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Noise-induced escape from the metastable part of a potential is considered on time scales preceding

the formation of quasiequilibrium within that part of the potential.

It is shown that,

counterintuitively, the escape flux may then depend exponentially strongly, and in a complicated
manner, on time and friction. @001 American Institute of Physic§DOI: 10.1063/1.1378788

The problem of noise-induced escape from a metastable
state of a dynamical system is of great importance in
many applications. For a potential system, it is known as
the Kramers problem in allusion to the famous paper by
Kramers. Until very recently, there remained a gap in the
theory of the Kramers problem: How does the escape flux
evolve from zero, at the initial instant, to the quasistation-
ary stage after quasiequilibrium has been formed within
the metastable state? Intuition suggests that the evolution
should be monotonic and without any irregularities,
which appears to be confirmed by the rigorous analysis of
some partial regimes. However, as we show in the follow-
ing, either the flux itself (multiwell case) or its derivative
(single-well casg¢ may evolve in a markedly nonmono-
tonic fashion. This nonmonotonicity, like other irregulari-
ties, relates to characteristic changes in the topology of
the most probable escape path. In the multiwell case, the
formation of quasiequilibrium takes an exponentially
long time, so that our results are relevant to a major
portion of the time attainable at small noise intensities. In
the single-well case, our results are relevant to much
shorter time scales(of the order of a period of eigenoscil-
lation); interest in such short time scales is of course
growing fast, as modern technologies develop.

I. INTRODUCTION

In his seminal work, Kramers considered a weak noise-

q+Ig+du/dg="f(t),
(f(1))=0, (f(Of(t"))=2I'Ts(t—t"),

which was put initially at the bottom of a metastable poten-
tial well U(q) with a barrierAU and he then calculated the
quasistationary probability flux across the barrier. Models of
type (1) are relevant to chemical reactiohsuperconducting
quantum interference devicéSQUIDS,> and many other
real systems* including the recently designed mechanical
electrometers.

There have been many developments and generalizations
of the Kramers problenisee Refs. 3 and 4 for revieybut
both Kramers and most of those who followed him consid-
ered only thegquasistationaryflux, i.e., the flux established
after the formation of a quasiequilibrium distribution within
the well (up to the barrier The quasistationary flux is char-
acterized by a slow exponential decay in titnan Arrhenius
dependence on temperatufeand a relatively weak depen-
dence on frictionl":

‘]qit) = aqSe7 aqS[i

whereP depends od” andT in a nonactivated way.

But how does the flux evolve from its zero value at
initial time to its quasistationary regim@) at time scales
exceeding the timg for the formation of quasiequilibrium?
The answer may obviously depend on initial conditions and a
relevant boundaryi.e., the boundary through which the es-
cape occurs As for the boundary, it can be shown that the

T<AU, @

2

ags= Pe AU/T,

induced flux from a single metastable classical potential,ogt general qualitative features of the flux are valid for any

well, i.e., he considered a stochastic system
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type of boundary(for the sake of simplicity, we shall con-
sider in the following only the absorbing wallAs for the
initial conditions, their relevance may vary. The simplest and

© 2001 American Institute of Physics
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often relevant initial state is the bottom of the well, since it is 1f
the stable stationary state in the absence of noise: If the noise

(not necessarily of the thermal origiis switched on at some

instant, then the time evolution of the escape fromtibttom

becomes relevant. It should be emphasized however that, if

the relevant metastable part of the potential is multiwell, then U
the flux during the major part of the relevant time is not
sensitive to the initial state provided it is concentrated just in

one well(e.g., it may be thermalized in the welAs for the

single-well case, the flux evolution is more sensitive to the

initial state and we shall consider various cases. But, first, let -1t
us discuss the most simple case where the initial state is at

the bottom of the potential. We shall refer to it as bwatom
initial state FIG. 1. The potentialu(q)=q—q°/3. The bottom and the saddle are

It may seem natural to assume that the flux evo|utiorfnarked ad ands, respectively. Triangles indicate four typical positions of
the absorbing wall.

from zero to the quasistationary regime is a monotonic func-
tion without any “irregularities.” Apart from the naive argu-
ment that “noise smooths everything,” this assumption ap-for the multiwell casdFig. 6a)], with an absorbing wéllat
pears sound because the probability distributi#h is  q=q,, in both cases.

distinctly centered at the bottom of the well both initially and Experimentally, the flux is measured in the following
in the quasistationary stageN(q,q,tzolqoqu,qOZO) way. The system is placed at an initial state, after which it
=58(9—0qp) 8(q) Wh_ile W(q,q,t>t|gp=0,.90=0) is a follows the stochastic equatl(_m)_ Elamtl| _e|ther the coordlnate
narrow peak of W|dthoc\/f around that same Statm of the Wa”,q-avy,- or the time limit; t| ' IS I-'eaChed. It is then
=0 ’q:o}. Moreover, it was shown recenfiyhat, both in reset to the initial state and everything is repeated. Once the

the underdamped and overdamped limits, the escape flstatistics are deemed adequate, we calculate the flux

J(t) does grow at~t; in a simple manner. 1 AN(t)

Despite the above-mentioned arguments, it can be shown J(t)= B (5)
that, genericallyJ evolves fromJ(0)=0 to Jo{t>t;) in a reset
quite complicated way. whereN,.<qiS the overall number of resets, afdl(t) is the

