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Gate-induced interlayer asymmetry in ABA-stacked trilayer graphene
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We calculate the electronic band structure of ABA-stacked trilayer graphene in the presence of
external gates, using a self-consistent Hartree approximation to take account of screening. In the
absence of a gate potential, there are separate pairs of linear and parabolic bands at low energy.
A gate field perpendicular to the layers breaks mirror reflection symmetry with respect to the
central layer and hybridizes the linear and parabolic low-energy bands, leaving a chiral Hamiltonian
essentially different from that of monolayer or bilayer graphene. Using the self-consistent Born
approximation, we find that the density of states and the minimal conductivity in the presence of
disorder generally increase as the gate field increases, in sharp contrast with bilayer graphene.

PACS numbers: 71.20.-b,81.05.Uw,73.63.-b,73.43.Cd.

Pioneering experiments [1, 2, 3, 4] demonstrated
graphene-based transistors using a back gate to vary the
carrier density continuously from electron to hole chan-
nels, with a minimal conductivity for nominally-zero car-
rier density. The switching of a graphene-based transistor
would be improved by opening an energy gap between
the conduction and valence bands, possibly by lateral
confinement of electrons in etched structures [5, 6, 7, 8]
or by employing gates to induce interlayer asymmetry in
bilayer graphene [9, 10, 11, 12, 13, 14, 15, 16]. Recently,
experimental attention has turned towards the properties
of ABA-stacked trilayer graphene, Fig. 1(a), [17, 18, 19].
Theory suggests that the bands are of two separate types
[10, 11, 20, 21, 22, 23]: two almost-linear bands rem-
iniscent of the bands in monolayer graphene and four
parabolic bands similar to those in bilayer graphene.
This raises the expectation that the electronic behavior
will display no new features as compared to monolayer
or bilayer graphene.

In this paper, we show theoretically that the response
of ABA-stacked trilayer graphene to external gate poten-
tials is in fact qualitatively different from that in mono-
or bi-layer graphene. We use an effective-mass model to
self-consistently determine the electronic band structure
and we show how the breaking of mirror reflection sym-
metry by interlayer asymmetry causes hybridization of
the linear and parabolic bands. Rather than opening a
gap, as in bilayer graphene [9], this leaves two bands near
zero energy which support chiral quasiparticles. Employ-
ing a self-consistent Born approximation to estimate the
minimal conductivity as a function of interlayer asym-
metry, we find that the conductivity generally increases
as asymmetry increases, in sharp contrast with bilayer
graphene as illustrated in Fig. 1(b).

A description of trilayer graphene in the presence of ex-
ternal gates must include two parameters that take into
account differences in the potentials V1, V2, and V3 of the
three layers. The first, ∆1 = −e(V1 − V3)/2, describes
the average energy difference between each adjacent layer
[10, 11, 23], while the second, ∆2 = −e(V1−2V2 +V3)/6,
describes the difference between the energy of the cen-

FIG. 1: (a) Schematic of the ABA-stacked trilayer lattice
containing six sites in the unit cell, A (white circles) and B
(black circles) on each layer, showing the Slonczewski-Weiss-
McClure parameterization [24] of relevant couplings γ0 to γ5.

(b) The conductivity versus external asymmetry ∆
(ext)
1 , calcu-

lated for trilayer and bilayer graphene using the self-consistent
Born approximation and the band model including γ0 and γ1.
(c) Schematic of trilayer graphene (three thin black lines at
x = −d, 0, d) with top and bottom gates (thick black lines at
x = Lt,−Lb) separated from the trilayer by dielectric media
(gray shaded areas).

tral layer and the average of the outer layers. We model
the effect of back and top gates by considering the tri-
layer as three conducting parallel plates as illustrated in
Fig. 1(c), with respective electron densities n1, n2 and n3,
located at x = −d, 0, and +d, respectively, where d is
the interlayer spacing, and the permittivity of the trilayer
interlayer spaces (without the screening effect of π-band
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electrons of the trilayer graphene) is εr. The back (top)
gate at x = −Lb (x = +Lt), held at potential Vb (Vt), is
separated from the trilayer by a dielectric medium with
relative permittivity εb (εt). Using elementary electro-
statics, we relate the external gate potentials, the elec-
tron densities on the layers, and the interlayer asymmetry
parameters:

εbVb

Lb
+
εtVt

Lt
= e (n1 + n2 + n3) , (1)

∆1 =
εtVt

Lt
− εbVb

Lb
+
e2d

2εr
(n1 − n3), (2)

∆2 = −e
2d

6εr
n2 . (3)

