
RESEARCH ARTICLE

A flexible streaming software architecture
for scientific instruments

Martin Grill & Keith Barratt & Farideh Honary

Received: 24 August 2009 /Accepted: 11 January 2010
Springer-Verlag 2010

Abstract The recently completed prototyping efforts for a
new type of riometer, the Advanced Rio-Imaging Experiment
in Scandinavia (ARIES), required the development of a
uniquely flexible software architecture to deal with what in
software engineering terms is referred to as a ‘Wicked
System:’ Source, volume and type of data as well as required
processing are only very loosely defined at the outset of the
project. Speed, reconfigurability, remote control and data
provenance are of major importance for the success of the
project both during development and during operation of the
deployed prototype. Details of the Advanced Riometer
Components (ARCOM) component-based software architec-
ture are presented. The software architecture is not specific to
ARIES, and ARCOM components can readily be re-used in
other, similar instruments.

Keywords Componentry . Geospace . Pipelining .

Provenance . Software architecture . Streaming

Introduction

Riometers (Relative Ionospheric Opacity Meter using Extra
Terrestrial Electromagnetic Radiation) (Little and Leinbach
1959; Detrick and Rosenberg 1990) measure to what extent
cosmic background noise is being absorbed by the iono-
sphere. The largest 16×16 (256-element) phased array
imaging riometer at Poker Flat, Alaska (Murayama et al.
1997) achieves an angular resolution of 6° at zenith which
translates into an area of about 11×11 km at a height of
90 km. The need for higher spatial resolution provides
motivation to prototype riometers based on the Mills Cross
technique (Nielsen and Hagfors 1997; Mills and Little 1953;
Nielsen 2001). Since increasing the number of antenna
elements becomes increasingly impractical, such riometers
employ digital receivers and more complex data processing
combined with a sparse antenna array to achieve higher spatial
resolution. A drawback of a Mills Cross type system, com-
pared to a filled phased array system of similar resolution, is
that the required integration time is worse due to the reduced
aperture of the antenna array. This issue has been investigated
in (Nielsen et al. 2004) and (Hagfors et al. 2003), and con-
cludes that this effect is sufficiently counterbalanced by
advancements in receiver technology over the last decades.

Operating software to support prototyping of the first
Mills Cross based riometer needed to be flexible enough to
support engineers and scientists during all phases of the
development, ranging from initial single beam experiments
and signal processing algorithm evaluations to final
continuous operation of the fully deployed instrument.

In addition to actual absorption signals (“the data”),
there is a strong need for collecting engineering and
housekeeping data. This is particularly useful during
instrument development, but remains of significant impor-
tance for potential troubleshooting during routine operation.

Communicated by T. Narock

Part of this work was funded by the UK’s Particle Physics and
Astronomy Research Council (PPARC), now the Science and
Technology Facilities Council (STFC).

M. Grill (*)
SRI International,
Menlo Park, CA, USA
e-mail: martin.grill@sri.com

K. Barratt : F. Honary
Lancaster University,
Lancaster, UK

Earth Sci Inform
DOI 10.1007/s12145-010-0043-6

Having engineering data embedded in a (the) single
stream of “data” allows for unambiguous reconstruction of
the chain of events that resulted in any given data point in
question (“provenance”). In the authors’ experience, the
ability to “replay” data has been an invaluable tool in
engineering and troubleshooting the ARIES prototype. The
ability to add new data to the stream (for example, adding a
new temperature sensor or feedback from the ventilation
system) without having to worry about separate log files
and data merging, and without breaking any existing code,
has turned out to be a big time saver.

Digital signal processing

A Mill Cross type riometer is based on the principle of
cross-correlating signals from the two perpendicular fan
beams formed by two perpendicular linear phased arrays as
first conceived and used by (Mills 1952) and (Christiansen
and Mathewson 1958), albeit not for riometry purposes.
The beam forming process for a Mills Cross is illustrated in
Fig. 1. The two small panels on the left show an example of
a fan beam formed by a linear array of antennas along the
y-axis (top panel) and along the x-axis (bottom panel),
respectively. The small inset in the upper right hand corner
of each panel shows an idealized top-down view of several
fan beams generated by the arm in question, with the shown
fan beam highlighted in green.

With this type of antenna arrangement, high spatial
resolution can be achieved with significantly fewer antenna
elements when compared to a filled array antenna: to achieve

n times the resolution, the number of antenna elements
required now only increases linearly with n and not n2.

