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Noise-induced escape on time scales preceding quasistationarity: New
developments in the Kramers problem
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Noise-induced escape from the metastable part of a potential is considered on time scales preceding
the formation of quasiequilibrium within that part of the potential. It is shown that,
counterintuitively, the escape flux may then depend exponentially strongly, and in a complicated
manner, on time and friction. ©2001 American Institute of Physics.@DOI: 10.1063/1.1378788#
e

-

f

e-
tia

n-
e
of

al

tions

id-

in
-

-

at

d a
s-
e
ny
-

nd
The problem of noise-induced escape from a metastabl
state of a dynamical system is of great importance in
many applications. For a potential system, it is known as
the Kramers problem, in allusion to the famous paper by
Kramers. Until very recently, there remained a gap in the
theory of the Kramers problem: How does the escape flux
evolve from zero, at the initial instant, to the quasistation-
ary stage after quasiequilibrium has been formed within
the metastable state? Intuition suggests that the evolution
should be monotonic and without any irregularities,
which appears to be confirmed by the rigorous analysis of
some partial regimes. However, as we show in the follow
ing, either the flux itself „multiwell case… or its derivative
„single-well case… may evolve in a markedly nonmono-
tonic fashion. This nonmonotonicity, like other irregulari-
ties, relates to characteristic changes in the topology o
the most probable escape path. In the multiwell case, the
formation of quasiequilibrium takes an exponentially
long time, so that our results are relevant to a major
portion of the time attainable at small noise intensities. In
the single-well case, our results are relevant to much
shorter time scales„of the order of a period of eigenoscil-
lation…; interest in such short time scales is of course
growing fast, as modern technologies develop.

I. INTRODUCTION

In his seminal work,1 Kramers considered a weak nois
induced flux from a single metastable classical poten
well, i.e., he considered a stochastic system

a!Electronic mail: p.v.e.-mcclintock@lancaster.ac.uk
5951054-1500/2001/11(3)/595/10/$18.00
l

q̈1Gq̇1dU/dq5 f ~ t !,
~1!

^ f ~ t !&50, ^ f ~ t ! f ~ t8!&52GTd~ t2t8!, T!DU,

which was put initially at the bottom of a metastable pote
tial well U(q) with a barrierDU and he then calculated th
quasistationary probability flux across the barrier. Models
type ~1! are relevant to chemical reactions,1 superconducting
quantum interference devices~SQUIDs!,2 and many other
real systems3,4 including the recently designed mechanic
electrometers.5

There have been many developments and generaliza
of the Kramers problem~see Refs. 3 and 4 for reviews! but
both Kramers and most of those who followed him cons
ered only thequasistationaryflux, i.e., the flux established
after the formation of a quasiequilibrium distribution with
the well ~up to the barrier!. The quasistationary flux is char
acterized by a slow exponential decay in timet, an Arrhenius
dependence on temperatureT, and a relatively weak depen
dence on frictionG:

Jqs~ t !5aqse
2aqst, aqs5Pe2 DU/T, ~2!

whereP depends onG andT in a nonactivated way.
But how does the flux evolve from its zero value

initial time to its quasistationary regime~2! at time scales
exceeding the timet f for the formation of quasiequilibrium?
The answer may obviously depend on initial conditions an
relevant boundary~i.e., the boundary through which the e
cape occurs!. As for the boundary, it can be shown that th
most general qualitative features of the flux are valid for a
type of boundary~for the sake of simplicity, we shall con
sider in the following only the absorbing wall!. As for the
initial conditions, their relevance may vary. The simplest a
© 2001 American Institute of Physics
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often relevant initial state is the bottom of the well, since it
the stable stationary state in the absence of noise: If the n
~not necessarily of the thermal origin! is switched on at some
instant, then the time evolution of the escape from thebottom
becomes relevant. It should be emphasized however tha
the relevant metastable part of the potential is multiwell, th
the flux during the major part of the relevant time is n
sensitive to the initial state provided it is concentrated jus
one well~e.g., it may be thermalized in the well!. As for the
single-well case, the flux evolution is more sensitive to
initial state and we shall consider various cases. But, first
us discuss the most simple case where the initial state
the bottom of the potential. We shall refer to it as thebottom
initial state.

It may seem natural to assume that the flux evolut
from zero to the quasistationary regime is a monotonic fu
tion without any ‘‘irregularities.’’ Apart from the naive argu
ment that ‘‘noise smooths everything,’’ this assumption a
pears sound because the probability distributionW is
distinctly centered at the bottom of the well both initially an
in the quasistationary stage:W(q,q̇,t50uq05qb ,q̇050)
5d(q2qb)d(q̇) while W(q,q̇,t@t f uq05qb ,q̇050) is a
narrow peak of width}AT around that same state$q
5qb ,q̇50%. Moreover, it was shown recently6 that, both in
the underdamped and overdamped limits, the escape
J(t) does grow att;t f in a simple manner.

Despite the above-mentioned arguments, it can be sh
that, generically,J evolves fromJ(0)50 to Jqs(t@t f) in a
quite complicated way.