(1) As shown in Sec. II, the flux grows stepwise on time number of resets during the interjalt+At]; At is chosen
scales of the order of a period of eigenoscillation in the bottop be much smaller than a characteristic time over which the
tom of the well. Apart from filling the “gap” in time scales flux (5) may Change Significanﬂy, but |arge enough to pro-
in the Kramers problentcf. the big activity in the 1980s vide AN(t)>1 (roughly, the latter is satisfied providekt
aimed at filling the gap in the friction rang¥$, this part of >1;/Nrese) -
our work is motivated by the growing interest in the very  The above-given experimental definition corresponds to
short time scales that are now relevant to certain experithe following theoretical definition of the flux:
ments, such as those Ztudying chemical reactions down to
femtosecond time scalésThe period of eigenoscillations — p ; :
relevant to chemical reactions Ii:)n Ref. 74’51g100 fs. I f f 49 ddo Wm(qo’qO)Jqo’qo(t)’

(2) As shown below in Sec. IIl, the evolution of the flux . _ _ (6)
on longer time scales in a multiwell metastable potential is ‘]%,%(t):f dg gW(d=qaw,q.t|d0,d0),
also distinctly different from the relatively simple monotonic 0
function described in Ref. 6 grows sharply on a logarith- \where W;,(q,,q0) is a statistical distribution of the initial
mic time scale to a value which is typically very different coordinate and velocity and/ is the conditional probability
from J,4(0) (typically, exponentially larggrand then evolves density.
to Jq(t) during the exponentially long time. The theoretical approach which we use is the method of

It should be emphasized that the qualitative features opptimal fluctuation(e.g., Refs. 10 and 1whose details in
J(t) described previously are valid for any reasonable defigpplication to the present problems are given in the follow-
nition of the flux, e.g., the full flux through a boundary or jng. The theoretical results are verified by computer and ana-
just the first-passage flux, while the boundary may be a givefyg electronic simulations. A preliminary report and discus-

coordinate, or a boundary of a basin of attraction, or &jon of some of the central ideas was given in Refs. 12 and
boundary of the vicinity of another attractor, etc. 13.

To illustrate our results, we will use the potential
II. SINGLE-WELL METASTABLE POTENTIAL

U(@)=q-q°3 3) _
It can be shown directly from the Fokker—Planck equa-

for the single-well caséFig. 1), and tion that the formation of quasiequilibrium up to the barrier
in the single metastable well typically také<°a time of the
U(q)=0.06qg+1.5?—cogq) (4)  order of
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1 AU (2) A zero derivative with respect to the exit velocity,
t(S)N (_) ,

T (1) 9Slaq(t)=0: This condition can be reduced td./aq(t)

——  In
- 2
min(l’, wo/T') =0, which, for theL of the form(12), reads

where wg is the frequency of eigenoscillation in the bottom

of the well [q+Tq+dU/dq]|,—=0. (16)
In this section, we shall be interested in much smaller  Solutions of Eq(15) satisfying condition$13) and(16)

time scales, can be found numerically: In addition tg(0) and q(0)
t<tl® ®  dgiven in (13), one can matcly(0) and q(0) so that the

_ _ ~result of the integratioil5) on the interva[ 0t] satisfies the
The previous work on nonstationary escape rates in thgyst of conditions(13) and condition(16).

Kramers problem was based on the direct solution of the

Fokker—Planck equatiofcf. Ref. 6. We apply the method of

optimal fluctuation to this problem for the first tim&;2°  A. Bottom initial state
obtaining nontrivial new results for short time scales. It is
convenient to consider first the case of an initial state with e
given coordinate and velocity: '

Let us first consider the case of the bottom initial state,

. . . = =0. 1
Win(do,d0) = 6(do—a;) 8(do— i) - 9 A=, q,l ° _ . 7 .
) Before presenting the numerical results, we derive some im-
Then the flux is sought as portant general features of the MPEPs &hg(t). We show
Smin(t) in the following that, as the boundary moves from the close
J()=J,, ,qi(t):P(t)exy{ i ) (100 vicinity of the bottom toward the saddlg(t) undergoes

qualitative changes while still being stepwise.

where the activation energ$,,(t) does not depend of First, consider the case when the absorbing wall is close
while the prefactoP(t) depends ofT in a nonactivated way. to the bottomi(q) may then be approximated by a parabola
At small T and shortt, the factor exp{ S,/ T) depends on  [Fig. 2a)]

t much more strongly thaR. So, we concentrate on studying )

in(t), which can be showf to be a minimum of the func- Wo
S t) U(Q)~U(dp)= —>(q— )%, 18)
tional: 5
Sunin(1)=Sumin(di G ) =MingH1,400(S)s where wo= 2 andq,=—1, in the case ofJ(q) (3). Thus
. (11 (15) reduces to a linear equation with constant coefficients
S= Sd(t)[q”)]:f drL, fthat can be integrated explici'tlﬁmm(t) can be found explic-
0 itly too. Rather than presenting some cumbersome formulas
. : ) we discuss their most important consequencd’ 2w,
L=(g+I'gq+dU/dg)</(4I"), (120 thenS,,(t) has a stepwise shapEig. 2b)], i.e., possesses
. . inflection points withdS,,;,/dt=0 at
G0)=ai, AO)=a, aD)=Ga. 13 P Srin
The minimization is done over an escape pgdfir)] at a t=t,= nm ,
given exit velocityq(t), with a further minimization over wo\1—(T2w)?
this velocity (a minimization similar to the latter was used in A (19
a different context in Ref. 20 Note that the minimization S(t,)= Up
over the exit velocity(or, more generally, over states on a l-exp—TIt,)

