then average escape time, and the quasiperiodic
steady state distribution is formed on the attractor prior to
escape [23].

Once boundary conditions are specified one can solve
the corresponding boundary value problem for the system
(3) numerically. The results of the numerical solution of
the boundary value problem obtained by the relaxational
method are shown in Fig. 2 by the dotted lines and are in
good agreement with the solution found from the analysis
of fluctuational trajectories.

To verify that the optimal force #(z) found in the ex-
periment really does minimise the energy of the control
function steering the system (1) from the NHA to the SC1,
we set it to arbitrary initial conditions in the basin of attrac-
tion of the NHA and let it evolve deterministically until it
passed through the initial part of the unstable manifold of
S5. At that moment the deterministic control function was
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switched on. For a given shape of the control function and/
or initial conditions, its amplitude was set to the threshold
for switching of the system from chaotic to regular motion
on SCI.

It was found that the system is very sensitive to small
variations in the control function: any deviation from the
shape of ii(¢), or from the initial conditions found in the
experiment, leads to a substantial increase in the energy
required to attain SC1. Some experimental results are
shown in Fig. 3. It can be seen that the energy of the con-
trol function is approximately twice as large if the optimal
force is approximated by the sin function modulated by a
Gaussian u(t) = a; sin(ayt) exp[—(t — a3)*a4], and it is,
respectively, ~4 and ~20 times larger if the optimal force
is approximated by rectangular pulses or distorted with an
arbitrary low-frequency perturbation.

We have also performed experiments using an open-plus-
closed loop control technique [2] and an adaptive control
algorithm [3] to steer the system from the NHA to the

control function
%

Energy

0.01
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FIG. 3. (a) Threshold control functions (note differing vertical
scales) inducing switching in the numerical experiment: 1: op-
timal force found by statistical analysis of fluctuational escape
trajectories; 2: its approximation by u(f) = a;sin(ayt) X
exp[—(t — a3)*a4], where a; are constants; 3: approximation
by rectangular pulses; 4: arbitrary distortion of the optimal force
by a low-frequency perturbation; 5: control functions produced
in open-plus-closed loop control [2] for g; (solid line) and ¢,
(dotted line). (b) Energies of the control functions shown in (a).
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SC1. Although these methods are designed to optimize
the recovery time, rather than to minimize the energy of
the control function, they are efficient in entraining the
system dynamics to the goal dynamics. So it is interest-
ing to compare their performance with that of the control
function found in our experiment. The energy of the con-
trol functions (see Fig. 3) obtained by these methods is
more than an order of magnitude larger then the energy of
the optimal control function #(¢) found by our new tech-
nique. The best results obtained by the open-plus-closed
loop control are also shown in Fig. 3. Full details, together
with the numerical solution of the boundary value problem,
will be given elsewhere [24].

Of course, the time required for the system to approach
S5 (which is where the optimal control force can be
switched on) varies for different initial conditions on the
NHA: it is typically €”», where € is the linear dimension
of the region and the D, is the pointwise dimension of a
periodic point in this region [22]. In order to reduce this
initial waiting period, and thus the average transition time,
one could apply the techniques [6,25] developed earlier
for effecting switching between controlled saddle periodic
orbits embedded in an NHA.

In conclusion, we have proposed a novel technique for
the energy-optimal steering of a nonlinear oscillator away
from the basin of attraction of an NHA, and we have veri-
fied experimentally that it works in a particular case. The
technique can readily be combined with established mini-
mal forms of control, extending substantially the range of
model-exploration objectives that can be achieved by such
methods. Preliminary investigations [14] indicate that the
technique may also be applied in the case of the Lorenz
attractor, whose ergodic properties are very different, and
modifications are needed to take account of the finite tran-
sition time. We infer that it can be further extended to treat
cases where the boundaries of attraction are fractal. The
possibility of applying the technique to higher dimensional
systems is an open problem of immediate interest.
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