During initial prototyping, the first beam forming stage
(the Butler Matrix forming fan-shaped beams) was carried
out in analog electronics, and ARCOM software dealt with
continuous cross-correlation and post-integration. Once the
full bank of receivers had become available, forming of the
now 32+32=64 fan beams was still carried out using
analog electronics as shown in Fig. 2a. However, in this
incarnation, cross-correlation was handed off to a field-
programmable gate array (FPGA), as standard PC hardware
cannot currently be easily interfaced with the 64 serial input
lines delivering a total input data rate of 2.6 Gbits/s
produced by the 64 simultaneously sampling receivers.
Over time, the signal processing functionality has expanded
its scope to include the Butler Matrix processing block and
this is shown in Fig. 2b. With both beam forming stages
being carried out by digital signal processing, a number of
significant additional capabilities have become possible
including programmable tapering of the array, improved
temperature stability due to the reduction in analog
electronics, and a better real-time diagnostic capability of
the receiver boards.

ARIES operating software

ARIES exhibits many properties of a ‘Wicked System,’
defined as a system whose properties are poorly understood
at the outset, and are likely to change significantly as

Fig. 1 Beam forming for a Mills Cross

Earth Sci Inform

system development progresses from prototype to prototype
(Sommerville 2004). Software design for such systems
provides unique challenges to the software engineer
seeking to support system evolution to the most flexible
extent possible. The ARIES operating software is the result
of a structured approach of defining goals, deriving the
overall architecture and finally designing, implementing
and integrating the individual (software) building blocks
that make up the system.

Software goals

The ARIES operating software ARCOM (Advanced
Riometer Components) is designed around a flexible
component-based pipelining architecture derived from the
following goals:

(i) Speed. On average, the system needs to keep up with
the incoming data stream from the receivers. The
phrasing ‘on average’ is appropriate, because even
though we must not lose any data, we need not
guarantee that all data is processed immediately. In
engineering terms, this system can be referred to as a
‘soft real-time’ system.

(ii) Run-time reconfigurability. To a certain extent, we
want to be able to reconfigure the system while it is
running. For example we want to continuously
integrate an incoming signal, and then later on add
functionality for logging the incoming signal to a file.
In this example, the logging should not affect the
operation of the integrator.

(iii) Expandability. We want to be able to develop new
system functionality in the future. This new function-

ality should integrate seamlessly with any existing
parts of the system.

(iv) On-line status information. For diagnostic purposes,
we want to be able to query the current internal status
of the system in sufficient detail at any time, and
without affecting the operation of the system.

(v) Remote control. Due to the physical remoteness of the
site, all system functionality should be accessible
from off-site and through potentially slow (56K
modem) communication links.

ARCOM architecture

Figure 3 gives a layer-oriented overview of how ARCOM
fits in with the other parts of an advanced riometer system.
This section discusses major aspects of the ARCOM
architecture.

Component-based

This approach allows for easy insertion and removal of
components at runtime. Common Object Request Broker
Architecture (CORBA) is used for controller-to-component
communication, e.g. to start, stop or query the status of any
given component. A set of three principal (meta-)compo-
nents was designed. Every component in the ARCOM
control software behaves like (is derived from) one of these
principal components. The core ARIES control software is
therefore made up of only three structurally different
components, and even those have strong commonalities as
far as inter-component communication is concerned. Re-
corder components stand at the beginning of a processing

(a)

(b)

Fig. 2 ARIES System: a Orig-
inal design using analog Butler
Matrices for stage 1 beam
forming; b Current implementa-
tion with digital beam forming

Earth Sci Inform

chain (pipeline). They collect data from some (hardware)
device (for example the ARIES FPGA or a temperature
sensor) and transfer it to the standardized shared memory
interface. Processor components manipulate incoming data.
Examples are post-integration, absorption calculation, or
cropping (reducing the field of view). Processors can also
be data sinks. The ALogger component, for example, takes
data and writes it to disk. Finally, Adaptors simply provide
a consistent CORBA interface to different hard- and
software components supplied by third parties, following
the ‘façade’ design pattern (Gamma et al. 1995; Deacon
2002). That way, third party components like, for example,
the control software for an uninterruptible power supply
(UPS), can be accessed through a standard CORBA
interface, just like any other ARCOM component. Adaptors
do not access shared memory interfaces.

