Dykman, Mark and McCann, L. I. and Smelyanskiy, V. N. and Luchinsky, D. G. and Mannella, R. and McClintock, Peter V. E. (2001) Activated escape of periodically driven systems. Chaos, 11 (3). pp. 587-594. ISSN 1054-1500
Chaos2001ActivatedEscape.pdf - Published Version
Download (160kB)
Abstract
We discuss activated escape from a metastable state of a system driven by a time-periodic force. We show that the escape probabilities can be changed very strongly even by a comparatively weak force. In a broad parameter range, the activation energy of escape depends linearly on the force amplitude. This dependence is described by the logarithmic susceptibility, which is analyzed theoretically and through analog and digital simulations. A closed-form explicit expression for the escape rate of an overdamped Brownian particle is presented and shown to be in quantitative agreement with the simulations. We also describe experiments on a Brownian particle optically trapped in a double-well potential. A suitable periodic modulation of the optical intensity breaks the spatio-temporal symmetry of an otherwise spatially symmetric system. This has allowed us to localize a particle in one of the symmetric wells.