relevant boundagy was not used in applications of the o )
method of optimal fluctuation to quasistationary escape AUp=wp(Gaw—Gp)72, I'<2wo, n=123...
rates™?? or related quantiti€s since the exit occurred nec- The flux barely changes nesy whereas it rises sharply be-
essarily through the saddle. The path minimizBgnay be  yond this range provided the correspondings not too
called the most probable escape p@PEP), in analogy large’® [Fig. 2(b)]. In the underdamped case, the “length” of
with the quasistationary case. The necessary conditions fefach stept,, . ;—t,, is half a period of eigenoscillation and
the minimum of the functionalll) are as follows. the “height” of the first steps is largeS(t,) —S(t,.1)
(1) A zero variation,6S=0: It implies that the MPEP

I'—0
[q(7)] satisfies the Euler—Poisson equafftit ~AUpwo/(ml'n(n+1)) —— . AsT" grows, the length

of a step increases while the height decreases and, at

gL d[oL| d?[dL =2w,, the steps vanish.
%‘ dt % + @ E =0, (14 The instantd,, mark intervals corresponding to different
topologies of the MPEP: Fot<t,, [g(7)] is monotonic
which, for thelL of the form(12), reads while, for t,<t<t,.; (n=1,2,3...), [q(7)] possesses
42U #U d2U du turning points. Ast changes, the MPEP varies continuously
“9+q 2——1“2) +PP—+ — —=0. (15) for anyt_, includingt=t, . The exit velocity is nonzero unless
dg? dg® dqg? dq t=t, [Fig. 2a)].
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10~ tion (15) to a second-order equation fqrplus a first-order
' one for the auxiliary variabl&’:%!

q+I''q+dU/dg=0,

. i - 20
[I"+(I'>—(T'")?)/2]q?>=2TE, (29
where
= 9S_ b dfdL)). dL. 21
gt aq dti g q (7dq

is conserved along the MPEf?! analogously to energy in
mechanic$® Given that the initial state is at the bottom, it

can be shown th&=0 on the MPEP. Allowing for the fact
that 9S/9q(t) =0 on the MPEP,

dS'nin
dt

= —E|wpep=0. (22

The syster(20), in addition to providing an algorithf
that is faster in some ranges of parameters than solving Eq.

(15), has a remarkable feature:H=0, the equation fof’
can be integrated explicitf!. So, the fourth-order equation
(15) reduces to a closed second-order equétiohllowing

for q;=0, the equation for the time-reversed trajectory
[q(7)]=[q(t—7)] becomes[for the sake of convenience,

we also present in Eq23) the initial q which follows from
the third of conditiong13)]

d?g 1+A€e"dg du(g
_q_|_1" _q+ £q):
dr? 1-Ae' " dr dg

0, A=e '},

~ (23
q(0)= JQaw-

FIG. 2. The case of the bottom initial state) The parabolic approximation

Up(q)z(qul)Z (thick solid ling of U(g)—U(qgp) near the bottom, and ot P
examples of MPEPRplotted in the energy-coordinate plake-q whereE The derlvatlvedq(T O)/dT must be chosen such that the

—G?12+ U (q)] at [=0.05; the absorbing wallat da=qi=—0.9) is condition (16) is satlsﬂed._companng E(ﬁ23)_at 7=0 with
indicated by trianglestb) Syn(t)/AU, explicitly calculated in the parabolic Eq. (16), we come to the important conclusion that
approximation is shown by the solid line with markers: circles, squares, and .

triangles indicate regions corresponding to, respectively, zero, one, and two dg(7=0)/d7=0, (24)
turning points in the MPEPS,,,,(t)/AU derived from simulations itJ(q) . . .

(3) is shown by the jagged lifeAU=U(q,,) — U(qy)]. Dashed and dotted  1-€-» the MPEP has a zero exit velocitydy;,/dt=0.

lines indicate the theoretical first and second inflection points with One can showcf. Ref. 2] that the number of possible

dS,in/dt=0, in (b), and the corresponding MPEPs, (@. The thin solid finite values oft in Eq. (23), such thaﬁ(t) =qp, equa|s the

line shows the large-time asymptote level 1), in (b), and the correspond- . . . . .
ing MPEP(which is the time reversal of the noise-free trajectory from the numberN of turning points in the noise-free € «) trajec-

state[q:qaw,qZO)], in (a). The dash-dotted line shows (a) the MPEP tory. Labeling such times aStnEtn(Qaw) (.n: 1’2_! e N)'
for some arbitrarily chosen time=1.4 [see(b)]: It demonstrates that the ONne may relaten to the numbemtp of turning points in the
exit velocity is typically nonzero. The inset showgt) measured afl trajectory(23) and (24): n=ng+ 1. t, increases witm and,

=AU. if N=o0, the trajectory(23) and (24) for t=t, with n—o
coincides with the noise-free trajectory. If
F<2(.L)0, (25)