Pipelined

A pipeline architecture follows the natural notion of data
flowing through the system, being processed as it does so.
This model is not limited to one input and one output,
several streams of data may enter the system simultaneous-
ly, to be processed independently or combined together.
Results may be written to external disk straight away, or
processed by components further down the pipeline. A
pipelining architecture supports reuse of transformations,
evolving the system by means of adding new trans-
formations is straightforward, and concurrent systems
(many processing paths processed simultaneously) are
readily supported. Figure 4 is an example of several
components arranged in a multi-pipeline setup. This depicts
the ARCOM configuration for our current FPGA-based
ARIES implementation. All recorder components feed into
the same shared memory interface. The resulting data
stream gets stored to disk by an ALogger component.
Selected packets can be post-integrated and transmitted
over the network in real time. Additional components can
be added and removed at run-time, and command-line tools
or additional components can be used to tap into any of the
shared memory interfaces. The major disadvantage of a
pipelining model is that each transformation needs to agree
on a common input and output format in order to be able to
tie in with the other transformations along the processing
pipeline. This was turned to an advantage in ARCOM, see
section below on ARCOM’s versatile streaming data
format.

Shared memory interface

In addition to the CORBA interfaces, which are used for
infrequent control tasks such as starting and stopping
components, all components that can take part in pipeline-

Fig. 4 ARCOM configuration
for current FPGA-based design

Fig. 3 Multi-layer view of ARCOM and its operating environment.
DUNES is an independent dial-up networking module implemented
by the author and is not discussed further in this paper

Earth Sci Inform

based processing are glued together through blocks of
shared memory with strictly unidirectional data flow.
Establishing a shared memory interface for data flow
between components in the processing pipeline allows for
maximum speed as data is transferred between components,
essentially only limited by memory throughput of the
processing hardware. ARCOM shared memory interfaces
are block-based with flexible block sizes. They are multi-
client and multi-master and allow for multiple simultaneous
read and write operations at any given time. Real-time
diagnostics are supported to fine-tune the operating param-
eters of any given interface through functions to retrieve
and visualize current allocation information. Figure 5
shows one example snapshot of the internal state of an
ARCOM shared memory interface. Tall (green) arrows
indicate head pointer position, short (black) arrows indicate
tail pointer positions. Masters 0 and 2 are connected and
idle. Master 1 is currently writing to the shared memory
interface. Client 0 is waiting for Master 1 to finish. Client 1
has recently connected and is waiting for new data packets.
Client 2 is disconnected. Note particularly how multiple
masters can hold a write lock on their part of the data
stream simultaneously, and how clients consume new data
in sequence as masters finish writing out their respective
packets.

ARCOM streaming data format

As noted above, any pipelining architecture requires its
individual processing stages (components) to agree on a
common data format for passing data along the pipeline.
The flexibility requirements faced by ARCOM compared to
existing riometer systems are unique in that the data format
should accommodate for both existing (well-)defined data
sources such as existing FPGA implementations of the
ARIES cross-correlator, as well as data produced by yet-to-
be-defined-and-implemented future components. Generic
multi-purpose data formats have come a long way, with
XML (eXtensible Markup Language) being the most
prominent of these formats in recent years (Bray et al.
2006). XML is uniquely flexible in that it is an inherently

extensible format that can be customized to represent any
possible dataset. The major drawback of XML when it
comes to inter-component communication between, in this
sense closely coupled, components in a processing pipeline
is its text-based format. Parsing XML data, which allows
both variable-length tags and content, is processing inten-
sive and therefore slow. It turns out that flexibility and
speed requirements very similar to ARCOM’s exist in quite
a different area, namely digital television. Equipment
compliant with the Digital Video Broadcast (DVB) standard
uses pipeline architectures to multiplex, transmit, receive
and de-multiplex streams of images, audio, subtitles and
many additional, quite unrelated, datasets such as teletext or
IP (Internet Protocol) packets. The underlying data format
is the MPEG transport stream, see (ETSI 1997) and
references therein. Inspired by this, ARCOM defines a
common ARCOM streaming data format that, on the
highest level, consists of a stream of ‘packets,’ each packet
in turn containing one or many ‘descriptors.’ This format
provides high flexibility as follows: Data in this format is
future-proof (unknown packets/descriptors are simply
skipped over by processing tools), generic (a basic set of
tools can deal with arbitrary data streams), hardware-
friendly (arbitrary external hardware data sources can be
made to ‘speak’ ARCOM simply by encapsulating their
data output into appropriate ARCOM packets, an approach
very similar to ‘tunneling’ in, for example, TCP/IP networking)
and fast to process, access, and archive. Grill (2007) gives
details on all currently defined ARCOM packet and descrip-
tor types. Figure 6 shows the definition of an ARCOM_
FPGAPACKET packet as an example of a complex ARCOM
streaming data packet. Note that although the figure shows
the packet exactly as it is issued by version 4.0.1.2 of the
FPGA firmware, ARCOM does at no stage rely on the
detailed knowledge of descriptor offsets, order, or even
existence of any particular descriptor. Instead, because the
packet is made up of ‘descriptor’ entities, the packet can be
scanned for descriptors of interest (as identified by their
respective descriptor header), and the relevant data is
extracted/processed, whilst unknown/uninteresting des-
criptors and packets that are known not to contain any
descriptors of interest for the task at hand are simply skipped
over. This is in contrast to fixed data structures that rely on
every processing tool’s knowledge of the precise location
of any given data point in the structure and require updates
to all tools to accommodate extra data.

