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Comment on “Monostable array-enhanced stochastic resonance”
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Lindner et al. [Phys. Rev. B63, 051107(2001)] have reported multiple stochastic resonan(&R9 in an
array of underdamped monostable nonlinear oscillators. This is in contrast to the single SR observed earlier in
a similar but isolated oscillator. Though the idea that such an effect might occur is intuitively reasonable, the
notation and the interpretation of some of the major results seem confusing. These issues are identified and
some of them are clarified. In addition, comments are made on two possible extensions of the central idea of
Lindneret al: one of these promises to provide much more striking manifestations of multiple SR in arrays;
the other significantly widens the range of systems in which multiple SRs may be observed.
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In a recent papefl] Lindner et al. have discussed the order of § fy=0]. This, in turn, is approximately propor-
occurrence of stochastic resonan(®R) in an array of tional toT so thatBx«T to a good approximation.
coupled, underdamped, nonlinear, monostable oscillators. The authors mostly refer to the quantRyas the spectral
They conclude that SR may be manifested at several valugesponse, and they discuss its dependence on noise intensity;
of noise intensity, in contrast to the single value that arises iff, is called the driving frequency. We wish to point out,
the case of an isolated oscillatp2,3] or for an array of however, that the response to a periodic driving force is not
overdamped bistable oscillatof4]. As so often happens in proportional either taR or to S, so that its dependence on
science, this is a case of a very interesting result that, imoise intensity may differ markedly from that 8 or S In
retrospect, seems unsurprising: we note that the coupling lifteeality, it is only theimaginary part of the generalized sus-
the degeneracy of the eigenfrequencies of the individual oszeptibility y that is proportional t&[5], the real part being
cillators, causing them to split and thus yield additional resotelated to it by one of the Kramers-Kriy relations[5].
nances, each of which can give rise to SR, of ty@en the Let us write this in rigorous terms. If the driving force is
sense introduced if2]. Some of the results for power spectra sinusoidal, i.e.Apcos(2rfpt), then the response of the sys-
in the absence of driving are potentially important, but theirtem may be written in terms of the shift of its generalized
interpretation, and some of the terminology, seem to us coreoordinate(e.g., the coordinate of one of the array oscillators
fusing. The results on noise-enhanced propagation, whichs in [1]) averaged over the statistical ensemble. In the
probably represent the most interesting application, are alsasymptotic limitAp— 0, such a response is proportional to

presented in an ambiguous way. Ap and sinusoidal in tim5s]:
The main aim of the present Comment is to address and
clarify some of the confusion and to urge the author$lgf s(q(t))=(a(t))a, —{Ma,-o
to remove the remaining ambiguity. In doing so, we discuss
the relationship of1] to the existing understanding of SR, in =ApRg x(fp)exp(—i2wfpt)], (2

general, and in monostable underdamped nonlinear oscilla-

tors, in particular, and we point out a possible extension ofvherey is the generalize(complex susceptibility[5]. From
the authors’ central idea to a system that may be expected tbe fluctuation-dissipation theorerfb] and one of the
exhibit a much more dramatic manifestation of array-Kramers-Kraig relationg5], the imaginary and real parts of
enhanced multiple SR. We also generalize the idefdpfo  x are, respectively,

encompass a wider range of systems.

The major quantity considered fith] (and in what follows 272ty
we will mostly use the notation dfL]) is Im[x(fp)]= —F—S(fp),
o]
Rifol=5=—. (1) 4 F f2S(f)
B[ f =—Pp
[fo Rex(fo)]= P di—, 3

whereS[ fp] is the power spectrum of one of the oscillators

in the array in theabsenceof a periodic driving force, and whereT is temperaturd¢equivalent too?/(2048 ) in the
B[fp] is some “smooth background” in such a spectrum: notation of[1], with m=1] and P denotes the Cauchy prin-
although an explicit definition oB[fy] is absent from the cipal part. In the context of SR, these relations were first
paper, it follows implicitly from Fig. 1 and has been con- used in[6].

