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Abstract. - We apply a Fokker-Planck analysis to investigate the relative influences of coupling
strength and noise on the synchronisation of two phase oscillators. We go beyond earlier studies of
noise-induced synchronisation (without couplings) and coupling-induced synchronisation (without
common noise) to consider both effects together, and we obtain a result that is very different from
a straightforward superposition of the effects of each agent acting alone: two regimes are possible
depending on which agent is inducing the synchronisation. In each regime, one agent induces and
the other hinders the synchronisation. In particular we show that, counter-intuitively, coupling
can sometimes inhibit synchronisation.

Synchronisation occurs universally between interacting
oscillatory processes both in nature and technology [1].
The phenomenon consists of the mutual adjustment of the
oscillatory rhythms. It can usefully be described in terms
of phase dynamics provided that the inter-oscillator in-
teractions and noise are relatively weak [2]. Where the
synchronisation is due to phase-coupling via the inter-
oscillator interactions, the underlying mechanism is well
understood. Synchronisation can also arise in a different
way, however, through the influence of common noise on
the two systems. This latter mechanism has been observed
in many natural and experimental systems, such as lasers
[3], neurons [4, 5], and ecological systems [6]. Such noise-
induced synchronisation in phase oscillators has been stud-
ied by analyses of the Lyapunov exponent [7], and by use of
the Fokker-Planck equation [8] to study the phenomenon
in completely uncoupled phase oscillators [9–11]. In the
real world, however, it is common for oscillatory systems
to be influenced, not only by noise, but also by their mu-
tual couplings [12].

In this Letter we report a systematic analysis taking
simultaneous account of both possible routes to synchro-
nisation. For added realism, we also include the effect of
non-common (independent) noise. We show analytically
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and numerically how coupling and common noise com-

pete in achieving synchronisation. We study the global
synchronisation of the system via the Fokker-Planck ap-
proach, analysing the distinct roles of non-common noise,
common noise, and couplings, and we reveal the compe-
tition that occurs between couplings and common noise.
The most striking result is that, although coupling and
common noise each favour synchronisation on their own,
they can each inhibit the synchronisation induced by the
other when they coexist. For example, in regimes where
common-noise synchronisation dominates, stronger cou-
plings between the subsystems implies poorer synchroni-
sation, contrary to intuition and common belief.

The system. – We consider two coupled oscillators
subject to both common and independent noises:

ẋα(t) = Fα(xα(t)) + ǫα Vα(x1(t), x2(t))

+Gα(xα(t))
√
Dα ξ(t) +Hα(xα(t))

√
Eα ηα(t),(1)

for α=1,2. Here xα represents the α-th oscillator, Fα

is its individual dynamics, and the V s and ǫs are re-
spectively the coupling functions and their magnitudes.
ξ(t) and ηα(t) are the common and non-common noises.
G and H represent the couplings of the oscillators to
the noises. ξ(t) and ηα(t) are assumed to be indepen-
dent, Gaussian, white noises of zero mean and unit in-
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tensity: 〈ξ(t) ξ(s)〉 = δ(t− s), 〈ηα(t) ηβ(s)〉 = δαβ δ(t− s),
〈ξ(t) ηα(s)〉 = 0.
For weak couplings and noise intensities we can apply

the well-known phase reduction method [2, 10, 11] to get
the equations for the phases:

φ̇α(t) = ωα + ǫα vα(φ1(t), φ2(t))

+
√
Dα ξ(t) gα(φα(t)) +

√
Eα ηα(t)hα(φα(t)). (2)

Here ωα is the natural frequency of the α-th oscillator; vα,
gα and hα are Vα ∂xα

φα, Gα ∂xα
φα, and Hα ∂xα

φα respec-
tively. For the general equations (1), the noises may be
either multiplicative, or additive by making the functions
G and/or H equal to unity; but the noises will become
multiplicative for the phase dynamics. We seek to estab-
lish how much synchronisation of a given order n:m [1]
eqs. (2) can yield, quantified by evaluating how close to a
constant value the generalized phase difference φ− stays
over time. So we make an invertible change of variables
from φ1 and φ2 to φ+ and φ−:

