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Abstract. A Hamiltonian approach is introduced for the reconstruction
of trajectories and models of complex stochastic dynamics from noisy
measurements. The method converges even when entire trajectory components
are unobservable and the parameters are unknown. It is applied to reconstruct
nonlinear models of rodent–predator oscillations in Finnish Lapland and high-
Arctic tundra. The projected character of noisy incomplete measurements is
revealed and shown to result in a degeneracy of the likelihood function within
certain null-spaces. The performance of the method is compared with that of the
conventional Markov chain Monte Carlo (MCMC) technique.
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1. Introduction

Measurements of complex (multidimensional, nonlinear) stochastic dynamical systems are
often missing essential information about the dynamical model and system trajectory
(hidden variables). For historic time series where measurements cannot be repeated, missing
information can be considered ‘lost’. Examples include: reconstruction of hidden variables
of climate evolution [1] from observable isotope concentrations; fluctuations in predator–prey
communities [2]–[6]; and coupled matter radiation systems [7]. How to reconstruct missing
information about a stochastic dynamical model, including the full system trajectory, from
incomplete noisy measurements is an unresolved scientific conundrum of long standing.

Recently, this problem has received considerable attention. A particle filter approach [8]
and the Markov chain Monte Carlo (MCMC) approach [9] were applied successfully to
reconstruct the model parameters alone. A simplified version, with all the dynamical variables
measured directly, was considered in [10]–[13] using Bayesian and log-likelihood approaches.
In the absence of measurement noise, attractor reconstruction [14] in time-delayed variables was
used [5] to infer model parameters; in the absence of dynamical noise, shooting and recursive
approaches were applied to reconstruct both the parameters and the trajectory [15]. The problem
has remained unresolved, however, for the practically important case where hidden dynamical
variables, measurement noise and dynamical noise all coexist together. In this case, unknown
dynamical model parameters are trading against hidden trajectory components within certain
null-spaces leading to a quasi-degenerate likelihood function with a very complex ‘landscape’
and numerous local minima (cf [15]).

In what follows, we present a solution of this general problem based on a novel Hamiltonian
formalism derived from the first principles of stochastic dynamics [16]–[19] within the
maximum likelihood estimation (MLE) framework. The key result is the discovery of the
Hamiltonian equations underlying the MLE problem, by analogy with the Wentzel–Friedlin
theory [17] of large fluctuations. It reveals the complex structure of the likelihood and provides
for robust convergence. We apply it to the analysis of an archetypical problem in nonlinear
dynamics and statistics: noise-driven rodent–predator oscillations [2, 3, 5, 6] for which the
predator population could not in practice be observed. We show that, contrary to earlier
beliefs [2, 3, 5, 6], noise-corrupted measurements of the prey dynamics alone are a sufficient
basis for computing both the likelihood of the predator population and the ecological model
parameters. We compare the performance of the method with that of the conventional [12, 13]
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Figure 1. (a) Measured population dynamics of small rodents in Finnish
Lapland, 1952–1992 [20] (yellow dots) and the solution of the optimization
problem (dashed line). (b) The hidden dynamics of the specialist predator
population, recovered by use of (1). The inset shows a cross section of the
weighted distribution of dynamical trajectories for 1956 (arrow in main figure).

MCMC technique. Our formalism promises to be useful, not only for the analysis of population
dynamics with hidden variables (see e.g. several thousand time series in the database [20]), but
also in many other disciplines and contexts.