Apart from a quantitative description of the case when
the wall is close to the bottom of the well, the parabolicthen N=2%2! while, if T'=2w,, then typicallyN=0. In
approximation provides qualitative estimates of the time andare cases, there is a finie#0 atI'=2w,.%
energy scales of the steps in the general case. However, some Thus, if '<2w,, thenS,,, decreases witlhh monotoni-
features of the stepS,,,(t) and of the associated evolution cally, possessing an infinite number of inflection poityfs
of the MPEP change qualitatively as the absorbing wallwith dS.,,(t,)/dt,=0 [Fig. 3(@)]. They divide the time axis
moves toward the saddle. into intervals where the MPEP has different numbers of turn-

Let us move the absorbing wail,, to a distinctly non-  ing points: Ast increases, the transformation of the MPEP
parabolic region otJ(q), but still not too close to the saddle with n—1 turning points, into one with points, occurs con-
(<qgf,\),). One can reduce the fourth-order differential equa-tinuously att=t,,.
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dS,,»/dt] is less sensitive to the distancg—q,, and re-
mains finite even ifg,,=qs. Consequently, ag,, grows,

the onset of thdold att~t, (according to numerical calcu-
lations occurs at the critical valquf,a: dS,,/dt is discon-
tinuous at the foldFig. 3(b)]. At qaw>qf,fva, there are inter-
vals oft during which the systenil3), (15)—(17) possesses
more than one solutiof?,i.e., S(t) satisfying(13), (15)—(17)

has a multibranch structuf&ig. 3(c)]. Moreover, the closer
Jaw IS t0 gg, the larger is the number of such intervals and
(a) the maximal possible number of coexisting solutions. In or-
t der to find the activation energy at a givérone should
choose from the solutions dfL3), (15—(17) the minimal

2 t 4 6 one. There are switches between different branches at certain
critical times. These can be compared to switching processes,
as other parameters vary, in certain escape probféfts?

see also Sec. lll. The switches result in jumpwise changes of
the MPEP while the activation energy still remains continu-
ous [Fig. 3(c)]. At the same time, the switch results in a
discontinuity dS,,;,/dt: Its values on different sides of the
fold differ drastically, so that,,,(t) and J(t) are still dis-
tinctly stepwise(stair-like).

We have tested some of the above-mentioned predictions
using computer simulationsS,,i,(t) is derived via optimal
(b) fitting of J(t) obtained at differenfl. Figures 2Zb) and 3

show reasonable agreement betw&gp(t) from the theory
and from the simulations. The growth of the flux is clearly
stepwise(see insetsin both cases.

%)

B>
<

3
=
/A U/dt

min &

=

—d(S

°=>
[ 8]
'
=%

c@

>

@
/A U)/dt

min u

—d(S

==
N

=~ e
E)

°°
N F
S
a

B. Nonbottom initial state with a given coordinate
and velocity

If the initial state with a given coordinate and velocity,
{0;,q;}, is shifted from the bottom of the wefl,,,0} then
Smin(t) changes: cf. Fig. 4. In particulaB,,,(t) becomes
nonmonotonic. Moreover, as is evident in Fig. 4, even a tiny
shift of the energy from the bottom results in quite a signifi-
cant distortion ofS,,;,(t): The shift of energy in Fig. @ and
4(b) is equal toAU /100 andAU /200, respectively. Such
() strong sensitivity to the initial state can be explained by the
t singularity in the effective time-dependent damping param-
0 . . . eter in Eq.(23), which describes the MPEP; so, the shift in
0 2 4 6 the activation energy depends nonanalytically on the shift of
the energy of the initial state.

=)
T

w

2.
=

>
S
/A U)/dt

'S
=
min &

—d(S

c::

FIG. 3. The case of the bottom initial state. The evolutiorSgf,(t) nor-
malized byAU=U(q,,) —U(qy) (thick and jagged lines for the theory and C. Thermalized initial state

simulations, respectivelyas g, increases:(a) qawzqgﬁv)zo, (b) daw o ) ) )
=0.37=0q%, (0) gaw=093)=0.9. T =0.05. Branches o§(t) correspond- A nonbottom initial state with a given coordinate and

ing to zero, one, or two turning points in the escape path are shown by thiyelocity might seem a rather artificial situation but, at the
lines marked by circles, squares, or triangles, respectivelya)lmnd (b), same time, there is always some nonzero initial temperature

only one branch exists at eattvhile, in (c), a few branches coexist in some T h . b iV i ved
ranges oft [activation energys,,(t) coincides with the lowess(t)]. Left o SO that various nonbottom states are necessarily involved.

and right insets show, respectively,d(Sm(t)/AU)/dt (theory and J(t) The strong sensitivity of the fluX'qu ,qi(t) to the shift of
measured al =AU. {q;,q;} from the bottom, appears to cast doubt on the gen-
erality of the stepwise growthin real situations. However, a
rigorous analysigsee the following shows that the flux at
At 7=0, Eq.(23) coincides with the conventional relax- short time scales still grows in a stepwise manner for any
ational equation with a finite friction parameté&r,cth(I't/2). temperatureT,<T. Moreover, if To/T<I'/wy, then the
Hence, the closen,,, is to the saddle, the slower the motion stepwise structure for flux growth is similar to that obtained
near the wall. Thust,— if q,,—0s. On the contrary, the using the bottom as the initial state.
time of motion along MPEPs which get to the wall with So, let the distribution of initial coordinates and veloci-
nonzero velocitythey relate to sectionS,,,(t) with nonzero ties be quasistationary for some low temperaflige
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12r
0.017