φ− = mφ1 − nφ2, φ+ = mφ1 + nφ2,

φ1 = (φ+ + φ−)/(2m), φ2 = (φ+ − φ−)/(2n). (3)

The functions vα, gα and hα in (2) must be 2π-periodic
in all the phases, and can therefore be written as Fourier
series. As long as φ− stays close to a constant, it is a good
approximation for the coupling function just to consider
the harmonics that depend only on φ−, because those with
any dependence on φ+ correspond to fast oscillations [1].
We take for simplicity the lowest-order of such harmon-
ics (which is typically the most intense): v1(φ1(t), φ2(t))
is therefore replaced by a1 sinφ−, and v2 is replaced by
−a2 sinφ− (with this notation, same signs of a1ǫ1 and a2ǫ2
means that the two coupling terms add up to an increased
effective coupling intensity, whereas opposite signs make
the two terms subtract into a weaker effective coupling,
as we will see in a moment). With this approximation for
the coupling function, and expanding gα and hα in Fourier
series, the equations for the phases are

φ̇1 = ω1 + ε1 sinφ− +
√
D1ξ(t)

∑

k

b1,k sin(kφ1 + θ1,k)

+
√
E1η1(t)

∑

l

c1,l sin(lφ1 + ϑ1,l),

φ̇2 = ω2 − ε2 sinφ− +
√
D2ξ(t)

∑

k′

b2,k′ sin(k′φ2 + θ2,k′)

+
√
E2η2(t)

∑

l′

c2,l′ sin(l
′φ2 + ϑ2,l′), (4)

where εα = aα ǫα. The sums run over the positive integers
(and there are no terms independent of the phase). Using
these and the first equation of (3), we get

φ̇− = ω− + ε+ sinφ− + ξ(t)[m
∑

k

A1,k sin(kφ1 + θ1,k)

−n
∑

k′

A2,k′ sin(k′φ2 + θ2,k′)]

+mη1(t)
∑

l

B1,l sin(lφ1 + ϑ1,l)

−nη2(t)
∑

l′

B2,l′ sin(l
′φ2 + ϑ2,l′),

Aα,k = bα,k
√
Dα, Bα,k = cα,k

√
Eα.

ω− = mω1 − nω2 is the mismatch, and the “effective cou-
pling” ε+ is defined as mε1+nε2. We will assume ε+ > 0,
so the tendency of the coupling is to drive the two oscil-
lators at around φ− = π, as we will see later. The latter
point should be noted carefully by readers accustomed to
considering synchronisation near φ− = 0, in which case
ε+ > 0 would be regarded as repulsive coupling. This
is not our case: here, synchronisation can happen near
different values of φ−, depending on the values of the pa-
rameters of the system (see below). We recall that, when
synchronisation in our system is due to coupling, φ− stays
around π.

Fokker-Planck analysis. – We choose to use the Ito
version of the associated Fokker-Planck equation though,
in fact (see below), the Stratonovich version leads to the
same final results. Out of φ+(t) and φ−(t), the former
is fast-varying: in the absence of couplings and noises,
φα(t) = ωα t, so φ+(t) = ω+ t. For our case with cou-
plings and noises, corrections must be made to this expres-
sion; but, provided all the couplings and noise strengths
are small compared to the frequency ωα, such corrections
will be small compared to the quickly growing term ω+ t.
Thus we can take φ+(t) ≈ ω+ t, and we may integrate out
φ+ over one period in the Fokker-Planck equation. Hence
only those terms that do not contain any derivative with
respect to φ+ will be relevant. The equation for the prob-
ability density W (φ+, φ−, t) is [8]:

∂tW = −∂φ−
[(ω− + ε+ sinφ−)W ]

+(1/2)∂2
φ−

{[m
∑

k

A1,k sin(kφ1 + θ1,k)

−n
∑

k′

A2,k′ sin(k′φ2 + θ2,k′)]2 W

+[m
∑

l

B1,l sin(lφ1 + ϑ1,l)]
2 W

+[n
∑

l′

B2,l′ sin(l
′φ2 + ϑ2,l′)]

