Landau level degeneracy and quantum Hall effect in a graphite bilayer.

McCann, Edward and Fal’ko, Vladimir I. (2006) Landau level degeneracy and quantum Hall effect in a graphite bilayer. Physical review letters, 96 (8). 086805. ISSN 1079-7114

[img]
Preview
PDF (mccannPRL06a.pdf)
mccannPRL06a.pdf

Download (199kB)

Abstract

We derive an effective two-dimensional Hamiltonian to describe the low energy electronic excitations of a graphite bilayer, which correspond to chiral quasiparticles with a parabolic dispersion exhibiting Berry phase 2pi. Its high-magnetic-field Landau level spectrum consists of almost equidistant groups of four-fold degenerate states at finite energy and eight zero-energy states. This can be translated into the Hall conductivity dependence on carrier density, sigma_xy(N), which exhibits plateaus at integer values of 4e^2/h and has a “double” 8e^2/h step between the hole and electron gases across zero density, in contrast to (4n + 2)e^2/h sequencing in a monolayer.

Item Type:
Journal Article
Journal or Publication Title:
Physical review letters
Additional Information:
©2006 The American Physical Society
Uncontrolled Keywords:
/dk/atira/pure/researchoutput/libraryofcongress/qc
Subjects:
ID Code:
30828
Deposited By:
Deposited On:
08 Dec 2009 11:38
Refereed?:
No
Published?:
Published
Last Modified:
02 Dec 2020 00:46