12¢

(b)

t t
FIG. 4. Comparison betweeBy,(t) for the bottom initial statésolid line ~ FIG. 5. The case of the thermalized initial sta@®.MPEPs fort=2.222, for

and for two other initial states with given coordinate and velocity close tothree characteristic values /T, with all other parameters the same as in

those in the bottom, with all other parameters the same as in Fig) 8 Fig. 2:To/T=0 (solid line), 0.01(dotted ling, 0.2 (dashed ling (b) Sin(t)
=0 while go=q,— 0.01(dotted ling or go=q,+0.01 (dashed ling and(b) for To/T=0 (solid line), 0.01 (dotted ling, 0.2 (dashed ling

o= 0p While go=—0.01 (dotted lin® or g,=0.01 (dashed ling

whereP is some prefactor an8,,;, is the generalized acti-

Win(Glo,Go) = Wd Go,Go) vation energy:

Z lexp—Ey/Ty) for Eo<U(Qan -~ [To , T

~ in=Smin| —,t|=ming_ 5 i Smi +—E
[0 for EO>U(an) ’ Smm Smln T 1t mlnqo,qo Smln(quQOat) TO Of»
(26) (28)
Eo=q3/2+U(qp), whereSyin(do.do.t) is given by(11)—(13) andE, is defined
in (26).
B . There is no room here to provide details but it can be

Z_j fEO<U(an)dq° ddo exp(—Eo/To). shown that, for anyTo<T, the functionS,,(To/T, t) is

stepwise int. Analogously to the case of the bottom initial
We assume that the probablllty for the syS.t8m tC? I_eave th%tate:émin possesses inflection points ersmin/dt: 0, pro-
well before the relevant “initial” instant=0 is negligible.  vided the wall is not too close to the saddle, and the corre-

If at the “initial” instant t=0 the additional noise source Sponding MPEPs are described by an equation similé23p
is switched on, so that the effective temperature becomes phyt with the constand related tot as

>T,,%0 the evolution of the flux6) with the initial distribu-
tion (26) becomes relevant. Given the activationlike structure nt
of Jqo,%(t) [Egs. (10—(13)], the flux with the thermalized A=e

initial state can be presented in the form

LT

= (29

The relevant instants are determined using the condition

J(t)=J; (1) =Pexp — Sm‘“(t))’ 27) a(t)=0 (unlike the conditiong(t)=qy, relevant to the bot-
0 T tom initial state.
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hand, the escape fluxon t~w51) from the bottom is
xexp(—aAU/(TT/wg)) wherea=a(t) ~ 1. On the other hand,

if the system starts its motion from an eneigy close to the
barrier level, the probability of escape for tirhe »{ ) will
be ~ 1, but then the probability to have such starting energy
is ccexp(—AU/Ty). It is the competition between these two
exponentially weak processes which leads to the relation
(30). Figure %a) shows that, for To/T=0.01<I"/wg
~0.035, the MPEP starts close to the bottom while, for
To/T=0.2T/wg, the starting energy is-AU.

U

lll. MULTIWELL METASTABLE POTENTIAL

As an example of the multiwell case, we consider the
potential (4), which describes the simplest SQUfDWe
place an absorbing wéllat q,,=4.5 [Fig. 6a] while the
initial state of the systenfl), (4) may be any state within
» well 1; in simulations, we put it at the bottom of well 1, for
the sake of simplicity. We emphasize also that the type of the
boundary is not important either, e.g., our results are equally
< O 13 valid for the transition rates between nonadjacent wells in the
stable potential with more than two wefts.

Unlike the single-well case, where the formation time of
(b) quasiequilibrium is of the order af® (7), its formation in
the multiwell case proceeds via two distinct stages: first, qua-
J siequilibrium is formed within thenitial well, which takes
tV~t{9: J evolves at this stage quite similatyto the
1F T single-well case; second, quasiequilibrilvetween wellpe-
comes established, which takes exponentially longg:
~t¥expAUIM=>tY where AU means a minimal internal
barrier. During the latter stage, and during the subsequent
f /‘-l‘ ————— quasistationary one, the flult) can be described via a so-

0 . lution of kinetic equations for the well populationd/; and
0 200 400 600 800 W,, using the concept of constant interattrattdransition

t ratesa;; (cf. Ref. 33:
FIG. 6. (a) The potential4) and a sketch of direcdotted ling and indirect —
(dashe(g I?nbesc?ape pat(hs)ész; thin dashed Iings indicateepositions of the I =Wiaigt Woaz,
local minima @, and maxima s ,0s); (b) simulations of the depen- _ (2 _ _ (2
dence of the Sslcgf))e flux on tirﬂ(etu)jsétr?iz)lin(e)) for the model(1),(4) ath =ay3e R aqs(e Ttas—e ),
=0.15,T=0.4. The th_ick full and dashed lines show the approximation of t(z)%cfl t %afl%a /(a Qpst Cpya1s) (31)
J(t) by Eq.(31) in which a5, ay, a4 are calculated by the Kramers— f 12+ ‘tgs “gs 12312523 T ©21%°13)y
Melnikov formula (Ref. 4. For the thick full line, a3,=aq(l
+{0.105 exg (U —U T/ +{m exdkSnn(S2—S1)/ T} where
Q, , are the frequencies of eigenoscillation in the bottom of wells 1,2, re-

T<Ug —U;, t>ti.

