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Abstract. An extended Bayesian inference framework is presented, aiming to infer

time-varying parameters in nonstationary nonlinear stochastic dynamical systems.

The convergence of the method is discussed. The performance of the technique is

studied using, as an example, signal reconstruction for a system of neurons modeled by

FitzHugh-Nagumo oscillators: it is applied to reconstruction of the model parameters

and elements of the measurement matrix, as well as to inference of the time-varying

parameters of the non-stationary system. It is shown that the proposed approach is

able to reconstruct unmeasured (hidden) variables of the system, to determine the

model parameters, to detect stepwise changes of control parameters for each oscillator,

and to track the continuous evolution of the control parameters in the adiabatic limit.
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1. Introduction

The inference of parameters from time-series, for models based on stochastic nonlinear

dynamical systems, is an open field that is currently attracting much attention on

account of its importance and wide applicability. Such models can reproduce a diversity

of complex phenomena in technology and nature, providing the information needed

for diagnosis of faults, prognosis of future conditions, or control, in e.g. reactors [1],

helioseismology [2], physiology [3] and neuroscience [4].

Much effort has been devoted to the solution of the problem of parameter inference

under different conditions [3, 5, 6, 7, 8, 9, 10, 11, 12, 13]. However, time variation of the

control parameters in non-stationary systems, and how the inference algorithm can be

adjusted to accommodate them, has not yet been widely explored. It is therefore highly

desirable to extend the inferential framework in this direction, hoping to encompass

almost-real-time tracking of time-varying parameters.

The algorithms developed earlier all have their own particular advantages and

disadvantages. The disadvantages include e.g. the requirement of extensive numerical

simulation [9, 10, 13], or the need for very large amount of data [5, 7] (cf. econometric

series analysis [14]). Their adaptation for parameter-tracking in non-stationary

stochastic nonlinear systems cannot be done in any obvious way. Moreover, most

calculations of flows produce biased estimates due to their lack of a term related to

the Jacobian of transformation from stochastic to deterministic variables. This is a

very important issue, because this term gives [15] a leading-order contribution to the

inference results in the presence of strong dynamical noise. In our own earlier work we

introduced an analytic solution of the dynamical inference problem [15, 16] based on

Bayesian statistics and a path-integral formulation of stochastic dynamics. As a direct

result, fast, unbiased estimation of model parameters became possible. The technique

also provides optimal compensation for dynamical noise.

In the present paper we extend the Bayesian framework, allowing us to infer

information encoded in the time-varying control parameters of a nonlinear non-

stationary system, almost in real time. The parameter-tracking algorithm is effectively

embedded into the learning inferential framework, enabling us to reconstruct both the

model parameters and also the unmeasured (hidden) variables of the system. Such an

inferential framework can have a wide range of interdisciplinary applications, including

nanosensors [17], physiology [18], and aerospace [19, 20].

We consider an application of the scheme to a model of physiological signalling.

In particular, we demonstrate how the technique might be used for the analysis of

signals from neuronal systems. Their dynamics have not yet been well understood,

and the highly nonlinear and non-stationary nature of their behavior makes it difficult

to apply standard techniques for the reliable inference of control parameters. Internal

and measurement noises in these systems strongly affect their dynamics, and the time

variation of the control parameters is directly related to information coding. We show

that our approach is able to decode the time evolution of the control parameters
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in a system of neurons modeled as a set of FitzHugh-Nagumo (FHN) equations

[21, 22, 23, 24], including detection of large stepwise changes for either oscillator

and continuous variation in the adiabatic limit. We illustrate this ability by our

reconstruction of the system parameters assuming that the original parameters of the

model are unknown, that only one coordinate of each oscillator is available for recording,

and that the measurements are mixed by a measurement matrix.

The paper is organized as follows. Sec. 2 presents the general approach of the

Bayesian inferential framework, and the main idea of the inferential framework for non-

stationary dynamics. In Sec. 2.2 the theory of Bayesian inference for a system of L

FHN oscillators is developed, providing the basis for physiological applications; and in

Sec. 2.3 the case of nonstationary dynamics is discussed. Sec. 3 presents simulation

results. In Sec. 4 results are summarized and conclusions are drawn.

