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Abstract.

Heart rate variability (HRV) data from young healthy humans is expanded into

two components, namely, the angles and radii of a map of R–R intervals. It is shown

that, for most subjects at rest breathing spontaneously, the map of successive angles

reveals a highly deterministic structure after the frequency range below ∼ 0.05 Hz

has been filtered out. However, no obvious low-dimensional structure is found in the

map of successive radii. A recently proposed model describing the map of angles for a

periodic self-oscillator under external periodic and quasiperiodic forcing is successfully

applied to model the dynamics of such angles.
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1. Introduction

Modelling the behaviour of real systems is often useful and almost always a challenge.

Living systems, within which a large number of processes interact and mix in a complex

way, while being influenced by different kinds of noise, are especially difficult to treat.

There are several ways to attack the problem, including e.g. constructing a mock-up

based on prior knowledge of principles governing the function of the system, or creating

a virtual model. The method of modelling that we discuss below is somewhat different

and consists of constructing a mathematical model in the form of an equation describing

the evolution of the system’s state in time. We apply this approach to the human

cardiovascular system. We focus on the well-known phenomenon of heart rate variability

(HRV), which manifests itself in the fact that successive R–R intervals extracted from

an electrocardiogramme usually differ.

There has been a long-running debate among researchers applying the tools of time

series analysis to HRV data as to the nature of this variability, considered from the

viewpoint of nonlinear dynamics. The central question has been whether R–R intervals

can be attributed to a certain deterministic process perturbed by noise, or it is rather

due to some random fluctuation for which only probabilistic laws are valid. Obviously,

any natural process derives from a complex mixture of deterministic and stochastic

factors. Therefore, the above question is actually reduced to the question which of the

components, stochastic or deterministic, dominates. A desirable ambition could be also

to reveal the concrete sources of determinism and stochasticity.

Since variation of R–R intervals is far from being regular, for a long time

the phenomenon was attributed to some kind of random process. Conventional

statistical methods were applied to characterize it, including e.g. Fourier power spectra,

autocorrelation functions, mean value and variance. Later, the discovery of the

phenomenon of dynamical chaos in 1976 [1], led to the fascinating suggestion that the

behaviour of many complex physiological signals like the ECG (and consequently HRV as

well) [2] may be explicable in terms of chaotic dynamics, that is, they can be described

by deterministic equations of motion, perhaps influenced by noise. However, further

studies seemed to contradict this idea [3, 4], and revealed that HRV possesses many

features in common with stochastic rather than deterministic processes, e.g. a 1/f α

(“one-over-f”) Fourier power spectrum in the super-low frequency range below 0.005 Hz

[5, 6, 7] representing a distinctive feature of flicker-noise, a lack of scaling properties

of the set reconstructed by delay-embedding into a multidimensional space [8], and a

lack of predictability [9]. Attempts were made to create either deterministic [10, 11]

or purely stochastic [12] models describing the behaviour of R–R intervals based on a

knowledge of the physiological mechanisms underlying their variation. The model in the

form of a discrete map with delay in [10] reproduces qualitatively some known spectral

properties of R–R intervals. In [11] a model created in the form of delay differential

equations was found to demonstrate a rich variety of regimes including chaotic ones. As

compared to the R–R intervals of anaesthesized dogs after the removal of trends, it gave
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a satisfactory description of the observed dynamics as control parameters were changed.

All the models mentioned above attempted to capture the behavior of the R–R

intervals themselves, without expanding them into any components. In spite of some

degree of success, none of the models were able to reproduce reliably the full set of

basic HRV properties. In [13], however, attention was paid to an angular component of

the R–R intervals map in humans undergoing paced respiration at a frequency close to

0.1 Hz, and distinct structure was found in the angles map. So, it was concluded that

determinism occured in HRV during paced respiration. However, it was inferred that the

“complexity of spontaneous respiratory movements obviously precludes the identification

of finite-dimensional attractors in heart rate fluctuations within the frequency range of

breathing”. An empirical model in the form of one-dimensional autonomous map was

suggested to describe approximately the behaviour of the angles of the R–R intervals

map, possessing, however, a piecewise-linear return function that is non-smooth (non-

differentiable at several points), which does not seem a very natural way of modelling

real processes.