The authors would like to acknowledge that ARCOM’s
proprietary (although open and documented) data model
generally requires at least an additional conversion step
before the data can be fed into existing standard visualiza-
tion/processing tools. While deemed an acceptable trade-off
for our application at the time, this may be a serious
commitment to ask from potential users.Fig. 5 An ARCOM shared memory interface in use

Earth Sci Inform

Low-level support tools

A number of command-line based tools enable day-to-day
operation and maintenance of ARCOMbased systems and are
part of the ARCOM distribution. These include the ARCOM
command-line CORBA message dispatcher (sendcmd) to
interact (i.e. start, stop, etc.) with running ARCOM compo-
nents through their CORBA interface, a graphical user
interface (gui1.tcl) to graphically control the state of ARCOM
components, the ARCOM executor (executor.pl) to automat-
ically start up and shut down a complete ARCOM-based
system consisting of many components and shared memory
interfaces between them, as well as several ‘ARCOM packet
tools’ to spy on, retrieve, display the content of, filter, extract
data from ARCOM packet streams and live shared memory
interfaces.

Scope and limitations

It needs to be emphasized that the ARCOM architecture does
not attempt to solve data streaming, routing and processing
issues arising in (potentially wireless and/or ad-hoc) distrib-
uted sensor network applications (Akyildiz et al. 2002). The
ARIES riometer instrument design still follows the more
traditional design paradigm of many “dumb” sensors being
attached to a small number of processing nodes. The primary
goal here is to seamlessly integrate data from a variety of
inputs into one common data “stream,” route this stream to a
(small) number of co-located and/or remote nodes for
processing/archival, and do all this in a way that supports
the goals presented in the section on “Software goals” above.

Neither does ARCOM (intend to) provide a solution
for distributed query processing in sensor networks as

Fig. 6 Example of an
ARCOM_FPGAPACKET

Earth Sci Inform

described, for example, by Gehrke and Madden (2004), or
even an architecture for collective, distributed reasoning
(Strohbach et al. 2004). Rather, ARCOM’s pipelining
architecture is inherently good for in-sequence processing
of contiguous time series of data. Typical such processing
tasks in the field of riometry are on-the-fly (real-time)
visualization, beam forming, post-integration, filtering,
and quiet-day curve derivation and subtraction.

Data dissemination to users for non-real-time purposes
happens by the traditional means of transferring archived
stream data (files) as generated, for example, by the
ALogger component, for the time period of interest. A
commonly used method in the field is to make these files
available on a file transfer protocol (FTP) server. This is
in line with current practice for resident archives (RA),
but eliminates the need to archive multiple separate file
types for any given instrument as all data is embedded
into one single data stream.

Summary and outlook

The ARCOM software architecture provides a versatile run-
time environment for scientific instruments and can readily
be tailored to support a wide range of data acquisition and
processing tasks. ARCOM is not limited to ARIES, or even
riometers. The component-based approach, together with
high-speed pipelining through dedicated shared memory
interfaces, allows for unprecedented flexibility and run-time
reconfigurability of an ARCOM-based instrument, thus
successfully solving the ‘Wicked Problem’ of ever-evolving
systems. The ARCOM architecture and associated data
structures such as the ARCOM packet format are well
documented and various tools support the user during setup
and day-to-day operation. ARCOM is discussed in-depth in
(Grill 2007). Since its inception, ARCOM has also been
deployed for the Advanced Imaging Riometer for Iono-
spheric Studies (AIRIS). Other instruments have also
benefited from ARCOM concepts, for instance the new
high-speed photometer for optical emission measurements
(SPARKLE) developed by the author, which employs a
packet-based streaming data format very similar to the
one used by ARCOM. The Center for Geospace Studies
at SRI International has developed a distributed data
processing and transport architecture called ‘Data Trans-
port Network’ (Valentic 2002). This is used in many large-
scale projects, such as the Advanced Modular Incoherent
Scatter Radar (AMISR) at Poker Flat, Alaska (Heinselman
and Nicolls 2008). Future efforts will be undertaken
towards combining Data Transport Network’s excellent
performance in distributed systems and over unreliable
links with ARCOM’s real-time streaming capability

required for ‘instant-feedback’ type applications such as
interactive telescope control.