2. Bayesian inferential framework for non-stationary dynamics

2.1. A general approach

The fundamental problem in dynamical inference can be defined as follows. An M -

dimensional time-series of observational data Y = {yn ≡ y(tn)} (tn = nh) is provided,

and the time variation of the unknown model parameters and the unknown dynamical

trajectory M =
{

c,b, D̂, M̂, {xn}
}

is to be inferred, under the conditions that the

underlying dynamics can be described by a set of L-dimensional (L ≥ M) stochastic

differential equations in the form

ẋ(t) = f(x(t)|c) +
√

D̂ξ(t), (1)

and that the observations Y are related to the actual unknown dynamical variables

X = {xn ≡ x(tn)} via the following measurement equation

y(t) = g(x(t)|b) +
√

M̂η(t). (2)

Here g(x|b) is a measurement function, ξ(t) and η(t) are L- and M -dimensional

Gaussian white noises, and D̂ and M̂ are L × L and M × M dimensional dynamical

and measurement diffusion matrices respectively. It is assumed that the sampling is

dense enough to use the Euler mid-point discretization; in this case Eqs. (1),(2) can be

discretized in the form

xn+1 = xn + h f(x∗
n|c) +

√

h D̂ξn,

yn = g(xn|b) +
√

M̂ηn,

}

(3)

where x∗
n = (xn+1 + xn)/2.

In Bayesian statistics a given prior density ρprior(M) that encloses expert knowledge

of the unknown parameters and the likelihood function ℓ(Y|M), the probability density

to observe {yn(t)} given choice M of the dynamical model, are both employed to
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calculate the so-called posterior density ρpost(M|Y) of the unknown parameters M
conditioned on observations through the use of Bayes’ theorem

ρpost(M|Y) =
ℓ(Y|M) ρprior(M)

∫

ℓ(Y|M) ρprior(M)dM (4)

The construction of the likelihood is of great importance because it contains all the

approximations of the theory. For independent white Gaussian noise sources, the

likelihood is given by a product over n of the probability to observe yn+1 at each time,

(see [25, 15]) and the minus log-likelihood function S = Sdyn + Smeas = − ln ℓ(Y|M)

can be written as

S =
N

2
ln |D̂| + h

2

N−1
∑

n=0

{

∂(f(xn)|c)k

∂xk

. + [ẋn − f(x∗
n|c)]T D̂−1 [ẋn − f(x∗

n|c)]
}

+
N

2
ln |M̂| + 1

2

N
∑

n=1

[yn − g(xn|b)]T M̂−1 [yn − g(yn,xn|b)] + (5)

+ (L + M)N ln(2πh),

where ẋn = xn+1−xn

h
and summation over k is implicit in the term ∂(f(xn)|c)k

∂xk

. Here Sdyn

and Smeas are the dynamical (the first two terms in the first line) and measurement

(next three terms) parts of the minus log-likelihood function.

An explicit calculation with an algorithm capable of minimizing Eq. (5) has been

provided in [25]. Basically it consists of an iterative optimization of S in the space of

dynamical paths {xn} and in the space of parameters
{

c,b, D̂, M̂
}

.

Let assume for now that the hidden dynamical variables {xn} are given and let focus

our attenction only on the minimization of Sdyn. The key point is the parameterization

of the fields in respect of the parameter vector c:

f(x|c) = F̂(x) c, (6)

where matrix F̂ takes the form

F̂ =













φ1 . . . 0
...

. . .
...

0 . . . φ1






. . .







φF . . . 0
...

. . .
...

0 . . . φF












, (7)

and {φi} are the F -dimensional sets of arbitrary base functions.

With this linear parameterization of f , and given that the log-likelihood quadratic

in f (see Eq. 5), we obtain a quadratic log-likelihood in respect of the vector parameter

c. Hence, using a multivariate normal distribution for the prior probability immediately

leads to a multivariate normal distribution for the posterior. This is highly desirable

for two reasons: (i) from one side a Gaussian posterior is computationally extremely

convenient because there is the guarantee of a unique maximum, the mean vector

and covariance matrix completely characterize the distribution and give us the most

significant information; (ii) but most of all the multivariate normal posterior can be

used again as a prior in presence of a new block of data and knowledge about the

system can easily be updated. This last feature is essential for any real time application
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because it ensures that the complexity of the algorithm does not change with the length

of the input data-stream.