In the present paper we demonstrate that removal from human R–R intervals of the

frequency range below ∼ 0.05 Hz, measured at rest with spontaneous breathing, allows

obviously deterministic structure to be revealed in the map of angles. We also model the

behaviour of the angles with the help of a map that was previously derived for the case

of weakly interacting periodic oscillators [14]. We show that only the angles of the R–R

intervals map exhibit highly deterministic behaviour, whereas the corresponding radii

reveal no obvious low-dimensional structure either before or after filtration. Finally, we

discuss the results obtained.

2. Description of the model.

It is known that several oscillatory processes are involved in the dynamics of the

cardiovascular system, each of them having a characteristic timescale (period). There

are, for example, heart contraction, respiration, and myogenic activity of smooth

muscles. Obviously, all these processes interact with each other, and their interaction is

reflected in the Fourier and wavelet spectra of many known cardiovascular signals [15],

including the ECG, where several characteristic peaks can be detected.

From the viewpoint of oscillation theory, the interaction of m periodic processes

gives rise to quasiperiodic motion (in general), which can be represented as an m-

dimensional torus in the state space of a dynamical system. The same torus can be also

modelled by applying one or several external periodic driving forces to a system with

purely periodic oscillations. An illustration of how a two-dimensional torus is formed is

given in Fig. 1. In this case, if the interacting periodic processes are not synchronous,

the trajectory fills the whole torus surface and is never closed. If they are synchronous,

the trajectory lying on the torus surface is closed after one or several windings.

In general analysis of the motion on a hypersurface of an m-dimensional torus in

a high-dimensional state space of an original dynamical system with continuous time is
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a nontrivial task. To simplify consideration, a Poincaré map is often introduced [16] as

follows (Fig. 2(a) illustrates the simplest case of a two-dimensional torus): a surface is

selected in such a way that it intersects all of the system’s trajectories transversely (at a

nonzero angle, i.e. does not touch them). The points of intersection in only one direction

are selected strictly preserving their order in time, to form the Poincaré map. Such a

map contains the complete dynamical information about the motion in the original

system except information about the real time, since instead of the original continous

time t only discrete time i is available. A Poincaré map of a two-dimensional torus is

in general a closed curve, often called a “circle”. If two periodic processes interact and

are not synchronized, the map points fill the whole circle. If they are synchronized, the

map consists of a finite number of points lying on this circle. In Fig. 2(b) a Poincaré

map is shown for the synchronous case consisting of three points on a circle shown by

dashed line and being the section of the torus surface.

An alternative type of discrete data can also be used which, unlike Poincaré maps,

preserve information about the real time of the system, namely, return times. The

return times of the system are defined as the time intervals between the trajectory’s

intersection in one direction with the secant plane. One can also obtain return times

in an easier way from a one-dimensional signal coming from the system under study by

defining some threshold and taking the time intervals between successive crossings of

it by the signal in one direction (for example, from above to below), as in Fig. 1(c).

An example of return times which is well-known in physiology are the R–R intervals

extracted from a human ECG, as illustrated by Fig. 3.

It is known that a map of successive return times is qualitatively similar to the

Poincaré map of the system under study [17], provided that the latter is deterministic,

i.e. that its changes of state can be described by some evolution equations. A famous

example of such a map in physiology is the scattergramme obtained from R–R intervals.

Let us consider a return times map of a typical dynamical system within which

two periodic processes interact weakly. We can define an angle φi and a radius ri for

every point of the map as shown in Fig. 2(b). If the processes are synchronous, one will

observe a discrete set of map points, and, consequently, a discrete set of possible values

of angles φi. If the processes are not synchronous, the angles φi will be allowed to take

any value within [−π : π].

In [14] a model was derived for the dynamics of angles of return times map of a

periodic self-oscillatory system forced by an arbitrary number of harmonic signals. We

now give a brief description of how it was derived.