firmed by one of the authors that, when the temperalfure  If one characterizes the response by the intensjy
(i.e., the noise intensity, appropriately normaligesdsmall or ~ (square of the & spike at the driving frequencyy, in the
moderateB[ f] in the range of frequencies nefgy is of the  power spectrum of the driven system, which is one of the
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most important characteristics of the respoise [3,6,7]),  absence of periodic drivingFor example, the SNR df7],
then it is easily showi6] that which is still widely used, relates tio; and § f |:

1
|5=7R5Ix(fo) % (@) I

Sfopl’

(SNR = (5)

The authors of1] infer a “distinct SR” in their system based
on the fact that the quantitiR may drastically increase as
noise intensity changes from zero and passes through certaiithough there is no single universally accepted definition of
optimal values. This occurs because the spectrum in the alhe SNR, it is in our view confusing to refer Ras an SNR,
sence of drivingS[ f ], has pronounced peaks whose maximagiven thatR refers to quantities both of which are measured
shift in frequency as noise intensity grows. But, in reality,in the absenceof driving. Moreover, as shown if3], the
things are not so simple because, as pointed out above, th@nventional SNR5) exhibits local maxima as a function of
response to an input signal is not simply proportionaRto  noise only for special classes of systefsse below, but the

The system’s response to a weak periodic driving force issymmetrical monostable Duffing oscillator consideredlih
completely specified by the complex susceptibilig¢fp).  does not belong to such a class. So the allusion by Lindner
And Egs.(2) and(3) show that it is only the imaginary part et al. to multiple SNR maxima in their system is potentially
of x(fp) that can be maximized through “tuning” by noise; misleading.
in the range of small temperatures, it differs fréonly by Section V of[1] treats the interesting and potentially im-
a temperature-independent factor. The real pag(df) be-  portant question of how a signal propagates in the presence
haves differently, and must also be taken into account. Af noise if the array of underdamped oscillators is driven
simple analysis of Eq(3) for an isolated Duffing oscillator periodically along one side only. Unlike Secs. Ill and 1V,
(cf. [3]) shows that Irhy(fp)] at the temperatureT,,  therefore, it deals with the effect of a real periodic driving
=Tn(fp) yielding its maximum, and Reg/(fp)] at the same force rather than a virtual one. The signal propagation is
T are of the same order as[Réfp)] atT=0. Asin[1], we  discussed in terms of an SNR which evidently differs from
are assuming here that the deviationfgffrom the natural the R defined by Eq.1) in the absence of driving; on the
frequencyf, greatly exceeds the friction parametgrwhile  other hand, if we generalize E€}.) to include the possibility
being less or of the same order s y<fp—fy=fy and of a periodic driving forceR will diverge to infinity at f
we also allow for the explicit expressid8] for the spectrum =f5 on account of theS function in the power spectrum at
S f] in the Duffing oscillator in the relevant range of fre- the driving frequency3,6,7], as can be seen from E@). It
qguencies and temperatures. ConsequentlyT agries, the is therefore unclear to us just what is meant by the SNR in
maximum possible ratio dfy(fp)| to its value aff =0 isnot ~ Sec. V and, in particular, what is being plotted in Fig. 7. The
much larger than unitycf. [2], where it was~2.5 for an  general trend of the results looks interesting, however, and
oscillator similar to the oscillator used iri]). This is in  could with advantage be clarified by the author$df Their
contrast to the analogous ratio f8f f;] (and, similarly, for ~ research will then become more useful to other scientists.
Im[ x(fp)]), which is typically larger by a few orders of = We should perhaps mention two other minor inconsisten-
magnitude(cf. Fig. 3 in[1]). The situation for arrays should cies in the paper that are liable to mar its understandability.
be similar. This inference could readily be checked by perThe first relates to confusion between the frequefregip-
forming an explicit calculation ofy| using Eq.(3) and the  rocal of the periogland the angular or cyclic frequen¢g]
spectrag[ f] presented if1], and/or backed up by a digital (frequency multiplied by z): it is obvious from Figs. 1-5
or analog simulation of the array in the presence of a periand from Eq.(4) thatf means the frequendgf. alsofp in
odic driving force. Eq. (1)]; but, it follows from the formulas fof y andf, just