With a multivariate normal distribution as a prior for parameters c, with mean c̄,

and covariances Ξ̂−1
prior, the stationary point of Sdyn is calculating recursively with the

following equations (cf. [15]):

〈D̂〉 =
h

N

N−1
∑

n=0

[

ẋn − F̂n c̄
] [

ẋn − F̂n c̄
]T

, (8)

〈c〉 = Ξ̂−1
X (D̂)wX (D̂), (9)

wX (D̂) = Ξ̂−1
priorc̄ + h

N−1
∑

n=0

[

F̂T
n D−1 ẋn − v(xn)

2

]

, (10)

Ξ̂X (D̂) = Ξ̂prior + h

N−1
∑

n=0

F̂T
n D̂−1 F̂n, (11)

where F̂n ≡ F̂(xn), and the components of the vector v(x), are

vm(x) =
L

∑

l=1

∂Flm(x)

∂xl

, m = 1, . . . , F. (12)

In absence of any prior knowledge about the system, a non informative prior can be

used: the limit of an infinitely large normal distribution is set with the computational

initial value of Ξ̂prior = 0 and c̄prior = 0.

At this point an optimization technique for reconstruction of the driving dynamics of

X is needed. The problem is far too vast to be reviewed in any detail in the present work.

Suggestions for reconstruction of the best path in the dynamical space range from the

Markov Chain Monte Carlo (MCMC) techniques [26], to the extended Kalman filter [10],

to the Langevin method of sampling the posterior [27]. To bound our discussion of how

to tackle the problem in the case of non-stationay dynamics we will not dig into any

optimization technique in the space of observable variables. Therefore, in the latter, a

physiological example will be considered where the observational variable y is noiseless

and has the same dimension of the dynamics-driving variable.

2.2. System of FitzHugh-Nagumo oscillators

To appreciate how non-stationary Bayesian inference could be applied, we want to

provide a physiologically relevant example, and so we consider a typical situation of

neuron readout. We will simulate neurons firing at the rate of ∼5-10 s−1 and our

explicit aim will be to reconstruct the varying parameters with a correlation of ∼500-

1000 ms. This means that we need a computational inference delay shorter that 500 ms,

corresponding to a few periods of firing of the action potential. To model this spiking

behavior we use the FitzHugh-Nagumo system in the form

v̇j = −vj (vj − αj) (vj − 1) − qj + ηj +
√

Dji ξi,

q̇j = −β qj + γj vj, (13)
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Figure 1. Time-series data generated by the model (13), (14) before and after mixing,

for the parameters given in Table 1. Parameters η1 and η2 fluctuate between 0.35 and

0.45. The (blue) solid lines show v1(t) and y1(t), and the (red) dotted lines show v2(t)

and y2(t).

〈ξj(t) ξi(t
′)〉 = δi j δ(t − t′), j = 1 : L.

This system (13) represents the simplified dynamics of L non-interacting neurons [22],

where vj models the membrane potentials and qj are slow recovery variables. Parameters

ηi control the potential threshold for the self-excited dynamics, controlling the firing rate,

and they will be considered as time-varying parameters. Realistically, the membrane

potential is difficult to measure from each single neuron, so we will assume that the

variables vi remain unobserved, and observable readout consists of mixed variables yi

defined as

yi = Xij vj . (14)

where Xij is an unknown invertible mixing matrix whose coefficients have to be inferred.

Examples of noisy signals before and after mixing are presented in Fig. 1. Often in

such systems the measurement noise is negligible, and we therefore assume no noise

in Eq. (14). This assumption will also allow us to avoid global optimization and to

estimate better the performance of the Bayesian inference itself. Our task is to infer

the set of model parameters M = {ηi, αi, qi(0), γi, Dij, Xij}, with on-line tracking of the

time-varying parameters {ηi} for each neuron, starting from the time series data {yi}.
Following [32], a convenient way to treat this problem is by integration of the slow

recovery variable qi of equations in (13),

qj(t) = γj

∫ t

0

dτe−β (t−τ)vj(τ) + e−β tqj(0). (15)

and to substitute (15) into the top equation in (13), obtaining

v̇j = −αjvj + (1 + αj)v
2
j − v3

j + ηj (16)

− γj

∫ t

0

dτe−β (t−τ)vj(τ) − e−β tqj(0) +
√

Dijξj.
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with qj(0) as a set of initial coordinates for the unobservable variable qj(t), thus

reducing the reconstruction of unobservable variables qj(t) to the inference of the L

initial conditions qj(0).