~1! As shown in Sec. II, the flux grows stepwise on tim
scales of the order of a period of eigenoscillation in the b
tom of the well. Apart from filling the ‘‘gap’’ in time scales
in the Kramers problem~cf. the big activity in the 1980s
aimed at filling the gap in the friction ranges3,4!, this part of
our work is motivated by the growing interest in the ve
short time scales that are now relevant to certain exp
ments, such as those studying chemical reactions dow
femtosecond time scales:7 The period of eigenoscillation
relevant to chemical reactions in Ref. 7 is;1 – 100 fs.

~2! As shown below in Sec. III, the evolution of the flu
on longer time scales in a multiwell metastable potentia
also distinctly different from the relatively simple monoton
function described in Ref. 6:J grows sharply on a logarith
mic time scale to a value which is typically very differe
from Jqs(0) ~typically, exponentially larger! and then evolves
to Jqs(t) during the exponentially long time.

It should be emphasized that the qualitative features
J(t) described previously are valid for any reasonable d
nition of the flux, e.g., the full flux through a boundary
just the first-passage flux, while the boundary may be a gi
coordinate, or a boundary of a basin of attraction, o
boundary of the vicinity of another attractor, etc.

To illustrate our results, we will use the potential

U~q!5q2q3/3 ~3!

for the single-well case~Fig. 1!, and

U~q!50.06~q11.5!22cos~q! ~4!
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for the multiwell case@Fig. 6~a!#, with an absorbing wall8 at
q5qaw in both cases.

Experimentally, the flux is measured in the followin
way. The system is placed at an initial state, after which
follows the stochastic equation~1! until either the coordinate
of the wall,qaw, or the time limit,9 t l , is reached. It is then
reset to the initial state and everything is repeated. Once
statistics are deemed adequate, we calculate the flux

J~ t ![
1

Nreset

DN~ t !

Dt
, ~5!

whereNresetis the overall number of resets, andDN(t) is the
number of resets during the interval@ t,t1Dt#; Dt is chosen
to be much smaller than a characteristic time over which
flux ~5! may change significantly, but large enough to pr
vide DN(t)@1 ~roughly, the latter is satisfied providedDt
@t l /Nreset).

The above-given experimental definition corresponds
the following theoretical definition of the flux:

J~ t !5E E dq0 dq̇0 Win~q0 ,q̇0!Jq0 ,q̇0
~ t !,

~6!

Jq0 ,q̇0
~ t !5E

0

`

dq̇ q̇W~q5qaw,q̇,tuq0 ,q̇0!,

where Win(q0 ,q̇0) is a statistical distribution of the initia
coordinate and velocity andW is the conditional probability
density.

The theoretical approach which we use is the method
optimal fluctuation~e.g., Refs. 10 and 11! whose details in
application to the present problems are given in the follo
ing. The theoretical results are verified by computer and a
log electronic simulations. A preliminary report and discu
sion of some of the central ideas was given in Refs. 12
13.

II. SINGLE-WELL METASTABLE POTENTIAL

It can be shown directly from the Fokker–Planck equ
tion that the formation of quasiequilibrium up to the barri
in the single metastable well typically takes14,15a time of the
order of

FIG. 1. The potentialU(q)5q2q3/3. The bottom and the saddle ar
marked asb ands, respectively. Triangles indicate four typical positions
the absorbing wall.
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t f
~s!;

1

min~G,v0
2/G!

lnS DU

T D , ~7!

wherev0 is the frequency of eigenoscillation in the botto
of the well.

In this section, we shall be interested in much sma
time scales,

t!t f
~s! . ~8!

The previous work on nonstationary escape rates in
Kramers problem was based on the direct solution of
Fokker–Planck equation~cf. Ref. 6!. We apply the method o
optimal fluctuation to this problem for the first time,16–20

obtaining nontrivial new results for short time scales. It
convenient to consider first the case of an initial state wit
given coordinate and velocity:

Win~q0 ,q̇0!5d~q02qi !d~ q̇02q̇i !. ~9!

Then the flux is sought as

J~ t ![Jqi ,q̇i
~ t !5P~ t !expS 2

Smin~ t !

T D ~10!

where the activation energySmin(t) does not depend onT
while the prefactorP(t) depends onT in a nonactivated way
At small T and shortt, the factor exp(2Smin /T) depends on
t much more strongly thanP. So, we concentrate on studyin
Smin(t), which can be shown21 to be a minimum of the func-
tional:

Smin~ t ![Smin~qi ,q̇i ,t !5min@q~t!#,q̇~ t !~S!,
~11!

S[Sq̇~ t !@q~t!#5E
0

t

dt L,

L5~ q̈1Gq̇1dU/dq!2/~4G!, ~12!

q~0!5qi , q̇~0!5q̇i , q~ t !5qaw. ~13!