Consider a periodic self-oscillator whose natural oscillations (in the absence of any

forcings) are of frequency ω0 and amplitude R. If the nonlinearity in the oscillator

is weak then, in the absence of forcings, as time tends to infinity, its signal can be

approximated by a sinusoidal function of time, and its oscillations correspond in phase

space to a closed loop (Fig. 1(a)). Now let the oscillator be forced by a sinusoidal signal

with frequency Ω and amplitude r (Fig. 1(b)). If the forcing is weak, r � R, a signal

x(t) coming from the resultant forced oscillator can be approximated by a sum of two
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terms: one sine term describing oscillations with frequency ω and amplitude R and a

second sine term describing oscillations with the frequency of the external forcing Ω and

its amplitude r (Fig. 1(c)), that is:

x(t) = R sin ωt + r sin Ωt, r � R. (1)

As a result of the forcing a two-dimensional torus is born (Fig. 1(c), right). A well-

known phenomenon which can take place in forced periodic oscillators, as well as in

mutually coupled oscillators, is synchronization. This means that forcing (or coupling)

can change the frequency of oscillations in the system so that it is no longer equal to

the natural frequency and appears to be related to the frequency of forcing (or to the

frequency of the coupled oscillator) as integer numbers. To quantify the interaction

between two oscillators a rotation number is introduced, defined as the ratio of their

frequencies during interaction. This number can be rational or irrational§. If it is

rational and equals n

m
, then one can say that n

m
synchronization is taking place.

Thus, the frequency ω in (1) coincides with the natural frequency ω0 in the absence

of synchronization. In the presence of synchronization, it is shifted in the direction

defined by the forcing. If the oscillations are synchronized by the forcing, the rotation

number of the whole system under consideration, here denoted as ξ = Ω
ω
, is equal to n

m
,

where n, m are integers.

The return times of our system are defined as the time intervals between successive

crossings by the signal x(t) of the threshold x = 0 in one direction (Fig. 1(c)). After

some calculations, the return times are obtained explicitly using the fact that the forcing

is weak (details are given in [14]). After that, the map of return times is introduced,

the origin is placed at the centre of mass of the map, and the angles φi are defined as

shown in Fig. 2(b). Finally, the explicit map describing the dynamics of angles for weak

harmonic forcing is found to take the simple form:

φi = arctan (2 cos 2πξ − cot φi−1). (2)

Similarly, for any number n of sinusoidal forcings with different frequencies Ωj and small

amplitudes Aj (j = 1, . . . , n) the signal x(t) coming from the forced oscillator can be

approximated by:

x(t) = R sin ωt +
n∑

j=1

Aj sin Ωjt, Aj � R (3)

and the following map for angles is obtained:

§ A number is rational, if it can be represented as a fraction of two integer numbers n and m, i.e. n

m
,

and irrational if the latter is impossible. Two numbers are rationally connected if their ratio equals the

ratio of integer numbers; and irrationally connected, if they are not.
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φi = arctan {2 cosΘ1 − cot φi−1

+ 2[
n∑

j=2

βj cos (iΘj +
Θj

2
)(cos Θj − cos Θ1)]

× [
n∑

j=1

βj cos (iΘj +
Θj

2
)]−1} (4)

βj =
Aj

A1

sin (Θj/2)

sin (Θ1/2)
, β1 = 1.

Here, Θj = 2πξj, while ξj = Ωj

ω
defines the “partial” rotation number. For two forcing

signals, the formulae take the form:

φi = arctan {2 cosΘ1 − cotφi−1 + 2β2[ cos Θ2 − cos Θ1] ×

× [β2 +
cos(iΘ1 + Θ1

2
)

cos (iΘ2 + Θ2

2
)
]−1}, β2 =

A2

A1

sin Θ2

2

sin Θ1

2

. (5)

All the above maps (2), (4) and (5) are defined via the arctan function which varies

between [−π

2
; π

2
]. However, it is obvious that the angles φi are defined in such a way

that they will vary within [−π; π]. To resolve this contradiction, we redefine the right-

hand sides of our equation in such a way, that for all positive arguments φi−1 we preserve

their values, and for all negative ones we deduct π. In terms of their physical meaning

all the above maps are circle maps [18, 19, 20], (2) being autonomous, and (4) and (5)

being non-autonomous (meaning that the right-hand side depends explicitly on discrete

time i). We will follow the traditional representation by plotting all such maps, both

theoretical and experimental, within a square with the limits [−π : π].