The variables vj(t) are also not observed so, using Eq. (14) and substituting

v = X−1y into (16), we obtain in vector notation an explicit form for the dynamics of

the readout variable:

ẏ = Xα
(

X−1y
)

+ X(1 + α)
(

X−1y
)2

+ X
(

X−1 y
)3

+ (17)

+ e−βtXq0 −
∫ t

0

eβ(t−τ)Xγ
(

X−1y
)

dτ + Xη + X
√

Dξ(t),

where q0 = q(t = 0), α and γ are matrices with αi and γi on the respective diagonals,

and

(

X−1 y
)n

=











(

∑L

i=1 x1iyi

)n

. . . 0
...

. . .
...

0 . . .
(

∑L

i=1 xLiyi

)n











.

Here xij are elements of the inverse matrix X−1. The dynamics represented in Eq. (17)

can be described by a set of base functions for the L dimensional readout y and their

respective coefficients. The minimal set of base functions for Eq. (17) is

φ(x) = {1, y1, ..., yL, y2
1, y1y2, ..., y1yL, y2

2,

y2y3, ..., y2yL, ..., y3
1, y

2
1y2, ..., y

2
1yL, y3

2, y
2
2y1, ..., (18)

y2
2yL, ..., y2

LyL−1 , y3
L , Φ1, ..., ΦL , e−βt}

where Φi is defined as

Φi ≡
∫ t

0

yi(τ)eβ(τ−t) dτ.

Introducing a new notation for the coefficients of the transformed dynamics one can

write Eq. (17) as

ẏi = η̃i + α̃ijyj + b̃ik1k2
yk1

yk2
+ c̃ik1k2

yk1
y2

k2

+ e−β tq̃i −
∫ t

0

eβ(t−τ)γij yjdτ +

√

D̃ijξj(t), (19)

We notice that the number of base functions Nφ for the mixed dynamic is much

larger than the number of polynomial terms in Eq. (13)

Nφ = 2 + 2L +
L(L + 1)

2
+ L2 ,

and that increases as L2 with the number of systems.

Also, due to the symmetries of the system that have been introduced with the

substitution of the dynamics, the number of unknown coefficients of the system (17)

Nc is much larger than the number of parameters in the original dynamics and

Nc = Nφ × L + L2 + L(L+1)
2

.
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From Eq. (19) it is clear that the parameter set

M̃ = {η̃i, α̃ij, b̃ijk, c̃ijkl, γ̃ij, q̃i(0), D̃ij}

obtained by inferring the coefficients for the base functions of y differs from the original

M = {ηi, αi, bi, ci, γi, qi(0), Dij, Xij} .

The explicit relation between the two set of parameters M̃ and M can be worked out

by comparing Eqs. (16), (17) and (19):

η̃i = Xij ηj, (20)

α̃ij = Xim αm

(

X−1
)

mj
, (21)

b̃ijl = Xim (1 + αm)
(

X−1
)

mj

(

X−1
)

ml
, (22)

c̃jklm = Xji

(

X−1
)

ik

(

X−1
)

il

(

X−1
)

im
, (23)

γ̃i l = Xij γj

(

X−1
)

jl
, (24)

q̃i = Xij qj, (25)
√

D̃ij = Xik

√
Dkj. (26)

The inferential algorithm discussed in previous sections is able to select the optimal

posterior density in respect of the parameters of the transformed dynamics M̃. There

is no bijective function from M̃ to M because we are going from a space larger in

dimensions to a smaller one; the selection of the best original parameter cannot be done

via algebraic calculations. The problem is a constrained search for the maximum of the

posterior distribution within the set of original parameters. In practice, the log-posterior

i.e. a multivariate parabolic function, standard non-linear least-squares technique are

particularly efficient [29]. The problem of reconstruction of the original parameters M
can be stated in the following terms: we have the explicit transformation rule from