2. A problem in ecology

Figure 1(a) plots N (t) time-series data (points) for a rodent (prey) population density in
Finnish Lapland [20]. Such cyclic behavior among small mammalian species has preoccupied
population ecologists for decades. Perhaps on account of its stochastic multiannual quasi-
periodicity, and difficulties in measuring predator numbers, there is still no agreement on the
mechanisms of oscillation, nor of the reasons why some populations are cyclic and others are not
(e.g. noncyclic lemming populations in Arctic Canada [2, 3, 21]). In these settings, the ability to
discriminate between various models by inferring both the model and the unobserved population
is especially useful. In the example we consider here, the problem is to use a limited number (80)
of noise-corrupted measurements to recover both the unmeasured predator population density
P(t) and the underlying nonlinear stochastic dynamical model. To solve it, we introduce a
Hamiltonian approach. In doing so, we chose from among the various predation models [2, 3]
one that distinguishes between the specialist and generalist predators that respectively promote
and suppress the cyclic behavior. This particular model explains many observed features of
rodent–predator dynamics and can be written as [2, 3, 5]

Ṅ = r N fn(σn, t) −
r N 2

k
−

g N 2

N 2 + h2
−

c N P

N + d
,

Ṗ = s P f p(σp, t) − s q P2 N−1.

(1)

Functions fn,p(σn,p, t) = (1 − en,p sin(2π t + φn,p) + σn,pξn,p(t)) in (1) represent the modulation
of the birth rate by periodic (seasonal) and stochastic forcing with amplitudes en,p and σn,p

respectively, and φn,p are unknown phase shifts of periodic forcing. ξn,p(t) are mutually
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uncorrelated zero-mean white Gaussian dynamical noise sources; r and s are, respectively,
the intrinsic rates of prey and predator growth; k is the habitat’s prey-carrying capacity, which
determines the saturation level of the prey population in the absence of predators. The effect
of generalist predators (e.g. foxes) whose population does not change with N is encapsulated
within the term ∝ N 2 with coefficient g (maximum mortality rate). The effect of the specialist
predators (small mustelids) believed to maintain the oscillatory prey dynamics is described by
the term ∝ N P , with maximum killing rate c. However, the predator population is notoriously
difficult to study in the field, so that the corresponding density P(t) is an unmeasured (hidden)
variable. The measured rodent density N ′(t) is related to the actual (unknown) value N (t) via
N ′

= Neσ obsη(t) where η(t) is white Gaussian measurement noise of unit intensity.
The precise functional forms are known neither for predation nor for the predator

response, and some modifications of equations (1) have been considered [5]. By a change of
variables x1(t) = log(N (t)/k ′), x2(t) = log(q ′ P/k ′) (for known nominal values of the scaling
coefficients k ′ and q ′) the predator–prey and the measurement equations are transformed into a
standard [8]–[15] form with noise entering the equations only additively

ẋi(t) = Ki(x(t), c) + ξi(t), ym =

L∑
i=1

Bmi xi + βm. (2)

Here x(t)={xi(t)}L
i=1 and {ym(t)}M

m=1 are the state vector trajectory and observed time series,
respectively. The existence of hidden variables implies that M < L (L = 2 and M = 1 in (1)).
{Ki}

L
i=1 are components of a drift vector field with (unknown) model parameters c =

{c1, . . .} and Bmi is an M × L measurement matrix. ξi(t) and {βm(t)} are zero-mean
components of white Gaussian processes characterized by L × L and M × M correlation
matrixes D̂ and N̂, respectively (M 6 L). The stochastic model (2) is characterized by
the full set of unknown parameters M≡ {c, B̂, D̂, N̂}. For our particular problem M=

{r, s, e1, e2, k, g, c, q, h, d, φn, φp, σn, σp, σobs}, the measurement matrix Bi j = δi1δ j1, and the
vector fields are

K1 = r fn(σn, t) −
rk ′

k
ex1 −

(g/k ′) ex1

e2x1 + (h/k ′)2
−

(c/q ′) ex2

ex1 + d/k ′
, K2 = s f p(σp, t) −

s q

q ′
ex−x1 .

The standard form (2) represents a generalization that can be applied to a great variety of
stochastic dynamical model reconstruction problems with hidden variables.