Numerical simulations show that, provided the interaction is weak, the maps for

angles of return times either for the forced oscillator or for coupled oscillators fit closely

the theoretically predicted maps (2) or (5) for either two or three processes involved,

respectively. Some examples of how the map (5), describing interaction between three

processes, looks are illustrated in Fig. 4. Let us define that process whose amplitude

is largest in the given one-dimensional dataset as the main rhythm, and denote its

frequency as ω.

In Figs. 4 (a) and (b) the frequencies of forcing signals are selected to be irrationally

connected with the basic frequency ω = 1 and with each other in order to show what

the maps look like in the absence of any synchronization. Fig. 4(a) shows a map for

the case of forcing with a frequency Ω1 = 0.1012032011 . . . (a random sequence of

0,1,2,3 after ”0.1”) at relatively large amplitude A1 = 0.1, while the second forcing

with frequency Ω2 = 0.3102130202 . . . (a random sequence of 0,1,2,3 after ”0.3”) has a

smaller amplitude A2 = 0.012. The whole map is concentrated within the vicinity of the

one-dimensional curve defining the return function‖ of (2) for ξ = Ω
ω

= 0.1012032011 . . .

‖ A return function of a discrete one-dimensional autonomous map (whose right-hand part does not

depend on discrete time i) is the function in the right-hand part depending on its variable argument

which in our example is φi−1.
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(grey line). Thus, the appearance of the map for angles gives an immediate idea of the

approximate frequency ratio of the dominant processes. One can see that the points in

this example fill the whole allowed space densely, though with different probability, and

that no one-dimensional structures can be observed. This is due to the absence of any

synchronization between the processes involved.

In Fig. 4(b) a map is given for the case when interaction between the process

with frequency Ω1 = 0.3102130202 . . . (a random sequence of 0,1,2,3 after “0.3”)

has a relatively large amplitude A1 = 0.2, while the process with frequency Ω2 =

0.1012032011 . . . (a random sequence of 0,1,2,3 after ”0.1”) has the smaller amplitude

A2 = 0.1. The situation is the same as in Fig. 4(a), apart from the fact that the

interaction of the main rhythm with the process of frequency Ω1 now prevails, and the

map lies in the vicinity of the return function of (2) with ξ = 0.3102130202 . . . (grey

line).

Figs. 4 (c) and (d) illustrate what happens when only two out of the three

processes are synchronous. For Fig. 4(c) the two rhythms with smaller amplitudes

are synchronized with each other and neither is synchronous with the main rhythm.

The value of ω is chosen to be 1.0103210 . . . (a random sequence of 0,1,2,3 after ”1.”).

Ω1 = 0.1 and Ω2 = 0.2, A1 = 0.1, A2 = 0.11. One observes two one-dimensional curves

pointing explicitly to the existence of synchronization between the two minor rhythms.

The grey line shows the return function of (2) for ξ = 0.2.

In Fig. 4(d) synchronization between the main rhythm and one of the minor rhythms

occurs. Here, ω = 1, Ω1 = 1
3
, Ω2 = 0.2103021 . . . (a random sequence of 0,1,2,3 after

”0.2”), A1 = 0.2, A2 = 0.1. The existence of synchronisation between the main rhythm

and the process with Ω1 is revealed by the presence of three closed loops in the angles

map. The number of closed loops gives the denominator 3 of the corresponding rotation

number ξ1 = 1
3
; the loops can be seen to lie on the return function of (2) for ξ = 1

3
(grey

line).