The minimization is done over an escape path@q(t)# at a
given exit velocity q̇(t), with a further minimization over
this velocity~a minimization similar to the latter was used
a different context in Ref. 20!. Note that the minimization
over the exit velocity~or, more generally, over states on
relevant boundary! was not used in applications of th
method of optimal fluctuation to quasistationary esca
rates21,22 or related quantities23 since the exit occurred nec
essarily through the saddle. The path minimizingS may be
called the most probable escape path~MPEP!, in analogy
with the quasistationary case. The necessary conditions
the minimum of the functional~11! are as follows.

~1! A zero variation,dS50: It implies that the MPEP
@q(t)# satisfies the Euler–Poisson equation24,21

]L

]q
2

d

dt S ]L

]q̇
D 1

d2

dt2
S ]L

]q̈
D 50, ~14!

which, for theL of the form ~12!, reads

¨q̈1q̈S 2
d2U

dq2
2G2D 1q̇2

d3U

dq3
1

d2U

dq2

dU

dq
50. ~15!
r

e
e

a

e

or

~2! A zero derivative with respect to the exit velocit
]S/]q̇(t)50: This condition can be reduced to]L/]q̈(t)
50, which, for theL of the form ~12!, reads

@ q̈1Gq̇1dU/dq#ut5t50. ~16!

Solutions of Eq.~15! satisfying conditions~13! and~16!

can be found numerically: In addition toq(0) and q̇(0)
given in ~13!, one can matchq̈(0) and ˙q̈(0) so that the
result of the integration~15! on the interval@0,t# satisfies the
last of conditions~13! and condition~16!.

A. Bottom initial state

Let us first consider the case of the bottom initial sta
i.e.,

qi5qb , q̇i50. ~17!

Before presenting the numerical results, we derive some
portant general features of the MPEPs andSmin(t). We show
in the following that, as the boundary moves from the clo
vicinity of the bottom toward the saddle,J(t) undergoes
qualitative changes while still being stepwise.

First, consider the case when the absorbing wall is cl
to the bottom:U(q) may then be approximated by a parabo
@Fig. 2~a!#

U~q!2U~qb!'
v0

2

2
~q2qb!2, ~18!

wherev05A2 andqb521, in the case ofU(q) ~3!. Thus
~15! reduces to a linear equation with constant coefficie
that can be integrated explicitly.Smin(t) can be found explic-
itly too. Rather than presenting some cumbersome formu
we discuss their most important consequence: IfG,2v0 ,
thenSmin(t) has a stepwise shape@Fig. 2~b!#, i.e., possesse
inflection points withdSmin /dt50 at

t5tn[
np

v0A12~G/2v0!2
,

~19!

S~ tn!5
DUp

12exp~2Gtn!
,

DUp[v0
2~qaw2qb!2/2, G,2v0 , n51,2,3, . . . .

The flux barely changes neartn whereas it rises sharply be
yond this range provided the correspondingn is not too
large25 @Fig. 2~b!#. In the underdamped case, the ‘‘length’’ o
each step,tn112tn , is half a period of eigenoscillation an
the ‘‘height’’ of the first steps is large:S(tn)2S(tn11)

'DUpv0 /(pGn(n11)) ——→
G→0

`. As G grows, the length
of a step increases while the height decreases and,G
52v0 , the steps vanish.

The instantstn mark intervals corresponding to differen
topologies of the MPEP: Fort<t1 , @q(t)# is monotonic
while, for tn,t<tn11 (n51,2,3, . . . ), @q(t)# possessesn
turning points. Ast changes, the MPEP varies continuous
for anyt, includingt5tn . The exit velocity is nonzero unles
t5tn @Fig. 2~a!#.
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Apart from a quantitative description of the case wh
the wall is close to the bottom of the well, the parabo
approximation provides qualitative estimates of the time a
energy scales of the steps in the general case. However,
features of the stepsSmin(t) and of the associated evolutio
of the MPEP change qualitatively as the absorbing w
moves toward the saddle.

Let us move the absorbing wallqaw to a distinctly non-
parabolic region ofU(q), but still not too close to the saddl
(,qaw

(c)). One can reduce the fourth-order differential equ

FIG. 2. The case of the bottom initial state.~a! The parabolic approximation
Up(q)[(q11)2 ~thick solid line! of U(q)2U(qb) near the bottom, and
examples of MPEPs@plotted in the energy-coordinate planeE–q whereE

[q̇2/21Up(q)] at G50.05; the absorbing wall~at qaw5qaw
(1)[20.9) is

indicated by triangles;~b! Smin(t)/DUp explicitly calculated in the parabolic
approximation is shown by the solid line with markers: circles, squares,
triangles indicate regions corresponding to, respectively, zero, one, and
turning points in the MPEP;Smin(t)/DU derived from simulations inU(q)
~3! is shown by the jagged line@DU[U(qaw)2U(qb)#. Dashed and dotted
lines indicate the theoretical first and second inflection points w
dSmin /dt50, in ~b!, and the corresponding MPEPs, in~a!. The thin solid
line shows the large-time asymptote level (51), in ~b!, and the correspond
ing MPEP~which is the time reversal of the noise-free trajectory from t

state@q5qaw ,q̇50)], in ~a!. The dash-dotted line shows in~a! the MPEP
for some arbitrarily chosen timet51.4 @see~b!#: It demonstrates that the
exit velocity is typically nonzero. The inset showsJ(t) measured atT
5DU.
d
me

ll

-

tion ~15! to a second-order equation forq plus a first-order
one for the auxiliary variableG8:21

q̈1G8q̇1dU/dq50,
~20!