3. Hamiltonian formalism for dynamical inference

3.1. General solution

We now formulate the general inference problem of finding unknown model parametersM and
unobserved trajectory components (here x2(t)) in probabilistic terms. A key statistical quantity
is the likelihood probability density functional (LPDF), which is proportional (within the MLE
framework) to the posterior distribution PY[x(t);M] representing the joint probability density
that the system trajectory is x(t) and that the system parameter values are M, conditioned
on the observed time series Y = {y(tm), tm = m h}

K
m=1. It can be written as PY[x(t);M] =

AY exp (−SY[x(t); M]), where AY is a normalization constant. A negative log-likelihood
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functional SY[x(t); M] can then be found using the path-integral approach to fluctuational
dynamics [18, 19], as

SY =
1

2

∫ T

0
dt

(
Lyx +Lx

)
+
K
2

ln det D̂N̂. (3)

Here Lyx = [y − B̂ x]T N̂−1[y − B̂ x] and Lx = [ẋ − K(x, c)]T D̂−1[ẋ − K(x, c)] + ∂K(x,c)
∂x with

x = x(t), y = y(t). Also T = Kh where K is the number of data points, h is the sampling time,
and M 6 L implying the existence of hidden variables. Despite the hidden dynamical variables
not being measured directly, the functional SY (3) contains the dynamical coupling between
the variables via the force fields Ki(x1, x2). If the measurements provide information sufficient
to pin down both the key model parameters of the system and its trajectory, the joint LPDF
PY will be well localized in the vicinity of its maximum, thus revealing the most probable
trajectory x∗(t) and the parameter valuesM∗ that minimize the functional SY for a given set of
measurements Y .

We solve this variational problem by introducing a new paradigm in which SY is viewed
as the mechanical action of an auxiliary Hamiltonian system with coordinate x, momentum
p = D̂−1(ẋ(t) − K) and a Hamiltonian function H(x, p)

H(x, p) = −(1/2)
[
(y − B̂ x)T N̂−1(y − B̂ x) − ∂K/∂x + 2Kp + pT D̂ p

]
. (4)

The extremum of SY in the joint space (x(t),M) is then found by solving the coupled
variational problems

δSY/δx(t) = 0, ∂SY/∂M= 0. (5)

The first condition corresponds to a solution of the boundary value problem (BVP) for the
Hamiltonian equations

ẋ = K + D̂p,

ṗ =
1

2

∂2K
∂x2

−
∂K
∂x

p − (y − B̂ x)T N̂−1B̂
(6)

satisfying the boundary conditions p(0) = p(t) = 0. This BVP can be solved very efficiently
using, e.g. the results of [22]. An interesting general property of this solution is that the
difference between measured data y(t) and x(t) is fedback in the last term of the second equation
in (6). This term effectively acts as a ‘control force’ of an amplitude inversely proportional to
the measurement noise intensity driving the x(t) towards its most probable value at a fixedM.
We then fix the inferred trajectory x(t) and update the values of the parameters in the set M,
using an analytic solution [11] of the second variational problem, ∂SY

∂M = 0. This procedure
is iterated until the desired convergence is achieved. The outcome is the most probable
system trajectory x∗(t) and set of model parameters M∗ providing a minimum of the action
functional SY . It corresponds to a point p∗=(x∗(t),M∗) in the joint trajectory–parameter space.

3.2. Application to the ecological problem

Note that the accuracy of the presentation (3) depends strongly on the sampling rate 1/h.
For the particular ecological problem (1), it was possible to simulate densely-sampled data by

New Journal of Physics 11 (2009) 053012 (http://www.njp.org/)

http://www.njp.org/


6

0

5

10
−10

−5

0

0

0.2

0.4

rk ′/k
r

ρ(
r,

rk
′/k

)

(a)

−0.2

0.8

1.8
2.5

−2.5
−1.5

−0.5
0.5

0

10

20

sq/q ′

sq/q ′

s

ρ(
s,

sq
/q

′) (b)

0

5

10
−10

−5

0

0

500

1000

−rk ′/kr

S
Y
(r

,r
k′

/k
)

(c)

0

1

2

−2
−1

0

0

40

80

s

S
Y
(s

,s
q

/q
′) (d)