Lindner et al. [1] comment thatR is “faithful to the  below Eq.(2) and two lines below Eq.3), respectively, that
squared stochastic amplification factdSAF) introduced in  f in Egs.(2) and(3) means the angular frequency. Another
[2], but we must point out that this is not quite right, for the inconsistencyor, possibly, a misprintoccurs in the formula
reasons discussed above. The SAF is the ratio between tffier the angular frequency of the antisymmetric mddethe
amplitudes of the response in the presence and absence rofiltiplier of x should be 2 rather than 3.
noise which, in the asymptotic limit of vanishing driving  We end with two forward-looking comments. First, we
amplitude, is equal to the ratio between the absolute valuesuggest that it would probably be fruitful to apply the central
of the corresponding generalized susceptibilities or, equivaidea of[1] to an array of zero-dispersidzD) [3,10,11,12
lently, between the square roots of the intensitigef the §  oscillators. Unlike conventional oscillatofs.g., the Duffing
spike. It follows from our analysis above that neither theoscillator as in[1]), the dependence of the frequency of
SAF, nor its square, behave in just the same waiRas eigenoscillation of a ZD oscillator on its energy(E), pos-

In [1] Ris sometimes referred {@.g., in captions to Figs. sesses one or more extrema, i.e., there are one or more en-
4 and 9 as thesignal-to-noise ratid SNR). But Ris not an  ergies at whichdw/dE=0. This property provides aery
SNR—at least not in the conventionally accepted sense dftrong enhancement of resonant behavior in the vicinity of
being the ratio of a signal at the outplite., the difference the extrema. Manifestations of SR phenomena are therefore
between the outputs in the presence and absence of periodituch stronger than in conventional oscillators, and the maxi-
driving) to the noise at the outpui.e., the output in the mum noise-induced increase of the respofssgna) can be
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far larger(cf. [2]). Moreover, in contrast to the conventional the number of ranges of noise intensity where weak SR oc-
case, not only may the signal itself increase with noise inteneurs[i.e., where the signal, but not the SNR), possesses a
sity, but even the SNR, conventionally defined @), may local maximum as a function of noise intengjtghen one
undergo significant noise-induced growWB112]. Given that  may seek this phenomenon in any nonlinear dynamical sys-
an array of zero-dispersion oscillators provides for the postem of high but finite dimension. In effect, Lindnet al.
sibility of their synchronization, manifestations of SR in anjncreased the number of eigenmodes through the coupling in
array of ZD oscillators may be expected to be even strong&he array: together with the shift of the maxima in the power
than in a single ZD oscillatotsuch a hypothesis was Sug- gpectrum as noise varies, this providedrfaultiple SRs. But,
gested first i 12]). It also seems very likely that, as ],  qite generally, any nonlinear dynamical system of high di-
the coupling will further increase the number of noise inten- .. <ion possesses many eigenmodes; the maxima in its

5'“9$ at Wh'(.:h the SNR eXh'b'tS local maxirf8]. There 1S power spectrum may be sensitive to noise intensity, and there
a wide variety of ZD oscillators. They may be either is thus the possibility of multiple SRs as ]
monostable[e.g., the tilted Duffing oscillatof3,11] or a P y P '

SQUID (superconducting quantum interference devioep
with a large inductancgl2]] or multistable(e.g., a SQUID
loop with a small inductancgL2)).

Finally, we comment on a different generalization of the
central idea of Lindneet al. [1]. If their aim is to increase
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