The physical meaning of the two terms ({B1) is easily un-

nf
spectively,k is equal to 1;-1 for the ranged” providing s,— 2,1 respec- ; . . _
tvely, S,1(5,+5,) is calculated from the theoriRef. 20 andm is the derstood(cf. Fig. 6). The first one corresponds threct es

only adjustable parametem& 1.1 for these parametgrsfor the dashed capes, i.e., those that do not go via the bottom of well 2, and
line, a15=0 andas=agd 1+ az/az,). it dominates until quasiequilibrium becomes established. The
second term, corresponding to indirect escapes, i.e., those
that involve one or more intermediate transitions between
It can be shown thaS,(To/T, t.vwal) is close to Wwells 1 and 2 while the_ ultimate t_ransition to 3 may occur
Sin(Gi =05, &=0, t~w51) provided f_rom either w.eII. !t dominates durlng the ensuing quasista-
tionary stage: It is the asymptotic part of this latter flux,
To T aq£Xp(—tityy, that is called the quasistationary flux.
?<w_o' (30 Thus, in order to know the flux dynamics one needs to
~ find the interwell transition rates;; . The ratesx;,,a,; and
OtherwiseS,,i\(t~wq 1Y is significantly lower and the steps the quasistationary raterqs can be calculated from the
are smeare@Fig. 5(b)]. Kramers—Melnikov formul.Thus, only one of the two co-
The competition between the two small parametersefficientsa,; and «,3 needs to be found independently. We
To/T andI'/wg, is readily interpreted physically. On one choosea; as the independent coefficient.
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FIG. 7. Theoretical and experimental data on direct escapes/transitions in
the metastable potentiéd) [Fig. 6(@)]. The calculated excess of action over
a difference of energie\S(1—s,) (34), is shown by the full line. It is
related to the escape ratg;. The calculatedt S,;,(s,—S,), related toR
(37) by Eqg.(38), is shown by the dotted line. It overlaps the full line in the
half-plane of positive ordinates. The corresponding quart@) based on
data obtained by electronic and computer simulations is shown by squares
and crosses, respectively. Valueslgf., correspond to noise-free saddle
connections withn—1 turning points. Atl'=1"g=20,~2.1, the turning

f f

n n
points in the noise-free trajectories —2 ands;—2 disappear. The inset
shows the lowl” range enlarged.

The theoretical problem of finding,3 is inherently dif-
ficult. Melnikov pointed out that, in the multiwell case, his
method is valid only if the barriers levels are equal or at least
close to each othdcf., e.g., Refs. 4 and 34a requirement
that is often not satisfied. So, the methodoptimal fluctua-
tion (cf. Sec. 1) was suggestett, seeking the escape rate in
the form

ajz=Pe Smn'T, (32

where the actiorg,,;,, does not depend oh and the depen-
dence of the prefactd? on T is relatively weak.

One can show tha&,;, is the minimum of a certain . 2 .
functionaf* -8 -4 g 0 4
Sin= Smm(lﬂsz):min[q(t)]t (S), FIG. 8. Simulated direct transition patfss— 1 (thin full lines) in the
tr

energy-coordinate planE—q [where E=q%2+U(q)] corresponding to

1 [t (2),(4) at differentI": (a) 0.5, (b) 0.05, (c) 0.04[T=0.05 for(a) and T
r - . f f
S=§, [a(t)]= Ef dt(q+T'q+dUu/dq)?, (33)  =0.005 for (b), (c)]. The noise-free trajectories, ~2 ands, 12 are
0 shown by dashed lines. The MPDTBs—s; are shown by thick dotted
lines.

q(0)=ds, d(0)=0, q(ty)=ds, d(t,)=0,

where the trajectorjq(t) ] does not pass through attractor 2. varies withI" over the whole range df, from very strong
It can easily be shown that thg yielding Sy, is equal tox.  damping to the ultraunderdamped case. One can resolve
The[q(t)] yielding Sy, is called™ the most probable direct three distinct regions.

transition path(MPDTP). The main features db,,, and the The overdamped region can be defined BT,

MPDTP are illustrated in Figs. 7 and 8 for the systéinand ~ =2(),, where(), is the frequency of eigenoscillation in the

(4); see Ref. 21 for a rigorous general treatmént. bottom of well 2. Here, there is no MPDTR-1s, at all, so
Figure 7 shows how the excess action that a13=0.

In the moderate-friction region[I';,['g], AS(T") is

AS=AS(1—87) = Snin(1—87) = (Us,~U1) (34 monotonic and undergoes its largest variation: from 0 to



Chaos, Vol. 11, No. 3, 2001 Noise-induced escape 603

Usl—Uz. The MPDTP[see Fig. 8)] is the time-reversed so that information about the transitiea— 1 is equivalent
) A=A nf ) o to that for 1—s,, but the experimental time required is of
trajectory s, —— s;—1 in which the latter is just the coyrse much smaller in the former cdseexp(AS/T)] than in
noise-free relaxation frors, to 1, whereas the former is the pe |atter.
solution (cf. Ref. 23 and Sec. Jlof Figure 8a) demonstrates that, faf[I"';,I'g], most of
N the direct pathss,—1 do indeed concentrate near

. +Ae . A nf
qq+T 1_Aenqd+dU(qd)/dqd=0, s,— $;— 1. Figures &) and 8c) demonstrate switching of
+ nf A nf
, (35  the MPDTP froms,— s;—1 tos,— s;—1 asl’ decreases
da(0)=ds,, d4(0)=0. in the rangg T'3,T',].