References

Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless
sensor networks: a survey. Comput Netw 38(4):393–422.
doi:10.1016/S1389-1286(01)00302-4

Bray T, Paoli J, Sperberg-McQueen CM, Maier E, Yergeau F, Cowan
J (2006) Extensible markup language (XML) 1.1. Technical
report, The World Wide Web Consortium (W3C). Available from
http://www.w3.org/TR/xml11/

Christiansen WN, Mathewson DS (1958) Scanning the sun with a
highly directional array. Proceedings of the Institution of Radio
Engineers, 46:127ff

Deacon J (2002) Design patterns. Technical report, Matrice, London, UK
Detrick DL, Rosenberg TJ (1990) A phased-array radiowave imager for

studies of cosmic noise absorption. Radio Science, 25(4):325–338
ETSI (1997) Digital video broadcasting (DVB); a guideline for the use

of DVB specifications and standards. TR 101 200. Technical
report, European Telecommunications Standards Institute. Avail-
able from http://www.etsi.fr

Gamma E, Helm R, Johnson R, Vissides J (1995) Design patterns.
Addison-Wesley, Reading

Gehrke J, Madden S (2004) Query processing in sensor networks. IEEE
Pervasive Computing 1:46. doi:10.1109/MPRV.2004.1269131

Grill M (2007) Technological Advances in Imaging Riometry. PhD
thesis, University of Lancaster

Hagfors T, Grill M, Honary F (2003) Performance comparison of
cross correlation and filled aperture imaging riometers. Radio
Science, 38(6):17/1–17/5. doi:10.1029/2003RS002958.

Heinselman CJ, Nicolls MJ (2008) A Bayesian approach to electric
field and E-region neutral wind estimation with the Poker Flat
Advanced Modular Incoherent Scatter Radar. Radio Science

Little CG, Leinbach H (1959) The riometer—a device for the continuous
measurement of ionospheric absorption. Proc IRE 47:315–320

Mills BY (1952) The distribution of the discrete sources of cosmic
radio radiation. Aust J Sci Res 5(2):266–287

Mills BY, Little AG (1953) A high-resolution aerial system of a new
type. Aust J Phys 6:272–278

Murayama Y, Mori H, Kainuma S, Ishi M, Nishimuta I, Igarashi K,
Yamagishi H, Nishino M (1997) Development of a high-
resolution imaging riometer for the middle and upper atmosphere
observation program at Poker Flat, Alaska. J Atmos Sol Terr
Phys 59(8):925–937

Nielsen E (2001) Antenna system for a high resolution imaging
riometer. Technical Report MPAE-W-03-01-04, Max-Planck-
Institut für Aeronomie, Lindau, Germany

Nielsen E, Hagfors T (1997) Plans for a new rio-imager experiment in
Northern Scandinavia. J Atmos Sol Terr Phys 59(8):939–949

Nielsen E, Honary F, Grill M (2004) Time resolution of cosmic noise
observations with a correlation experiment. Annales Geophysicae—
Atmospheres, Hydrospheres and Space Sciences 22(5):1687–1689,
SRef- ID:1432- 0576/ag/2004-22-1687

Sommerville I (2004) Software engineering, 7th edition. Addison Wesley
Strohbach M, Gellersen H-W, Kortuem G, Kray C (2004) Cooperative

artefacts: assessing real world situations with embedded technol-
ogy. In Ubicomp 2004: Ubiquitous Computing, Springer

Valentic T (2002) A novel approach to data retrieval and instrumen-
tation control at remote field sites using Python and Network
News, February 2002. Available from http://transport.sri.com/
TransportDevel/Sections/Documentation/Python10

Earth Sci Inform

http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1109/MPRV.2004.1269131
http://dx.doi.org/10.1029/2003RS002958
http://transport.sri.com/TransportDevel/Sections/Documentation/Python10
http://transport.sri.com/TransportDevel/Sections/Documentation/Python10

	A flexible streaming software architecture for scientific instruments
	Abstract
	Introduction
	Digital signal processing

	ARIES operating software
	Software goals
	ARCOM architecture
	Component-based
	Pipelined
	Shared memory interface

	ARCOM streaming data format
	Low-level support tools
	Scope and limitations

	Summary and outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