@Ġ81~G22~G8!2!/2#q̇252GẼ,

where

Ẽ[2
]S

]t
52L1S ]L

]q̇
2

d

dt S ]L

]q̈
D D q̇1

]L

]q̈
q̈ ~21!

is conserved along the MPEP,24,21 analogously to energy in
mechanics.26 Given that the initial state is at the bottom,
can be shown thatẼ>0 on the MPEP. Allowing for the fact
that ]S/]q̇(t)50 on the MPEP,

dSmin

dt
52ẼuMPEP<0. ~22!

The system~20!, in addition to providing an algorithm27

that is faster in some ranges of parameters than solving
~15!, has a remarkable feature: IfẼ50, the equation forG8
can be integrated explicitly.21 So, the fourth-order equation
~15! reduces to a closed second-order equation.28 Allowing
for q̇i50, the equation for the time-reversed trajecto

@ q̃(t)#[@q(t2t)# becomes@for the sake of convenience
we also present in Eq.~23! the initial q̃ which follows from
the third of conditions~13!#

d2q̃

dt2
1G

11AeGt

12AeGt

dq̃

dt
1

dU~ q̃!

dq̃
50, A5e2Gt,

~23!
q̃~0!5qaw.

The derivativedq̃(t50)/dt must be chosen such that th
condition ~16! is satisfied: comparing Eq.~23! at t50 with
Eq. ~16!, we come to the important conclusion that

dq̃~t50!/dt50, ~24!

i.e., the MPEP has a zero exit velocity ifdSmin /dt50.
One can show~cf. Ref. 21! that the number of possible

finite values oft in Eq. ~23!, such thatq̃(t)5qb , equals the
numberN of turning points in the noise-free (t5`) trajec-
tory. Labeling such timest as tn[tn(qaw) (n51,2, . . . ,N),
one may relaten to the numberntp of turning points in the
trajectory~23! and ~24!: n5ntp11. tn increases withn and,
if N5`, the trajectory~23! and ~24! for t5tn with n→`
coincides with the noise-free trajectory. If

G,2v0 , ~25!

then N5`26,21 while, if G>2v0 , then typicallyN50. In
rare cases, there is a finiteNÞ0 at G>2v0 .21

Thus, if G,2v0 , thenSmin decreases witht monotoni-
cally, possessing an infinite number of inflection pointstn

with dSmin(tn)/dtn50 @Fig. 3~a!#. They divide the time axis
into intervals where the MPEP has different numbers of tu
ing points: Ast increases, the transformation of the MPE
with n21 turning points, into one withn points, occurs con-
tinuously att5tn .

d
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At t50, Eq.~23! coincides with the conventional relax
ational equation with a finite friction parameter,G cth(Gt/2).
Hence, the closerqaw is to the saddle, the slower the motio
near the wall. Thus,tn→` if qaw→qs . On the contrary, the
time of motion along MPEPs which get to the wall wi
nonzero velocity@they relate to sectionsSmin(t) with nonzero

FIG. 3. The case of the bottom initial state. The evolution ofSmin(t) nor-
malized byDU[U(qaw)2U(qb) ~thick and jagged lines for the theory an
simulations, respectively! as qaw increases:~a! qaw5qaw

(2)[0, ~b! qaw

50.371'qaw
(c) , ~c! qaw5qaw

(3)[0.9. G50.05. Branches ofS(t) correspond-
ing to zero, one, or two turning points in the escape path are shown by
lines marked by circles, squares, or triangles, respectively: In~a! and ~b!,
only one branch exists at eacht while, in ~c!, a few branches coexist in som
ranges oft @activation energySmin(t) coincides with the lowestS(t)]. Left
and right insets show, respectively,2d(Smin(t)/DU)/dt ~theory! and J(t)
measured atT5DU.
dSmin /dt] is less sensitive to the distanceqs2qaw and re-
mains finite even ifqaw5qs . Consequently, asqaw grows,
the onset of thefold at t't1 ~according to numerical calcu
lations! occurs at the critical valueqaw

(c) : dSmin /dt is discon-
tinuous at the fold@Fig. 3~b!#. At qaw.qaw

(c) , there are inter-
vals of t during which the system~13!, ~15!–~17! possesses
more than one solution,29 i.e.,S(t) satisfying~13!, ~15!–~17!
has a multibranch structure@Fig. 3~c!#. Moreover, the closer
qaw is to qs , the larger is the number of such intervals a
the maximal possible number of coexisting solutions. In
der to find the activation energy at a givent one should
choose from the solutions of~13!, ~15!–~17! the minimal
one. There are switches between different branches at ce
critical times. These can be compared to switching proces
as other parameters vary, in certain escape problems;22,21,18

see also Sec. III. The switches result in jumpwise change
the MPEP while the activation energy still remains contin
ous @Fig. 3~c!#. At the same time, the switch results in
discontinuitydSmin /dt: Its values on different sides of th
fold differ drastically, so thatSmin(t) and J(t) are still dis-
tinctly stepwise~stair-like!.