M to M̃ and we have the explicit density probability in respect of M̃ (the inferred

posterior). We have to find the maximum of the posterior subject to the constraint

represented by M. Employing a least-squares algorithm for this task means: (i) to

choose an initial evaluation of M0; (ii) to improve the initial condition in the direction

where the probability of the corresponding M̃0 is highest; and (iii) repeat the steps

till convergence is achieved. In the simulations that we carried out, the choice of the

initial M0 had no influence on the convergence. The initial guess of X is arbitrary set

as the unitary matrix. The initial values for αi can safely be chosen at random between

one order of magnitude greater or smaller than the coefficients α̃ij. In an FHN model,

the coefficients bi have no degree of freedom, and the relation bi = αi + 1 must hold,

suggesting the natural initial condition for bi. An analogous argument suggests that we

initialise ci = −1 accordingly to the FHN dynamics. Details of the application of this

technique for the recovery of the M parameter set have been explained in [32]. We note

that the redundancy of this approach lets one introduce unknown parameters for the

couplings between the FHN systems and the reconstruction of these parameters will bis

then a trivial extension.
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2.3. Non-stationary dynamics: a stepwise approach

The main idea of our approach consists of considering the parameters to be stationary

within reasonably short time-segments, infering parameters for this step. For each block

of data k the posterior probability density ppost(c) can be used as a prior for the next

block k + 1. Since our posterior probability is a multivariate Gaussian distribution

characterized by a mean vector cpost and a covariance matrix Ξ−1
post, it is easy to modify

this last quantity to take into account that some parameters, being non-stationary, could

have been drifted when considering the next block.

This approximation, where slowly-varying parameters can be assumed constant,

will be regarded as an adiabatic approximation. To consider it as a valid starting point,

some preliminary considerations are in order.

There are multiple timescales involved in the inferential problem and, when dealing

with non-stationary dynamics, the two most significant ones are the timescale that

defines the evolution of parameters τparam, and the timescale at which we acquire

information through the measurement τmeas. The first one can be regarded as an

approximate measure of the biggest change of the dynamical parameters

min
i

[

ci

(

dci

dt

)−1
]

≈ τparam

and it is an intrinsic property of the system. Conversely, the informational timescale is

limited by the sampling frequency h and the number Nstep of sampling points needed

to infer the form of the vector field with the desired precision. Thus

h Nstep ≈ τmeas.

In order to consider parameters to be constant during one step, the timescale condition

τparam ≫ τmeas

must hold. So the question can be posed in this way: how fast is the parameter

convergence, and how small can Ninf be for the timescale condition to hold? In the

following paragraphs we consider the inference of a set of FHN oscillators as a possible

application of this inference in short steps. Because the convergence of parameters

is crucial in relation to the first timescale, it will be kept as the central point of the

discussion.

3. Simulation results

3.1. Convergence speed for parameter inference

We are mainly interested in the qualitative behavior of convergence of parameters and

although what been presented so far applies to any number of FHN oscillators, we now

restrict ourselves to a pair of oscillators. We have analysed the convergence of the model
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parameters as a function of T = hN , where h is the sampling time-step and N is the

number of points in a block of data. Synthetic data for the 2 FHN oscillators have

been generated using the Heun scheme [31] to integrate the model (13), (14) and the

parameters as been chosen as in Table 1. Only the time-series data y1(t) and y2(t)

have been used as an input for the algorithm. Coefficients of the dynamics in Eq. (19)

have been inferred; use of these parameters has been made to reconstruct the original

parameters for the dynamics and the coefficients of the mixing matrix. Typical results

of the inference of the parameters and the results of the reconstruction of the mixing

matrix and the coefficients for the original dynamics are shown in Table 2. It can be

seen that convergence of order of 1.5% or lower is achieved within 30000 points, which

correspond to less than 1 s at a sampling rate of 35 kHz. To investigate the qualitative

behavior of the information gained as a function of number of available data-points we

have carried out the following test: we used a data stream 45000 points long and we

divided it in 9 blocks of data with 5000 points in each block. The division of the data-

stream into several blocks is meant to simulate the learning process of the inferential

machine: the posterior information of each block is used as a prior for the following block.