3. Dynamics of angles of human R–R intervals

3.1. Data description

As is widely appreciated, the Fourier spectrum of an ECG measured for a healthy human

(Fig. 5) contains several distinct peaks at different frequencies, namely, the main peak

at the average heart rate fahr, a peak of smaller amplitude associated with respiration

fresp, a peak at approximately f2 = 0.1 Hz associated with baroreflex or myogenic

activity, and two more peaks at frequencies 0.03 and 0.01 Hz with substantially lower

amplitudes [15] (not shown). Qualitatively the same power spectrum is obtained from

R–R intervals computed by means of the technique described in [21] (Fig. 5(a)). Namely,

the spectrum of discrete process known through the values of interspike (R–R) intervals

can be estimated as follows: a delta-function is assumed to be placed at every time

moment ti when an R peak appears in ECG, so that the whole signal can be represented
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as x(t) =
∑

δ(t − ti) and subjected to almost analytical calculation of the Fourier

transform. This method allows one to obtain an approximation of the Fourier spectrum

of the actual ECG that produced the given R–R intervals, with the real frequencies on

the abscissa axis. Note that the main component, corresponding to basic heart rhythm,

is then present in the spectrum. In addition to the peaks, as mentioned in Introduction,

a 1/fα (“one-over-f”) behaviour of the Fourier power spectrum is observed in the range

of super-low frequencies below ∼ 0.005 Hz. The existence of several spectral peaks is in

itself often taken as evidence for the presence of several processes interacting within the

single system. Following this hypothesis, let us apply the technique of plotting the map

for angles, extracted from the map of successive R–R intervals, to study the interactions

between different processes.

3.2. Data pre-processing

As shown in Section 2, the shape of the map for angles is largely determined by the

ratio of the frequencies of the processes whose interaction is the strongest compared to

their interaction with other processes. Usually, in the R–R intervals of healthy people

one observes a very slow but noticeable floating of the average value (Fig. 5(b)). It

is related to the very low frequencies mentioned above, which are much less than the

average heart rate and thus lead to a rotation number close to zero. The map of angles

extracted from the map of original R–R intervals (Fig. 6, upper row) thus reveals this

floating immediately . The effect was important in all the datasets which we consider

in this paper, and the whole map lies in the vicinity of the return function of (2) for the

value of ξ = 0 (grey line). Over small observation times, of the order of minutes, this

floating can be regarded as nonstationarity. In order to consider as stationary motion

as possible, and to focus on interactions of the main heart rhythm with respiration and

the process of frequency ∼ 0.1 Hz, it is therefore reasonable to try to filter out the

corresponding frequency range, that is, the range below ∼ 0.05 Hz.

For this purpose we use two methods of filtering in this paper. Denote a discrete

sequence of R–R intervals as x(i). The first method consists of computing the analogue

of the second derivative of the original time series x(i):

xder(i) =
x(i + 1) + x(i − 1) − 2x(i)

2
. (6)

We will refer to this procedure as the method of derivatives. The second method is

slightly more intricate and consists of the following procedure: (i) we find all the local

maxima xmax(j) and minima xmin(j) of the time series x(i); and (ii) each datapoint x(i)

located between the j-th local maximum xmax(j) and the jth local minimum xmin(j), or

between the jth minimum and the (j+1)th maximum, including the extrema themselves,

is replaced by a new value xdiff(i)

xdiff(i) = x(i) −
1

2
(xmax(j) − xmin(j)), or

xdiff(i) = x(i) −
1

2
(xmax(j + 1) − xmin(j)), (7)
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respectively. Thus, the filter (7) simply deducts from every datapoint the local average,

and in what follows we will call this technique the method of differences.

The results of applying these two filters are slightly different and we compute the

power spectrum for every filtered data set xder or xdiff in order to control the effect of

filtering. To compute the Fourier spectrum from filtered R–R intervals we just add to

xder or xdiff the average value of unfiltered R–R intervals, and then proceed in the same

way as for original, non-filtered data [21]. In Fig. 6 (middle row) the results of filtering

by means of derivatives are given, while Fig. 6 (lower row) illustrates the workability

of the differences technique. The methods of differences and derivatives both remove

the trend from the data. However, the noisy background of the Fourier power spectrum

seems on average to be more uniform after filtration by derivatives, than by differences,

although the use of derivatives leads to a significant decrease of the lower-frequency

range (around 0.1 Hz and less). In both cases, all three dominating frequencies and

their combinations are clearly seen after filtration, but the ratios of their amplitudes

appear to be slightly different.