. , . In order to studyS,,, we use the following technique.
Here A=A_ is a negative constant providing for the path g ystem is put at,, and one then follows its stochastic
[Qd(t),] to be monotonidi.e., W'thO‘,” 'Fu.rnmg pointp ,NPte dynamics(1), (4) until either the bottom of one of the wells
that, in general, there may be an infinite setoproviding jg'aproached or the coordinatg, is reached. After that, the
[94(t)] connecting the saddles: The corresponding trajectogy siem is reset ts, and the operation is repeated. Once

ries differ by their number of turning points. B&for the g4 ate statistics have been obtained, we calculate the ratio
other values ofA [whose absolute values are smaller thanof transitions to wells 1 and 2, respectively,

|A_|] is larger than that foA _.

The underdamped regiof,<I"4, is divided by a num- N 1
ber of characteristic values of the frictidn,~,. Each of R=R(T)= 2 (37)
these I',, provides for a noise-free saddle connection NSZHz
nf

s,—Sq, Which possessas—1 turning points. In this region, It
S . i h XP(ESy T) (where +
AS(T") undergoes oscillations corresponding to an alterna—t S easy 1o see thaRxexp( S‘“'”(SZ_)Sl)/nf) (where +,

tion between two situations. fIn the firgth 5, , [om_1] (M — correspond to ranges df providing s,—1,2, respec-
n

=1), a noise-free trajectory,— 1 exists and the MPDTP is tively). S0, Spin(S,—$1) is related toR (37) as

just its time reversal, witihS=0. In the second situation, 4S5 (555 = limIT N(R(T 38
[Toms1.Tom] (M=1), the action varies nonmonotonically = Smin( S 81) T_,O[ (RCT)I. 38
with I", and has cusps. This is due to a competition between

the two paths which are the time reversals respectively, Ofhere+ — correspond te il 2, respectively.
A nf Ay nf A ’ 2 Y ’

s,— s;—1 ands,— s;— 1, wheres,— s, are given by the In practice, however, there is always a lower limit fbr
solutions of (35) with A,=A,(I')>0 and A_=A_(I) in simulations,T,, because the overall simulation time must
<0, respectively: see Fig.(18) and §c), respectively. A4~  Not become unrealistically long. That is why the us€38)
varies,Salong one path becomes equaalong another, at May, in practice, introduce significant inaccuracy. To reduce
a certainl, leading to switching between the paths and tothe influence of the preexponential factor we meastbeth

the cusp inAS(I"): There are corresponding discontinuities @t Ty and at a slightly higher temperatuf®,+ AT (T,>AT

in the nonequilibrium potenti@ and fluctuational = T?/Smin(S2—51)), SO that

separatrix® _ _ T (RT +AT)
Thus, Ref. 21 predicts an e?<por.1ent|al_ly ;trong d.epen— iSmin(szﬂsl)%—'ln I . (39)
dence of the escape raig; on friction, including interesting AT R(T))

features such as oscillations and cu¥pfar t>t{"). To es-

tablish whether these, and the properties of MPDTPs deThe quantities on the left- and right-hand sides of E29)
scribed previously, occur in reality, we have undertaken anaare shown in Fig. 7, respectively, by the dotted litieeory)

log electronic and computer simulations. A necessar@nd by squares and crosgegectronic and computer simula-
condition is smallness of the temper::r(ur'§<As,(USl tions, respectively The agreement is satisfactory, given that

—U,). However to obtain reasonable statistics at such 2= Smn/ TI=7. ] S
small temperature would require an unrealistically long time ~ Note that the magnitude of the largest oscillation in ac-
[ocexp((USZ—UlJrAS)/T)]?B We have overcome this diffi- tion may significantly exceewSZ—Ul. This occurs if the
culty by exploiting the property of detailed balari@eyhich ~ initial well 1 is adjacent to an external saddig while its
implies’! that the MPDTPs,— 1 is just the time reversal of depth is much less than that of the other well.

the MPDTP 1-s,, with the corresponding actions differing Finally, we comment on the experimental consequence
by Ug —U,, i.e of the cutoff of the MPDTP, namely the drastic change of the
7 3 ey

time evolution of] for t{Y<t<t{®: At '<T,, one may in
AS(1—5s,)=Sin(S,—1) principle makeT small enough that the sharp growthJgt)
at t=t!) turns into a nearly constant value &)<t
nf <t{M a3/ (ara,3) While, atl>Tg, J(t)~ aypay4t OVer the
] 0 at s—1 (36) whole relevant time-scale: cf. the thin full and dashed lines
B nf in Fig. 6(b). Another drastic change occurs with the time
Shin(S,—Ss;) at s,—2 evolution of the transition flus,—1: At I'<I'y, it has a
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high narrow peak at~t$1’ whereas, at'>TI", itis a mono-  *M. I. Dykman, P. V. E. McClintock, V. N. Smelyanski, N. D. Stein, and N.

tonically and very slowly growing function df att<t{?. & Stocks, Phys. Rev. Letg, 2718(1992. .
M. Arrayas, |. Kh. Kaufman, D. G. Luchinsky, P. V. E. McClintock, and S.