The reconstruction of parameters has been done after each block with the information

available at that moment. We repeated this procedure for 1000 runs : in each run a

random data sequence is generated from random initial conditions.It is then inferred

and the means of the parameters distribution are recorded. After each block we have a

statistical distribution of inferred parameters coming from a different realization of the

dynamics. The result of the test is presented in Fig. 2.

Matrix Ξ̂ in Eq.(11) is the inverse of the covariance matrix for parameters in the

posterior normal density and gives a measures of how sharply-peaked this distribution is

about its mean value. For a qualitative comparison between the parameters’ convergence

and the evolution of the biggest eigenvalues λi of Ξ̂−1 see [30, 32].

Next, we consider the efficiency of the method under non-stationary conditions.

3.2. Non-stationary dynamics

Let us assume that we have to deal with some non-stationary parameters. In particular

we will take ηi to be the varying parameters, keeping all the others fixed. To show

capability in dealing with this situation we perform three different tests. In the first

test the η1 and η2 change at random and in a step-like manner, and no other information

α1= 0.35 η1= 0.4

α2= 0.20 η2= 0.3

γ1= 0.0153 β = 0.0151

γ2= 0.0153

d11= 0.0002 d12= 0.00007

d22= 0.0002 d21= 0.00007

x11= 1.7 x12= 0.8

x22= 0.2 x21= 0.9

Table 1. Parameter values of the model (13), (14) used to generate stationary time-

series data.
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parameter real inferred % rel. error

η̃1 0.9200 0.924384 0.476522

η̃2 0.3500 0.351001 0.28600

b̃222 1.7550 1.758011 0.171567

b̃112 -2.1086 -2.114731 0.290762

X11 1.7 1.686459 0.796526

X12 0.8 0.794263 0.717092

X21 0.2 0.196746 1.626811

X22 0.9 0.898222 0.197610

η1 0.4 0.406227 1.556788

η2 0.3 0.302462 0.820660

α1 -0.35 -0.351992 0.569082

α2 -0.2 -0.200376 0.188228

b1 1.35 1.357427 0.550145

b2 1.2 1.203863 0.321885

c1 -1.0 -0.999520 0.047957

c2 -1.0 -0.999114 0.088582

Table 2. Inferred values of some of the mixed dynamics coefficients (first four lines),

and values of some of the reconstructed parameters. The inference is based on 30000

points. The actual values (second column) are compared with the inferred values (third

column). Relative errors are given in the last column.
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Figure 2. Typical example of parameter convergence and reconstruction of original

coefficients as a function of signal length. Convergences of parameter η̃1 (a) and of

the reconstruction of an element of the mixing matrix (b) are shown. The first point

corresponds to a block of 5000 data points; each successive point after that corresponds

to an additional 5000 data, as discussed in the text. Vertical bars show the standard

deviations of the inferred values, calculated over 1000 realizations.

is assumed; in the second test we demonstrate that inference of stepwise change of ηi

are detected much faster if we assume knowledge of the other parameters; and in the

third test η1 and η2 are allowed to change continuously and information about the other

parameters is assumed to be limited. In discussing these examples we do not aim to

cover all possible cases that might arise. Rather we selected these three tests in the
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hope of providing an overall view of how to apply the present algorithm and of how it

behaves under different circumstances.

First test Parameters η1 and η2 change at random in time in a step-like manner, and

remain constant between steps. The time interval between steps is approximately 5

periods of firing of the action potential. It contains one block of data with 20000 points,

corresponding to approximately 0.55 s. Other parameters of the model are fixed but

assumed unknown (the actual values are given in Table 1). At each step we infer all the

parameters. Their initial values are assumed to be zero and their initial dispersion to

be infinity as already discussed above. Fig. 3 presents the inference results.

Second test Parameters η1 and η2 change at random as in the previous test, but now

the other parameters of the model are fixed at known values. The time interval between

steps is only 1000 points, corresponding to approximately 0.03 s. At each step we infer

only parameters η1 and η2. From Fig. 4 it is clear that when other parameters are

known, the time required for inferring ηi is smaller by two orders of magnitude than in

the case when all parameters have to be inferred.