We have tested some of the above-mentioned predict
using computer simulations.Smin(t) is derived via optimal
fitting of J(t) obtained at differentT. Figures 2~b! and 3
show reasonable agreement betweenSmin(t) from the theory
and from the simulations. The growth of the flux is clear
stepwise~see insets! in both cases.

B. Nonbottom initial state with a given coordinate
and velocity

If the initial state with a given coordinate and velocit

$qi ,q̇i%, is shifted from the bottom of the well$qb,0% then
Smin(t) changes: cf. Fig. 4. In particular,Smin(t) becomes
nonmonotonic. Moreover, as is evident in Fig. 4, even a t
shift of the energy from the bottom results in quite a sign
cant distortion ofSmin(t): The shift of energy in Fig. 4~a! and
4~b! is equal toDUp/100 andDUp/200, respectively. Such
strong sensitivity to the initial state can be explained by
singularity in the effective time-dependent damping para
eter in Eq.~23!, which describes the MPEP; so, the shift
the activation energy depends nonanalytically on the shif
the energy of the initial state.

C. Thermalized initial state

A nonbottom initial state with a given coordinate an
velocity might seem a rather artificial situation but, at t
same time, there is always some nonzero initial tempera
T0 so that various nonbottom states are necessarily involv
The strong sensitivity of the fluxJqi ,q̇i

(t) to the shift of

$qi ,q̇i% from the bottom, appears to cast doubt on the g
erality of the stepwise growthJ in real situations. However, a
rigorous analysis~see the following! shows that the flux at
short time scales still grows in a stepwise manner for a
temperatureT0,T. Moreover, if T0 /T!G/v0 , then the
stepwise structure for flux growth is similar to that obtain
using the bottom as the initial state.

So, let the distribution of initial coordinates and veloc
ties be quasistationary for some low temperatureT0 :

in
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Win~q0 ,q̇0!5Wqs~q0 ,q̇0!

'H Z21 exp~2E0 /T0! for E0,U~qaw!

0 for E0.U~qaw!
,

~26!

E0[q̇0
2/21U~q0!,

Z5E E
E0,U~qaw!

dq0 dq̇0 exp~2E0 /T0!.

We assume that the probability for the system to leave
well before the relevant ‘‘initial’’ instantt50 is negligible.

If at the ‘‘initial’’ instant t50 the additional noise sourc
is switched on, so that the effective temperature becomeT
.T0 ,30 the evolution of the flux~6! with the initial distribu-
tion ~26! becomes relevant. Given the activationlike structu
of Jq0 ,q̇0

(t) @Eqs. ~10!–~13!#, the flux with the thermalized
initial state can be presented in the form

J~ t ![JT0
~ t !5 P̃expS 2

S̃min~ t !

T
D , ~27!

FIG. 4. Comparison betweenSmin(t) for the bottom initial state~solid line!
and for two other initial states with given coordinate and velocity close

those in the bottom, with all other parameters the same as in Fig. 2:~a! q̇0

50 while q05qb20.01~dotted line! or q05qb10.01~dashed line!; and~b!

q05qb while q̇0520.01 ~dotted line! or q̇050.01 ~dashed line!.
e

e

where P̃ is some prefactor andS̃min is the generalized acti
vation energy:

S̃min[S̃minS T0

T
,t D 5minq0 ,q̇0H Smin~q0 ,q̇0 ,t !1

T

T0

E0J ,

~28!

whereSmin(q0 ,q̇0 ,t) is given by~11!–~13! andE0 is defined
in ~26!.

There is no room here to provide details but it can
shown that, for anyT0,T, the function S̃min(T0 /T, t) is
stepwise int. Analogously to the case of the bottom initia
state,S̃min possesses inflection points withdS̃min /dt50, pro-
vided the wall is not too close to the saddle, and the co
sponding MPEPs are described by an equation similar to~23!
but with the constantA related tot as

A5e2GtS 12
T0

T
D . ~29!

The relevant instantst are determined using the conditio

q̇̃(t)50 ~unlike the conditionq̃(t)5qb relevant to the bot-
tom initial state!.

FIG. 5. The case of the thermalized initial state.~a! MPEPs fort52.222, for
three characteristic values ofT0 /T, with all other parameters the same as

Fig. 2:T0 /T50 ~solid line!, 0.01~dotted line!, 0.2~dashed line!; ~b! S̃min(t)
for T0 /T50 ~solid line!, 0.01 ~dotted line!, 0.2 ~dashed line!.
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It can be shown thatS̃min(T0 /T, t;v0
21) is close to

Smin(qi5qb , q̇i50, t;v0
21) provided

T0

T
!

G

v0

. ~30!