Extract the angles φi from the maps of filtered R–R intervals and plot the map for

angles (Fig. 6, middle and lower rows). The two ways of filtering appear to result in

somewhat different behaviours of the angles φi. For the case considered, both angles

maps seem to lie in the vicinity of the same curve, but points are placed with some phase

shift. The differences method leads to a more smeared map, while that of derivatives

reveals the structure better. In Fig. 6 (middle and lower rows) the points of both the

filtered angles maps lie close to the one-dimensional continuous curve that represents

the return function of map (2) for ξ = 1
3

which is shown by the grey line. They seem to

be formed by three fairly isolated clouds of points, thus testifying to the presence of 1
3

synchronization between heart rate and the most dominant of the other processes (which

in the present case seems to be respiration). For further analysis we select whichever

filter leads to the more pronounced structure in the map for angles. Of course, neither

of the filtration techniques described is perfect, and other techniques might be used

instead to obtain similar or perhaps even better results.

Several typical examples of angles maps arising in filtered human R–R intervals are

shown in Figs. 7 and 8. All the datasets were obtained in the course of measurements

undertaken to study the possibility of synchronizing the human heart rate by means

of weak external periodic forcing in the form of a sequence of sound and light pulses.

The light pulse was a red square appearing on the screen of a computer for 0.1 sec, and

the sound was generated by the computer speakers and had the same duration. The

frequency of the sound was 440 Hz, corresponding to the musical note “la”. The sound

was weak enough not to cause noticeable changes in heart rate and blood pressure. Two

kinds of forcing were studied, namely: (i) a periodic sequence of pulses with a frequency

close to, but slightly differing from, the average heart rate of the given subject at rest;

and (ii) a sequence of pulses whose current period was equal to the current R–R interval

of another subject at rest. Each dataset was measured over an interval of 5 minutes

for a young healthy subject resting in an arm-chair. The ECG sampling rate was 180
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Hz. Details of the experiment and the results were presented in [22], where the forcing

signals were compared with response signals by means of phase difference computations

as in [23].

Here we present the results of processing of the same data using our new technique.

Note that we study only the intrinsic structure of each HRV signal, and its change in

response to forcing, without comparing it to any other signals. In Fig. 7 the plots in

the 1st column are the angles maps extracted from filtered R–R intervals of subjects

without forcing. The plots in the 2nd column are the angles maps for the same subjects

under periodic forcing at a frequency being 1 per cent smaller than the average heart

rate of the subject without forcing. The third column shows Fourier power spectra for

the same subject without forcing (shaded) and under forcing (solid line). As one can

see from the spectra, the main peak shifts to the left as a result of the forcing in each

case.

In Fig. 8 the plots in the 1st column are the angles maps of unforced subjects

(different from those in Fig. 7), while the plots in the 2nd column are the angles maps

of the same subjects under aperiodic forcing defined by the R–R intervals of another

person. As in Fig. 7, the third column shows Fourier power spectra for the same subject

without forcing (shaded) and under forcing (solid line). One can see that, in each

case, a distinct structure is revealed in the angles maps. One can make the following

observations:

(i) In spite of its weakness, the forcing can cause a noticeable change in the structure of

angles map pointing to the changes in the ratio of interacting dominating frequencies

(subjects 2, 4, 5, 6). Since the shape of the angles maps is mainly defined by

interaction between the main heart rhythm and respiration, we can conclude that

it is mainly the ratio of their frequencies that is changed under forcing.

(ii) In some subjects the angles map reveals several distinct clouds of points, which

constitute evidence of synchronization between the main heart rhythm and

respiration (in subject 1, 3 clouds; in subject 2 at rest, 5 clouds, and under forcing 3

clouds; in subject 3 under forcing, 3 clouds; in subject 4 under forcing, 4 clouds; in

subject 7 both at rest and under forcing, 3 clouds). In many cases the appearance

of these clouds is caused by the external forcing.

This apparently implies that even such a weak forcing generally increases the

strength of interaction between the main heart rhythm and respiration, resulting

in their synchronization.

(iii) Many experimental angles maps can be quite accurately approximated by the

theoretically derived models (2) or (5) (actually, for all subjects except those

mentioned below in item (iv)).