 0.2

 0.4

 0  1  2  3

η 1

t (sec)

(a)

 0

 1.5

 3

 0  1  2  3

x 1

t (sec)

(b)

 0.2

 0.4

 0.6

 0  1  2  3

q 1

t (sec)

(c)

Figure 3. Inference of the parameters of two uncoupled FHN systems mixed by the

measurement matrix. It is assumed that η1 and η2 change step-wise while all other

parameters of the system are fixed and unknown. (a) The inferred values of η1 (dashed

red lines) are compared with their true values (full blue lines). (b) Measured mixed

values of the coordinate x1(t). (c) Inferred values of the coordinate q1(t) (red dotted

line) are compared with its true values of (blue solid line). The other parameters are

fixed at the values given in Table 1. The noise amplitude was
√

d1 =
√

d2 = .01225.

Third test In our final test, we infer smoothly varying parameters η1 and η2 with added

noise, without knowing any other parameters of the model. The partial information on

parameters is simulated by inferring parameters from the first block (with 30000 points)

of stationary dynamics; then for all other blocks of data we use acquired information

to fix the model parameters constant at their inferred values, and we track in time

only variations of the control parameters ηi. Each block of data (except the first one)

contains 12000 points and has a time length of t ≈ 0.34 sec. The inferred time evolution

of the control parameters ηi is compared with its true variation in Fig. 5. It is evident

from the figure that the method allows us to infer the unknown constant parameters
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Figure 4. Inference of the model parameters of two uncoupled FHN systems mixed

by the measurement matrix. It is assumed that η1 and η2 change step-wise while all

other parameters of the system are fixed and known. (a) Inferred values of η1 (short

elements of red dashed line) are compared with their true values (short elements of full

blue line) as a function of time. (b) The time-trace of the measured coordinate x1(t).

(c) The time-trace of the inferred coordinate q̃1(t) (red dotted line) is compared with

its true value q1(t) (blue solid line). The values of the other parameters are fixed, as

given in Table 1. The noise amplitude was
√

d1 =
√

d2 = .01225.
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 0.3

 0.4

 0.5
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 0.6

 1.7

 2.8

 0  1  2

x 1

t (s)

(b)

 0.1
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Figure 5. Inference of η1 and η2, while smoothly varying in the presence of noise.

No prior knowledge of the model parameters is assumed. (a) The inferred values of

η1 (dashed red lines) are compared with their true values (full blue lines). (b) The

measured time-trace of the mixed coordinate x1(t). (c) The inferred time-trace of the

mixed coordinate q̃1(t) (dashed red line) is compared with its true value q1(t) (full blue

line). The values of the other parameters are given in Table 1. The noise amplitude

was
√

d1 =
√

d2 = .01225.

of the model, and then also to use this information to track in time the non-stationary

control parameters of the system with a time resolution of the order of 0.3 sec.

4. Conclusion

The inferential framework presented above is an extended version of the that proposed

in [15] . It is based on Bayesian statistics and a path-integral formulation of stochastic

nonlinear dynamics, and it allows reconstruction of the parameters of the dynamical and

measurement models from noise-corrupted time series data with subsequent fast tracking

of time-varying control parameters. The presented algorithm is open to modification:

ad hoc external information can always be added without changing the theoretical

framework.
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The convergence speed of the method is an important issue for fast-tracking of

the parameters. We have discussed the convergence of the method in the parameter

space which is important issue in this context. We also we provided an overview of

how the reconstruction machine might be modified, depending on availability of system

information.

We tested the performance of our scheme on simulations of physiological signals,

modeling the action potentials of an array of neurons as a set of L noisy FHN

oscillators. The readout was assumed mixed by an unknown measurement matrix. We

have established that the method does indeed facilitate on-line tracking of key control

parameters with a suitable time resolution. The results are achieved by embedding the

fast on-line tracking of the control parameters within a Bayesian learning framework

for the more slowly varying coefficients of the system. To simplify the analysis of

performance, we neglected measurement noise, but suitable plug-in techniques exist

for dealing with this extra noise source without any alteration of the core method.

The use of our inferential framework is very practical and multidisciplinary. With ad

hoc adjustments on a per-case base, its natural employment is within any field where

inferential capabilities are needed for a non-linear dynamical system.
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