2 W}+ · · · ,(5)

where the suspension points stand for the terms involving
at least a derivative with respect to φ+. We will study
cases where the intensity of at least one noise is enough
to yield a stationary solution for which ∂W/∂t = 0. Then
we can suppose that the probability density W is almost
independent of the fast variable φ+, because φ+ ≈ ω+ t,
so t ≈ φ+/ω+ and therefore 0 = ∂W/∂t ≈ ω+ ∂W/∂φ+,
from which we get ∂W/∂φ+ ≈ 0. As a result, we can
work with the probability density P (φ−) resulting from
the integration of W within a period of φ+. From the sec-
ond line of (3), we see that the system is 4nmπ-periodic
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in the variables φ+ and φ−. P (φ−) is then defined

as P (φ−) = (1/4nmπ)
∫ 4nmπ

0 W (φ+, φ−)dφ+ ≈ W (φ−),
where the time dependence was taken out of W because
of the stationary condition, and W was approximated as
being independent of φ+ in the last step.

In (5), we replace W by P (φ−), write φ1 and φ2 as a
function of φ+ and φ−, and integrate out φ+ between 0
and 4nmπ. The integrals for the terms with As and Bs
are independent of φ− except for some of the cross terms
coming from the first square bracket in (5): most of the
latter integrate out to 0, except for the resonant ones:
i.e. those where k = um and k′ = un, with u integer.
These resonant terms play a vital role, as we will see:
it is so important that we can make a very convenient
simplification preserving all the interesting features: we
zero all the A1,k except for k = m, and all the A2,k′ except
for k′ = n. We therefore redefine A1,m ≡ A1 and A2,n ≡
A2. The Bs do not generate any interesting cross-terms, so
we can simplify by zeroing them all except for the lowest-
order terms: B1,1 ≡ B1 and B2,1 ≡ B2. Also for the
sake of simplicity, we make 0 the two θs and the two ϑs
corresponding to the former non-zero terms. We end up
with a system that is simple enough to be analytically
tackable, and complete enough to retain all the relevant
features. After integrating out φ+ in (5), we get:

∂

∂φ−

{
− (ω− + ε+ sinφ−)P +

1

4

∂

∂φ−

[
(m2 (A2

1 +B2
1)

+n2(A2
2 +B2

2)− 2nmA1A2 cosφ−)P
]}

= 0. (6)

Note that the integrals of the terms involving at least a
derivative with respect to φ+ are equal to zero because
of periodicity. Derivations from the Ito and Stratonovich
schemes here merge: had we used Stratonovich calculus,
we would have had extra terms for the Fokker-Planck
equation for W (φ+, φ−, t), but the resulting equation for
P (φ−) after integration over φ+ would be identical with
eq. (6). So the rest of the discussion is true for Ito as
well as Stratonovich stochastic schemes. Eq. (6) shows
that the expression inside the top-level bracket on the left-
hand side is a constant: the probability current S. If we
call f1(φ−) = −4 (ω−+ε+ sinφ−) and f2(φ−) = m2 (A2

1+
B2

1)+n2 (A2
2+B2

2)−2nmA1A2 cosφ−, equation (6) yields
P ′(φ−) + [f1(φ−) + f ′

2 (φ−)]P (φ−)/f2(φ−) = S/f2(φ−),
and the general solution of the differential equation is

P (φ−) =

S

∫ φ−

φ0

exp[V (x)] dx + N

f2(φ−) exp[V (φ−)]
, (7)

where V (x) =
∫ x

x0
f1/f2. The lower limits φ0 and x0 for

the former integrals are arbitrary, but once such values
are chosen, they have to be kept the same. For conve-
nience, we set both equal to −π. The constants N and S
in (7) are obtained by requiring, first, that P (φ−) be 2π-
periodic (because the equation to solve (6) is 2π-periodic

in φ−). Secondly for normalization, we require the integral
of P (φ−) over one period to be equal to 1.