OtherwiseS̃min(t;v0
21) is significantly lower and the step

are smeared@Fig. 5~b!#.
The competition between the two small paramete

T0 /T and G/v0 , is readily interpreted physically. On on

FIG. 6. ~a! The potential~4! and a sketch of direct~dotted line! and indirect
~dashed line! escape paths 1→s2 ; thin dashed lines indicate positions of th
local minima (q1 ,q2) and maxima (qs1

,qs2
); ~b! simulations of the depen-

dence of the escape flux on timeJ(t) ~thin line! for the model~1!,~4! at G
50.15, T50.4. The thick full and dashed lines show the approximation
J(t) by Eq. ~31! in which a12 , a21 , aqs are calculated by the Kramers
Melnikov formula ~Ref. 4!. For the thick full line, a13,235aqs(1
1$V1V2

21 exp@(U12U2)/T#%61)/(11$mexp@kSmin(s2→s1)/T#%61) where
V1,2 are the frequencies of eigenoscillation in the bottom of wells 1,2,

spectively,k is equal to 1,21 for the rangesG providing s2→
nf

2,1 respec-
tively, Smin(s2→s1) is calculated from the theory~Ref. 21!, and m is the
only adjustable parameter (m'1.1 for these parameters!; for the dashed
line, a1350 anda235aqs(11a21 /a12).
,

hand, the escape flux~on t;v0
21) from the bottom is

}exp(2aDU/(TG/v0)) wherea[a(t);1. On the other hand
if the system starts its motion from an energyE0 close to the
barrier level, the probability of escape for timet;v0

(21) will
be ;1, but then the probability to have such starting ene
is }exp(2DU/T0). It is the competition between these tw
exponentially weak processes which leads to the rela
~30!. Figure 5~a! shows that, for T0 /T50.01!G/v0

'0.035, the MPEP starts close to the bottom while,
T0 /T50.2@G/v0 , the starting energy is;DU.

III. MULTIWELL METASTABLE POTENTIAL

As an example of the multiwell case, we consider t
potential ~4!, which describes the simplest SQUID.2 We
place an absorbing wall8 at qaw54.5 @Fig. 6~a!# while the
initial state of the system~1!, ~4! may be any state within
well 1; in simulations, we put it at the bottom of well 1, fo
the sake of simplicity. We emphasize also that the type of
boundary is not important either, e.g., our results are equ
valid for the transition rates between nonadjacent wells in
stable potential with more than two wells.21

Unlike the single-well case, where the formation time
quasiequilibrium is of the order oft f

(s) ~7!, its formation in
the multiwell case proceeds via two distinct stages: first, q
siequilibrium is formed within theinitial well, which takes
t f
(1);t f

(s) : J evolves at this stage quite similarly31 to the
single-well case; second, quasiequilibriumbetween wellsbe-
comes established, which takes exponentially longer:t f

(2)

;t f
(s)exp(DU/T)@tf

(1) where DU means a minimal interna
barrier. During the latter stage, and during the subsequ
quasistationary one, the fluxJ(t) can be described via a so
lution of kinetic equations for the well populations,W1 and
W2 , using the concept of constant interattractor32 transition
ratesa i j ~cf. Ref. 33!:

J~ t ![W1a131W2a23

5a13e
2 t/t f

~2!
1aqs~e2t/tqs2e2 t/t f

~2!
!,

t f
~2!'a12

21 , tqs'aqs
21'a12/~a12a231a21a13!, ~31!

T!Us1
2U1 , t@t f

~1! .

The physical meaning of the two terms in~31! is easily un-
derstood~cf. Fig. 6!. The first one corresponds todirect es-
capes, i.e., those that do not go via the bottom of well 2, a
it dominates until quasiequilibrium becomes established. T
second term, corresponding to indirect escapes, i.e., th
that involve one or more intermediate transitions betwe
wells 1 and 2 while the ultimate transition to 3 may occ
from either well. It dominates during the ensuing quasis
tionary stage: It is the asymptotic part of this latter flu
aqsexp(2t/tqs), that is called the quasistationary flux.

Thus, in order to know the flux dynamics one needs
find the interwell transition ratesa i j . The ratesa12,a21 and
the quasistationary rateaqs can be calculated from the
Kramers–Melnikov formula.4 Thus, only one of the two co-
efficientsa13 anda23 needs to be found independently. W
choosea13 as the independent coefficient.

f

-



as

in

2.
olve

e

to

ns
er

e

a
le

t

602 Chaos, Vol. 11, No. 3, 2001 Soskin et al.
The theoretical problem of findinga13 is inherently dif-
ficult. Melnikov pointed out4 that, in the multiwell case, his
method is valid only if the barriers levels are equal or at le
close to each other~cf., e.g., Refs. 4 and 34!, a requirement
that is often not satisfied. So, the method ofoptimal fluctua-
tion ~cf. Sec. II! was suggested,21 seeking the escape rate
the form

a135Pe2 Smin /T, ~32!

where the actionSmin does not depend onT and the depen-
dence of the prefactorP on T is relatively weak.