Figure 2. Weighted distributions of the inferred values of the model parameters:
(a) r and rk ′/k and (b) s and sq/q ′, and the corresponding action functions
(c) SY(r, rk ′/k) and (d) SY(s, sq/q ′). Their likelihood distributions are well
localized around expected values r = 5.69 ± 0.49, k = 76 ± 17, s = 1.08 ± 0.31,
q = 43 ± 22, g = 0.12 ± 0.3, e1 = 1.4 ± 0.4, e2 = 1.0 ± 0.5 which are close to
the values considered in the earlier ecological research. The projections of the
points p∗ onto the two-dimensional (2D) parameter planes are shown in the top
planes of (a) and (b) by black dots.

introducing a spline interpolation of the experimental points. Convergence was guaranteed by
the fact that the data set has nine points per period of oscillation.

Next, we note that in the presence of hidden variables slight changes in the model
parameters can lead to significant changes in the system’s trajectory, giving rise to a complex
shape for SY . This is the case for the problem in hand because, with a periodic driving force,
(1) can undergo a transition to chaos as the system parameters vary [2, 5]. To investigate the
shape of SY we define a window of possible values for each model parameter within the set
of plausible parameter ranges elucidated in earlier research [2, 3, 5, 6]. For many parameters
the windows are very broad. We show some of them as rectangular planes in figure 2. Starting
from a random point inside the predefined range we find a point p∗ corresponding to one of the
solutions of the dual variational problem (5). Random restarts are needed if there is (as in our
case) more than one solution p∗. Projections of the points p∗ onto the 2D parameter plains and
corresponding 3D plots of the LPDF and SY are shown in figure 2.
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For example figure 2(a) shows the projection of the LPDF on the plane of parameters
(r, rk ′/k). In this figure, all the parameters except parameters r and rk ′/k are kept fixed
at their mean values. Parameters (r, rk ′/k) are then chosen from the uniform distribution
shown in the background of the figure. After one step of the double optimization procedure
described above, the optimal values of the trajectory and parameters r and rk ′/k are obtained
p∗ = (x∗(t), r∗, (rk ′/k)∗) and the corresponding value of the cost function S∗

Y(p∗) is calculated.
The procedure is repeated N = 20 000 times. Then the projection of the LPDF surface on the
(r, rk ′/k) plane (figure 2(a)) is found as follows:

P∗

Y,i j =
ρi j exp(−S∗

Y,i j)∑I,J
i, j=1 ρi j exp(−S∗

Y,i j)dri d(rk ′/k) j

,

ρi j exp(−S∗

Y,i j) =

Ni j∑
m=1

exp(−S∗

Y(p∗,m)),

(7)

where ρi j is the density of points in the bin (i j), S∗

Y,i j is the mean value of the cost function
in this bin, Ni j is the subset of N found in the bin (i j), I = 60 and J = 40 are the number of
bins in r and rk ′/k directions, and dri d(rk/k ′

j) is the size (area) of the bin. The corresponding
projection of the cost function (figure 2(c)) is found as

S∗

Y,i j(p∗) =
ρi j(p∗)S∗

Y,i j(p∗)

− log
(∑I,J

i, j=1 ρi j(p∗) exp(−S∗

Y,i j(p∗))dri d(rk ′/k) j

) ,

ρi j S
∗

Y,i j =

Ni j∑
m=1

S∗

Y(p∗,m).

(8)

Projections of the LPDF and cost functions on the plane (s, sq/q ′) (figures 2(b) and (d)) are
found in a similar way.

It can be seen in the density plots that the LPDF has a very steep localized ridge
whose top forms a ‘line’ R= {p`

∗
} = {(x`

∗
(t),M`

∗
} in the joint parameter–trajectory space.

Fluctuations along R are large and non-Gaussian, while fluctuations transverse to the ridge top
are strongly suppressed (figure 2). The mechanical action along R varies slightly, each point
on R corresponding approximately to a solution of (5). This difference in scales of fluctuations
and the quasi-degenerate forms of SY and LPDF can be attributed to the projective character
of the measurements with M < L: they are incapable of resolving certain tradeoffs between
the parameters and hidden trajectory components. The different points along R correspond to
quite different time traces of the hidden trajectory component (predator oscillations shown in
figure 1(b)) but they all fit very well to the set of prey population observations. Such tradeoffs are
intrinsic to any given model and their understanding is crucial for experts applying the technique
for data interpretation and model discovery.