Note that f1(x) and f2(x) are 2π-periodic. A primitive

Ṽ (x) of f1/f2 can be obtained analytically, valid inside
the interval −π ≤ x ≤ π:

Ṽ (x) = − 4 πω−√
R

− 8ω−√
R

arctan

[
T tan(x/2)√

R

]

+
2 ε+

A1A2 mn

{
lnT − ln

[ (
A2

1 +B2
1

)
m2

+
(
A2

2 +B2
2

)
n2 − 2A1A2 mn cosx

]}
, (8)

where

R = (B2
1 m

2 +B2
2 n

2)
[
(2A2

1 +B2
1)m

2

+(2A2
2 +B2

2)n
2
]
+ (A2

1 m
2 −A2

2 n
2)2, (9)

and

T = (A1 m+ A2 n)
2 +B2

1 m
2 + B2

2 n
2. (10)

Also, the definite integral IV of f1/f2 within one period is

Ṽ (π) − Ṽ (−π):

IV = − 8 π ω−√
R

. (11)

Putting everything together, the integral that defines V (x)
can be obtained for any x, by writing x = (2κ− 1)π + ϕ,
with κ integer and 0 ≤ ϕ ≤ 2π: then V (x) = κ IV +

Ṽ (−π + ϕ) − Ṽ (−π) = κ IV + Ṽ (−π + ϕ). Because IV is
defined as the integral over one period (or from the former
expression), we find

V (x+ 2απ) = V (x) + α IV , α ∈ Z. (12)

A relationship between the constants N and S in (7)
can be obtained by imposing the periodicity condition. By
requiring that P (φ−+2π) and P (φ−) be equal, we obtain
a relationship between S and N : S = [exp(IV )− 1]N/IP ,
where

IP =

∫ π

−π

exp[V (x)] dx, (13)

to be obtained numerically. Note that, for IV =0, or equiv-
alently, the mismatch ω− equal to 0, the probability cur-
rent S vanishes. Writing S as a function of N in (7):

P (φ−) =
N

f2(φ−) e
V (φ−)

[
1 +

e IV − 1

IP

∫ φ−

−π

eV (x) dx

]
,

(14)
where the constant N normalizes P (φ−) within one pe-
riod,

∫ π

−π P (φ−) dφ− = 1.

Results for small frequency mismatch. – Some
analytical results can be derived for the case of zero fre-
quency mismatch; they also hold, at least approximately,
as long as the mismatch remains small. For ω− = 0, the
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Fig. 1: Influence on synchronisation of the ratio between A1

and A2. (a) A1 = 0.1; (b) 0.45; (c) 0.8. The lines represent
the theoretical probability density function from (14), with the
last integral and the normalization constant N obtained nu-
merically; the points are from simulation. The plots are for
ν1 = 1.025, ν2 = 0.23, n = 9, m = 2, ε1 = 0.001, ε2 = 0.0002,
B1 = 0.1, B2 = 0.02 and A2 = 0.1 (ν = ω/(2π)). All figures
in this Letter correspond to a small, but non-zero, frequency
mismatch.

expression for the probability density function simplifies
to:

P 0(φ−) = N1

[
m2B2

1 + n2B2
2 + (mA1 − nA2)

2

+ 4nmA1A2 sin
2 φ−

2

](2ε+/nmA1A2)−1

, (15)

where N1 is a constant, independent of φ−, to be ad-
justed such that the probability density be normalized to
1. Stronger synchronisation will occur when the term de-
pending on φ− (last one inside the bracket) dominates the
φ−-independent terms: the first three terms inside the
bracket should be as close to zero as possible in order to
obtain stronger synchronisation. Two conclusions can be
drawn. First, the bigger the absolute values of B1 and
B2, the weaker the synchronisation: independent noise is
always harmful to synchronisation. Secondly, the smaller
|mA1 − nA2| is, the closer the third term will be to zero.
Thus the magnitudes of the couplings of the common noise
to the two oscillators should be in the same n:m synchro-
nisation ratio in order to optimally enhance the strength
of synchronisation. See fig. 1: for (b), mA1−nA2 is equal
to 0, and the corresponding probability density is the most
localised. So we assume below that A1 and A2 have the
same sign. For all numerical results we discretised eqs. (4)
and used the Heun scheme [13] with a step of 0.01. The
results of the simulations are independent of the initial
conditions as we have discarded the first transient to al-
low enough time for the system to fall into the stationary
solution – the only exception is fig. 2(a) where the noises
intensities are extremely weak, as indicated in the caption.
Having derived the above optimization requirement for