One can show thatSmin is the minimum of a certain
functional21

Smin[Smin~1→s2!5min@q~ t !#,t tr
~S!,

S[St tr
@q~ t !#5

1

4GE0

t tr
dt~ q̈1Gq̇1dU/dq!2, ~33!

q~0!5q1 , q̇~0!50, q~ t tr!5qs2
, q̇~ t tr!50,

where the trajectory@q(t)# does not pass through attractor
It can easily be shown that thet tr yielding Smin is equal tò .
The @q(t)# yielding Smin is called21 the most probable direct
transition path~MPDTP!. The main features ofSmin and the
MPDTP are illustrated in Figs. 7 and 8 for the system~1! and
~4!; see Ref. 21 for a rigorous general treatment.35

Figure 7 shows how the excess action

DS[DS~1→s2!5Smin~1→s2!2~Us2
2U1! ~34!

FIG. 7. Theoretical and experimental data on direct escapes/transitio
the metastable potential~4! @Fig. 6~a!#. The calculated excess of action ov
a difference of energies,DS(1→s2) ~34!, is shown by the full line. It is
related to the escape ratea13 . The calculated6Smin(s2→s1), related toR
~37! by Eq. ~38!, is shown by the dotted line. It overlaps the full line in th
half-plane of positive ordinates. The corresponding quantity~39! based on
data obtained by electronic and computer simulations is shown by squ
and crosses, respectively. Values ofGn>1 correspond to noise-free sadd
connections withn21 turning points. AtG5G052V2'2.1, the turning

points in the noise-free trajectoriess2 →
nf

2 ands1→
nf

2 disappear. The inse
shows the lowG range enlarged.
t

varies withG over the whole range ofG, from very strong
damping to the ultraunderdamped case. One can res
three distinct regions.

The overdamped region can be defined asG>G0

52V2 , whereV2 is the frequency of eigenoscillation in th
bottom of well 2. Here, there is no MPDTP 1→s2 at all, so
that a1350.

In the moderate-friction region,@G1 ,G0#, DS(G) is
monotonic and undergoes its largest variation: from 0

in

res

FIG. 8. Simulated direct transition pathss2→1 ~thin full lines! in the

energy-coordinate planeE–q @where E5q̇2/21U(q)] corresponding to
~1!,~4! at different G: ~a! 0.5, ~b! 0.05, ~c! 0.04 @T50.05 for ~a! and T

50.005 for ~b!, ~c!#. The noise-free trajectoriess2→
nf

2 and s1→
nf

1,2 are
shown by dashed lines. The MPDTPss2→s1 are shown by thick dotted
lines.
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Us1
2U2 . The MPDTP@see Fig. 8~a!# is the time-reversed

trajectory s2 ——→
A5A2

s1→
nf

1 in which the latter is just the
noise-free relaxation froms1 to 1, whereas the former is th
solution ~cf. Ref. 23 and Sec. II! of

q̈d1G
11AeGt

12AeGt
q̇d1dU~qd!/dqd50,

~35!
qd~0!5qs2

, q̇d~0!50.

Here A5A2 is a negative constant providing for the pa
@qd(t)# to be monotonic@i.e., without turning points#. Note
that, in general, there may be an infinite set ofA providing
@qd(t)# connecting the saddles: The corresponding traje
ries differ by their number of turning points. ButS for the
other values ofA @whose absolute values are smaller th
uA2u] is larger than that forA2.

The underdamped region,G<G1 , is divided by a num-
ber of characteristic values of the frictionGn>1 . Each of
these Gn provides for a noise-free saddle connection

s2→
nf

s1 , which possessesn21 turning points. In this region
DS(G) undergoes oscillations corresponding to an alter
tion between two situations. In the first,@G2m ,G2m21# (m

>1), a noise-free trajectorys2→
nf

1 exists and the MPDTP is
just its time reversal, withDS50. In the second situation
@G2m11 ,G2m# (m>1), the action varies nonmonotonical
with G, and has cusps. This is due to a competition betw
the two paths which are the time reversals respectively

s2→
A2

s1→
nf

1 ands2→
A1

s1→
nf

1, wheres2→
A6

s1 are given by the
solutions of ~35! with A1[A1(G).0 and A2[A2(G)
,0, respectively: see Fig. 8~b! and 8~c!, respectively. AsG
varies,Salong one path becomes equal toSalong another, at
a certainG, leading to switching between the paths and
the cusp inDS(G): There are corresponding discontinuiti
in the nonequilibrium potential23 and fluctuational
separatrix.36

Thus, Ref. 21 predicts an exponentially strong dep
dence of the escape ratea13 on friction, including interesting
features such as oscillations and cusps,37 for t@t f

(1) . To es-
tablish whether these, and the properties of MPDTPs
scribed previously, occur in reality, we have undertaken a
log electronic and computer simulations. A necess
condition is smallness of the temperature:T!DS,(Us1

2U1). However to obtain reasonable statistics at suc
small temperature would require an unrealistically long ti
@}exp((Us2

2U11DS)/T)#.38 We have overcome this diffi
culty by exploiting the property of detailed balance,39 which
implies21 that the MPDTPs2→1 is just the time reversal o
the MPDTP 1→s2 , with the corresponding actions differin
by Us2

2U1 , i.e.,

DS~1→s2!5Smin~s2→1!