This demonstrates that the interactions of respiration, and the process with

frequency close to 0.1 Hz, with the main heart rhythm are typically weak. We

consider in Section 3.3 below two detailed examples of modelling of such maps.

(iv) In some subjects the angles maps cannot be satisfactorily described by the
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theoretical models (2) or (5), although they possess a pronounced structure (see

subject 4 under forcing, and subject 7).

This means that, in some healthy subjects, the interaction of respiration with

the main heart rhythm is relatively strong, an inference that is supported by

the presence of second harmonics of the respiration frequency fresp in the Fourier

spectrum (it is clearly seen in subject 4, but is much less pronounced in subject 7).

Unlike the angles φi of R–R intervals, the radii ri which are extracted from the

same data do not reveal any obvious low-dimensional structure, at least in their two-

dimensional map. An example of a radii map is presented in Fig. 9, for which the radii

ri were extracted from R–R intervals of subject 2 under periodic forcing. The radii

obtained from either original (a) or filtered (b), (c) R–R intervals do not display any

obvious deterministic behaviour, although the corresponding angles are highly regular

(see Fig. 7, upper row).

3.3. Data Modeling

Let us illustrate how the maps (2) or (5) can model the angles of filtered human R–R

intervals. In Fig. 10 an analysis of healthy human HRV data is illustrated, following

filtration by the differences technique. Fig. 10(a) shows the Fourier power spectrum of

a filtered dataset. It contains two distinct frequencies at fahr ≈ 0.82 Hz and fresp ≈ 0.16

Hz. Points of angles map (Fig. 10(b)) are placed around a curve defining the return

function of map (2) for ξ = 0.2 (thin solid line). Moreover, one can observe 5 clouds

of points lying on this curve, testifying to the presence of 1
5

synchronization between

the main heart rhythm and respiration. Note that the rotation number ξ = 1
5

defining

synchronization differs slightly from the actual ratio of fresp and fahr, in full agreement

with the theory of effective phase synchronization [25].

Now let us try to reproduce this map by means of modelling. Because there

are basically two processes involved in the interaction, we choose map (2). Note,

that the resulting dynamics of this map does not depend on the values of frequencies

independently, but only on their ratio. For example, the values ω = 1.4 and Ω = 0.7 will

give the same result as ω = 1 and Ω = 0.5 because their ratio ξ = Ω
ω

is the same. Bearing

this fact in mind, we select the following set of parameters: ω = 1, Ω1 = 0.2 (to obtain

the rotation number ξ1 = 1
5
). To simulate a real situation let us assume that random

noise influences the value of respiration frequency and let its variance be 0.19. Let us

also add a random term being Gaussian white noise to the right-hand part of equation

(2) with variance 0.01. Iteration of the obtained map and removal of a transient process

gives the phase portrait shown in Fig. 10(c). It looks very similar to the experimental

angles map in Fig. 10(b).

Consider another example illustrated in Fig. 11. The Fourier power spectrum (Fig.

11(a)) of R–R intervals filtered by differences technique contains three independent

frequencies and their combinations, namely, fahr ≈ 1.37 Hz, fresp ≈ 0.24 Hz and f2 ≈ 0.1

Hz, and the intensity of fresp is larger than that of f2. No clouds of points or stripes
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(like in Fig. 4(c)) can be distinguished in the angles map (Fig. 11(b)), so it seems that

neither of the processes involved is synchronized with the other. Since there are three

basic processes involved in the interaction here, we choose the map (5) as a model. Set

the parameter values as follows: frequencies ω = 1, Ω1 = 0.18 and Ω2 = 0.074, and

amplitudes A1 = 0.1 and A2 = 0.05. Let noise modulate most of the parameters of the

model as follows: the values of frequencies Ω1 and Ω2 with intensities 0.43, the values

of amplitudes A1 with intensity 0.41 and A2 with intensity 0.05. Let also add to the

right-hand part of equation noise with intensity 0.1. The phase portrait of the resulting

map, shown in Fig. 11(c), looks remarkably similar to the experimental results shown

in Fig. 11(b).