M. Soskin, Phys. Rev. LetB4, 2556(2000.
IV. CONCLUSIONS AND OPEN PROBLEMS 133, M. Soskin, V. I. Sheka, T. L. Linnik, and R. Mannella, Phys. Rev. Lett.

. 86, 1665(2001); ibid. Erratum(to be published
We conclude that(') escape from the metastable part of If the wall is close to the bottom, the estimaf® can be obtained by

a potential differs markedly after and before the formation of consideration of the parabolic potential: The Fokker—Planck equation is
quasiequilibrium within the metastable regiafii;) at time then solved explicitlyRef. 15. It follows directly that, if the initial state
scales much less than the time of the formation of quasiequi- coesponds to the bottom of the well, i.eW(q,q,t=0)=4(q
librium within a single wellt{® , the escape flux grows ~0)3(q), then W near the energy levehU and the coordinate
tially st | ith t'f ’ d if the fri V2AU/wq evolves close to the equilibrium value for the time described
gxpont_en lally s.rong y Wi . Ime an N moreover, | e ric- by Eq. (7). In another characteristic case, when the wall is close to the
tionT is S.ma"’ it does soin a StF.«'PW_lse manner and dependssaddie(ct. ¢ in Fig. 2, the estimaté?) is also typically valid: It agrees
exponentially strongly od”; and (iii) if the metastable part  with the explicit results(Ref. § for the underdamped and overdamped
of the potential consists of more than one well, then the limits provided that the curvatures at the saddle and at the bottom are of
formation of quasiequilibrium takes an exponentially Ionglsxeéa\’;‘ve Ordera"(";h"l’zh Il_r}hflaCthS E’pga"yh;hzcgi;;‘tng)s((ll)é@

: . : . C. Wang and G. E. Uhlenbeck, Rev. Mod. , .
pe”Od of tlme'_ln t_he latter case, t_he escape flux du”ng theﬁln recent papergRefs. 17-20 the method of optimal fluctuation was
most of the period is formed from direct escapes and dependsappiied to problems which, though having some similarity to the nonsta-
exponentially strongly on friction; moreoved(I") under- tionary Kramers problem, are distinctly different: References 17-19 con-

goes oscillations in the underdamped range and may drop;i]deredtnoPstfattri]onarthpttimal Pagl‘sfg‘ tf“‘i;"er:‘_’lar;p‘?dz%me”“?éSyséem in
. . . e context o € prenistory proble(rert. wnile Rrer. consiaereaq,
=
drastically ifI' exceeds a critical Va|UE0/292' in particular, the time dependence of escape rates in the overdamped sys-
Open problems yet to be addressed include the follow- tem subject to the colored noise.

ing. 178, E. Vugmeistert al, Phys. Rev. E55, 5338(1997).
(1) For the range<t{®: (a) details of the case consid- ,.R- Mannella, Phys. Rev. B9, 2479(1999.

ered previously, including an accurate study of oscillations OEOE: (E:'Oxggn;ﬁgtg_'eésa;}’nzzf'Pijzi'cgg’zz:f j ((113993"

the exit velocity andd S,,j,/dt with time, as well as of the 2is m. Soskin, J. Stat. Phy87, 609 (1999.

transition from a smootf,,i,(t), with inflection points only, ~?’R. S. Maier and D. L. Stein, J. Stat. Ph{8, 291 (1996.

to anS,(t) possessing foldsth) additional features char- -.R- Graham and T. Tel, Phys. Rev.38, 1322(1986.

teristic of other t f absorbi b d . ticul 24, E. Elsgolc,Calculus of VariationgPergamon, London, 1951
acteristic or other types or absorbing boundary, In particulags ¢ n—, so thatt,—o, then S(t,) reduces toAU, while the MPEP

interW?|l transitions in the multiwell cas(ac) a Carem' CON- reduces to the time-reversal of the noise-free relaxational trajectory from
sideration of the case with two absorbing walls with the ini- the state{q=gq,,,q=0}, thus recovering the conventional Arrhenius ac-
tial state on one of the walls, a case that is relevant, e.g., totivation energy for the quasistationary fl(Ref. 1) and the corresponding
ionic channel® and the preliminary analysis indicates oscil- MPEP(Refs. 23 and 21 respectively. The reduction of the asymptase

. S N t—oe) activation energy and MPEP to their conventional forms is valid
lations of the flux in time{d) a generalization for nonpoten- =~ arbitraryU(q)
tial systems and/or nonwhite noise for which, unlike poten-s p |andau and E. M. LifshitzMechanics(Pergamon, London, 1976

tial systems subject to white noise where switching betweef To avoid the singularities encountered By at the turning points, one

different MPEPs gives rise only to folds B,(t), we an- may use the variabl&=I"q instead.
ticipate the possibility of jumps iSmn(t). 28/ similar equation was obtained in Ref. 23 but in a different context and
6] (1) (2) : by a different method.
(2) Both for t<t; and fortf <t=tj (the multiwell 29The numerical search is more difficult than in the case of a single solution.

case only, for the latter range(a) the prefactor; andb) Details will be presented elsewhere.

multidimensional problems. %ONote that the additional noise source does not need necessarily a thermal
origin. In SQUIDs, for example, it could be an external magnetic flux
noise.
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