5H 0 at s2→
nf

1

Smin~s2→s1! at s2→
nf

2

~36!
-

-

n
of

-

e-
a-
y

a
e

so that information about the transitions2→1 is equivalent
to that for 1→s2 , but the experimental time required is o
course much smaller in the former case@}exp(DS/T)# than in
the latter.

Figure 8~a! demonstrates that, forGP@G1 ,G0#, most of
the direct paths s2→1 do indeed concentrate nea

s2→
A2

s1→
nf

1. Figures 8~b! and 8~c! demonstrate switching o

the MPDTP froms2→
A1

s1→
nf

1 to s2→
A2

s1→
nf

1 asG decreases
in the range@G3 ,G2#.

In order to studySmin we use the following technique
The system is put ats2 , and one then follows its stochast
dynamics~1!, ~4! until either the bottom of one of the well
is approached or the coordinateqaw is reached. After that, the
system is reset tos2 and the operation is repeated. On
adequate statistics have been obtained, we calculate the
of transitions to wells 1 and 2, respectively,

R[R~T!5
Ns2→1

Ns2→2

. ~37!

It is easy to see thatR}exp(6Smin(s2→s1)/T) ~where 1,

2 correspond to ranges ofG providing s2→
nf

1,2, respec-
tively!. So,Smin(s2→s1) is related toR ~37! as

6Smin~s2→s1!5 lim
T→0

@T ln~R~T!!#, ~38!

where1,2 correspond tos2→
nf

1,2, respectively.
In practice, however, there is always a lower limit forT

in simulations,Tl , because the overall simulation time mu
not become unrealistically long. That is why the use of~38!
may, in practice, introduce significant inaccuracy. To redu
the influence of the preexponential factor we measureR both
at Tl and at a slightly higher temperature,Tl1DT (Tl@DT
*Tl

2/Smin(s2→s1)), so that

6Smin~s2→s1!'
Tl

2

DT
lnS R~Tl1DT!

R~Tl !
D . ~39!

The quantities on the left- and right-hand sides of Eq.~39!
are shown in Fig. 7, respectively, by the dotted line~theory!
and by squares and crosses~electronic and computer simula
tions, respectively!. The agreement is satisfactory, given th
5&Smin /Tl&7.

Note that the magnitude of the largest oscillation in a
tion may significantly exceedUs2

2U1 . This occurs if the
initial well 1 is adjacent to an external saddles2 while its
depth is much less than that of the other well.

Finally, we comment on the experimental conseque
of the cutoff of the MPDTP, namely the drastic change of t
time evolution ofJ for t f

(1)&t!t f
(2) : At G,G0 , one may in

principle makeT small enough that the sharp growth ofJ(t)
at t&t f

(1) turns into a nearly constant value att f
(1)!t

!t f
(1)a13/(a12a23) while, atG.G0 , J(t)'a12a23t over the

whole relevant time-scale: cf. the thin full and dashed lin
in Fig. 6~b!. Another drastic change occurs with the tim
evolution of the transition fluxs2→1: At G,G0 , it has a
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high narrow peak att't f
(1) whereas, atG.G0 , it is a mono-

tonically and very slowly growing function oft, at t&t f
(2) .

IV. CONCLUSIONS AND OPEN PROBLEMS

We conclude that:~i! escape from the metastable part
a potential differs markedly after and before the formation
quasiequilibrium within the metastable region;~ii ! at time
scales much less than the time of the formation of quasie
librium within a single well t f

(s) , the escape fluxJ grows
exponentially strongly with time and, moreover, if the fri
tion G is small, it does so in a stepwise manner and depe
exponentially strongly onG; and ~iii ! if the metastable par
of the potential consists of more than one well, then
formation of quasiequilibrium takes an exponentially lo
period of time. In the latter case, the escape flux during
most of the period is formed from direct escapes and depe
exponentially strongly on friction; moreover,J(G) under-
goes oscillations in the underdamped range and may d
drastically if G exceeds a critical valueG0>2V2 .

Open problems yet to be addressed include the follo
ing.

~1! For the ranget!t f
(s) : ~a! details of the case consid

ered previously, including an accurate study of oscillations
the exit velocity anddSmin /dt with time, as well as of the
transition from a smoothSmin(t), with inflection points only,
to an Smin(t) possessing folds;~b! additional features char
acteristic of other types of absorbing boundary, in particu
interwell transitions in the multiwell case;~c! a careful con-
sideration of the case with two absorbing walls with the i
tial state on one of the walls, a case that is relevant, e.g
ionic channels40 and the preliminary analysis indicates osc
lations of the flux in time;~d! a generalization for nonpoten
tial systems and/or nonwhite noise for which, unlike pote
tial systems subject to white noise where switching betw
different MPEPs gives rise only to folds inSmin(t), we an-
ticipate the possibility of jumps inSmin(t).

~2! Both for t!t f
(s) and for t f

(1)!t&t f
(2) ~the multiwell

case only, for the latter range!: ~a! the prefactor; and~b!
multidimensional problems.
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