4. Discussion and Conclusion.

It seems that the theoretically obtained maps (2) and (5) are able to model successfully

the angular part of R–R intervals from healthy humans, provided that contributions

from the frequency range below ∼ 0.05 Hz are first removed by filtration.

The possibility of modelling the behaviour of experimental human R–R intervals

that we have demonstrated is interesting, not only in itself, but also because it

contributes to the long-term discussion about the fundamental nature of human heart

rate variability. The fact that the angular component of experimental R–R intervals

can be successfully modelled by a dynamical system serves as a strong argument for

the deterministic nature of the interactions between the processes governing heart rate

variability. regular (periodic or is in there radial component of R–R intervals does not

exhibit any obvious low-dimensional determinism. Thus, we can distinguish between

two separate components of heart rate variability – one that displays highly regular

behaviour, and one that does not display any obvious regularity at all.
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ti ti+1

external sinusoidal forcing

resulting forced oscillations

(c)

(b)

(a)
periodic self−oscillations

x

0

Figure 1. Illustration of how formula (1) is obtained. (a) Oscillations in periodic

self-oscillatory system and their representation in phase space. (b) External sinusoidal

forcing applied to the periodic self-oscillator and its representation. (c) Oscillations in

the periodic self-oscillator forced by a harmonic signal, approximated by the sum of

two sinusoidal terms. A two-dimensional torus is shown as a rerpresentation of these

oscillations.
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Figure 2. (a) Surface of a two-dimensional torus and the way how Poincaré map is

constructed. (b) Poincaré map (or a return times map which is qualitatively the same)

for a two-dimensional torus for 1:3 synchronization. φi is the instantaneous angle, and

ri is the instantaneous radius. Dashed line indicates the section of the two-dimensional

torus surface.
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Figure 3. A typical electrocardiogramme of a healthy human. P, Q, R, S, T waves

are shown, and the R–R interval is defined.
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Partial synchronization
between two of three processes

No synchronization
between any two of three processes

(a) (b)

(d)(c)

Figure 4. Four examples of how the theoretical map (5) describing the interaction

of three processes behaves for different parameter values. (a), (b), no synchronization

between the processes. (c), (d), partial synchronization between two of the three

processes involved. Details are given in text.
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Figure 5. (a) A typical Fourier power spectrum computed for a sequence of R–R

intervals. fahr is the average heart rate, fresp is the respiration frequency, and f2 is the

frequency of the baroreflex loop. (b) A typical sequence of human R–R intervals.
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Figure 6. Fourier power spectra and angles maps for R–R intervals of one subject

(a) without any filtration; (b) after filtration by derivatives; (c) after filtration by

differences. The grey lines indicate the return functions of map (2) for rotation number

(a) ξ = 0 (b), (c) ξ = 1
3
.
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Figure 7. Angles maps and Fourier power spectra from R–R intervals of humans in

two different states: without forcing and under forcing. Each row illustrates a different

subject. 1st column: map at rest, without forcing. 2nd column: map under periodic

forcing with frequency deviating from the average heart rate at rest by 1 per cent. 3rd

column: Fourier power spectra for subject at rest (shaded) and under forcing (black

line).
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Figure 8. Angles maps and Fourier power spectra from R–R intervals of the same

human in two different states: without forcing and under forcing. Each row illustrates

a different subject. 1st column: map at rest, without forcing. 2nd column: map under

aperiodic forcing whose current period is defined by an R–R interval of another subject.

3rd column: Fourier power spectra of unforced R–R intervals (shaded) and forced ones

(solid line).
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Figure 9. Map of instantaneous radii ri extracted from the R–R intervals of subject 2

under external periodic forcing: (a) without filtering; (b) after filtering by derivatives;

and (c) after filtering by differences. For this dataset a particularly deterministic

behaviour of angles is observed (see Fig. 7, upper row).
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Figure 10. An example of a dataset to model: (a) Fourier power spectrum and (b)

map of angles of the R–R intervals filtered by the differences technique; (c) phase

portrait of the model system (5). Parameters are given in the text.
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Figure 11. An example of a dataset to model: (a) Fourier power spectrum and (b)

map of angles of the R–R intervals filtered by the differences technique; (c) phase

portrait of model system (5). Parameters are given in the text.