the ratio of A1 and A2, we now explore the influence of
their values. From the exponent in (15) we can study the
competition between coupling and common-noise. When
the “effective coupling” ε+ is big compared to A1 A2, more
specifically ε+ > nmA1A2/2, the exponent is positive, so
the probability density will have its maximum at φ− = π.
If the product A1 A2 increases, the bracket in (15) will de-
pend more strongly on φ− thereby tending to enhance syn-
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Fig. 2: Influence of the intensities of common noise on coupling-
induced synchronisation. Here ν1 = 1.025, ν2 = 0.23, n = 9,
m = 2, ε1 = 0.3, ε2 = 0.05, B1 = 0.1, B2 = 0.02, and: (a)
A1 = 0.225 and A2 = 0.05; (b) 0.45 and 0.1; (c) 0.675 and
0.15. Note that mA1 − nA2 = 0 in all three plots. For the
simulations corresponding to (a), the system stays within a
small interval of φ

−
: due to the weakness of the noises, it does

not attain the stationary solution. The discrepancy between
theory and simulation in (a) is thus attributable to the finite
length of the time series.

chronisation. However, the exponent will be smaller, thus
flattening the probability density and tending to hinder
synchronisation. As (15) is more sensitive to the second
effect than to the first, we conclude that, in the case of
coupling-induced synchronisation, larger noise intensities
(either common or non-common) hinder synchronisation,
as is evident in fig. 2.

When ε+ < nmA1A2/2, we enter a different regime:
common-noise-induced synchronisation. Because the ex-
ponent in (15) is negative, the probability density will have
a maximum at φ− = 0. In contrast to the previous case,
large values of A1 A2 are now beneficial in that: the φ−-
dependent term inside the bracket then dominates over the
other terms; and they increase the absolute value of the
exponent (we still assume ε+ > 0): see fig. 3; also, com-
pare figs. 1(c) and 1(a). We can have very narrow peaks
in the probability density, and correspondingly strong syn-
chronisation, for small values of the non-commmon noises,
together with strong couplings of the common noise to the
oscillators, whose “generalized difference” |mA1−nA2| is
then small (but A1 or A2 cannot be arbitrarily large be-
cause the approximation φ+ ≈ ω+ t would then fail; fur-
thermore, the phase dynamics approach is valid only for
weak couplings and noise). In this regime of common-
noise-induced synchronisation, a bigger value of the effec-
tive coupling ε+ will result in an exponent that is smaller
in absolute value: smaller values for the couplings be-
tween the oscillators are better for common-noise-induced
synchronisation, as shown in fig. 4. The origin of this com-
petition between coupling and common noise is that each
effect tends to push the system into synchronising at a
different value of φ−. Common noise locks the system at
around φ− = 0, and the coupling term ε+ sinφ− pushes
the system away from φ− = 0. In general, we must expect
there to be competition between coupling and common
noise; the exception is the very special case where both
agents tend to push the system into synchronising near
same value of φ−.

p-4



Competition between noise and coupling in the induction of synchronisation

 0

 2

 4

−π 0 π

P
D

F

Φ−

(a)

−π 0 π
Φ−

(b)

−π 0 π
Φ−

(c)

Fig. 3: Synchronisation increases with the intensity of common
noise, when it is induced by the latter instead of by couplings.
Here ν1 = 1.025, ν2 = 0.23, n = 9, m = 2, ε1 = 0.01, ε2 =
0.002, B1 = 0.1, B2 = 0.02, and: (a) A1 = 0.45 and A2 = 0.1;
(b) 0.9 and 0.2 ; (c) 1.8 and 0.4. Note that mA1 − nA2 = 0
in all three plots.

Conclusions. – We have studied phase synchronisa-
tion between two oscillators in the general case, encom-
passing both couplings and noise. There are two differ-
ent routes to synchronisation: either via coupling or via
common noise. Where one mechanism induces synchro-
nisation, the other hinders it, corresponding to the ex-
istence of competition between them. In principle, this
result allows us to distinguish coupling- and common-
noise-induced synchronisation: e.g. in the cardiorespira-
tory interaction, stronger noise yields weaker synchroni-
sation [14], so that the route to synchronisation here is
apparently via couplings. A striking consequence of this
competition is that, for the common noise scenario, an
increase in coupling inhibits synchronisation: here, the ef-
fective coupling should ideally be as small as possible.
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