4. Validation of the new dynamical inference approach

Next, we validate the approach by applying it to the inference of population dynamics in a
stoat–lemming community [6] and by comparing it to the MCMC method. The corresponding
data (figure 3) are similar to the earlier set [5] but with an important difference: the dynamics
of both populations, prey N (t) and predator P(t), were recorded. We assume initially, however,
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Figure 3. Populations of (a) lemmings and (b) stoats (individuals ha−1) observed
in the high-Arctic tundra (1988–2002) [6] are shown by yellow ellipses. Jagged
thin solid lines show the initial guesses for each population. Dash-dot (red)
lines show the population dynamics inferred from (1) using the Hamiltonian
approach and assuming that only the lemming population was recorded, with
a measurement error of 0.1, while the stoat dynamics remained hidden. Dashed
(blue) lines are from MCMC after 40 000 iterations of the whole trajectory, under
the same assumption.

that only the prey population was measured, and subsequently compare the inferred predator
population with the measured one. The dynamical model [6] for this community is rather
elaborate. However, given the close similarity between the two communities it is instructive
to perform such a comparison treating (1) as a simplified model. Our results are shown in
figure 3: the measured predator trajectory is reproduced, including the correct slope and scale
of the oscillations, unlike the earlier simulations [6]. With sufficient care, the MCMC using a
Gibbs sampler with the Metropolis–Hastings steps method can show comparable performance.
We have found for a number of models, however, that convergence of the Hamiltonian method
is faster and more robust with respect to the initial conditions due to the existence of local
minima corresponding to nonsmooth time functions P∗(t). These local minima slow down the
convergence of the MCMC algorithm (see e.g. dashed blue curve in figure 3), but are excluded
from the start in our Hamiltonian approach (4)–(6).

5. Conclusion

In conclusion, our Hamiltonian approach facilitates inference of parameters and hidden
(unobserved) trajectory components of a nonlinear dynamical model in the presence of
dynamical noise and measurement errors. The application of the method to ecological problems
leads to the conclusion that a lack of observational data for predator populations need no longer
constitute a fundamental obstacle to the inference of hidden population dynamics and ecological
parameters from noisy measurements [2, 3, 5, 6]. The key limitation of the proposed method
is that it relies on the Euler approximation in derivation of the cost function. Correspondingly,
the accuracy of this approximation depends strongly on the sampling rate, which has to be
dense enough. Here, we simulated dense sampling by spline interpolation and convergence
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was guaranteed by the data set having nine periods of population oscillation with nine points
per period. Note, however, that the convergence of the BVP solution does not require dense
sampling and in the future the restrictions on the sampling density can be relaxed. In general,
the dependence of the uncertainty of inference on the number of data points is nontrivial in
character and will be discussed in detail elsewhere. The method has allowed us to reveal a
quasi-degeneracy of the log-likelihood along a hyperplane R in the joint parameters–trajectory
space. The existence and shape of R reflects tradeoffs between parameters r and k ′/k (s and
q/q ′) on one hand, and hidden trajectory components on the other. Importantly, our procedure,
unlike MCMC, avoids sampling in the trajectory space. Instead, it relies on a continuous-in-time
solution of the deterministic auxiliary problem (6), thereby exploiting recent advances [22] in
tackling the BVP. The method will also be applicable quite generally to cases where some
state variables could not be recorded, e.g. those mentioned in the introduction [1, 23]. It
could be particularly useful in the context of physiological measurements relating difficult-
to-access parameters to noninvasively measured data [24], and to cases where dynamical
variables are intrinsically hidden and cannot be measured experimentally, even in principle:
e.g. flow parameters in aerospace applications [25] and susceptible and exposed populations in
epidemiology [23].
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