In the following, we use the total electron density ntot =

n1 +n2 +n3 and ∆
(ext)
1 as external parameters instead of

Vt and Vg, where ∆
(ext)
1 = εtVt/Lt − εbVb/Lb is the value

of ∆1 that would occur if screening were negligible.
We model ABA-stacked trilayer graphene as three cou-

pled honeycomb lattices including pairs of inequivalent
sites {A1, B1}, {A2, B2}, and {A3, B3} in the bottom,
center, and top layers, respectively. The layers are ar-
ranged according to Bernal (A-B) stacking [24], Fig. 1(a),
such that sites B1, A2, and B3 lie directly above or
below each other. We employ an effective-mass model
adopting the Slonczewski-Weiss-McClure parameteriza-
tion, [24] where each parameter is related to relevant
coupling in the tight-binding model: γ0 describes nearest-
neighbor (Ai-Bi for i = {1, 2, 3}) coupling within each
layer, γ1 describes strong nearest-layer coupling between
sites (B1-A2 and A2-B3) that lie directly above or below
each other, γ3 (γ4) describes weaker nearest-layer cou-
pling between sites A1-B2 and B2-A3 (A1-A2, B1-B2,
A2-A3, and B2-B3). With only these couplings, there
would be a degeneracy point at each of two inequivalent
corners, K±, of the hexagonal Brillouin zone [25] but
this degeneracy is broken by next-nearest-layer coupling
γ2 (between A1 and A3), γ5 (between B1 and B3) and δ,
which is the on-site energy difference between A1, B2, A3
and B1, A2, B3. Note that the parameter ∆ often used
in models of three-dimensional (3D) graphite is given by
∆ = δ + γ2 − γ5. In trilayer graphene, the presence of
a surface may induce a modification in the value of the
band parameters as compared to those in bulk graphite.
Here, parameter ∆2 = −e(V1 − 2V2 + V3)/6, takes into
account a possible difference between the energy of the
central layer and the average of the outer layers, and,
in general, surface effects may contribute to a non-zero
value of ∆2.

In a basis with components ψA1, ψB1, ψA2 , ψB2, ψA3,
ψB3, the ABA-stacked trilayer Hamiltonian is

H̃ =




U1 vπ† −v4π† v3π γ2/2 0
vπ U1 + δ γ1 −v4π† 0 γ5/2

−v4π γ1 U2 + δ vπ† −v4π γ1

v3π
† −v4π vπ U2 v3π

† −v4π
γ2/2 0 −v4π† v3π U3 vπ†

0 γ5/2 γ1 −v4π† vπ U3 + δ



,(4)

where operator π = ξpx + ipy is related to the in-
plane momentum p = (px, py) [25], effective velocities

are v = (
√

3/2)aγ0/~, v3 = (
√

3/2)aγ3/~, and v4 =

(
√

3/2)aγ4/~, Ui = −eVi, and ξ = ±1 is the valley in-
dex K±. Exploiting mirror reflection symmetry of the
lattice in the plane of its central layer, Fig. 1(a), we per-
form a unitary transformation to a basis consisting of
linear combinations of the atomic orbitals [22], namely

[ψA1 −ψA3]/
√

2, [ψB1 −ψB3]/
√

2, [ψA1 +ψA3]/
√

2, ψB2,

ψA2, [ψB1 + ψB3]/
√

2:

H =

(
Hm D
DT Hb

)
, D =

(
∆1 0 0 0
0 0 0 ∆1

)
, (5)

Hm =

(
∆2 − γ2/2 vπ†

vπ ∆2 − γ5/2 + δ

)
, (6)

Hb =




∆2 + γ2/2
√

2v3π −
√

2v4π
† vπ†

√
2v3π

† −2∆2 vπ −
√

2v4π

−
√

2v4π vπ† −2∆2 + δ
√

2γ1

vπ −
√

2v4π
†

√
2γ1 ∆2 + γ5/2 + δ


 ,(7)

where the average on-site energy [U1 + U2 + U3]/3 has
been set equal to zero. The Hamiltonian H has a 2 × 2
blockHm and a 4×4 blockHb on the diagonal, connected
by a simple off-diagonal block D. Block Hm is similar to
the Dirac-type Hamiltonian of monolayer graphene and it
contributes two bands near zero energy whereas block Hb

is reminiscent of the Hamiltonian of bilayer graphene [9],
except that terms proportional to γ1, γ3, and γ4 appear
with a factor

√
2 [22]. The latter gives two bands split

away from zero by energy ±
√

2γ1 and two bands near
zero energy.

The monolayer-like block has wave functions possess-
ing odd mirror reflection symmetry, while the wave func-
tions of the bilayer part are even. Since the interlayer
asymmetry ∆1 is the only parameter that breaks mir-
ror reflection symmetry, its role is qualitatively different
from the other parameters, coupling the monolayer-like
and bilayer-like blocks. For large ∆1, two of the low-
energy bands, related to orbitals [ψA1 − ψA3]/

√
2 and

[ψA1 +ψA3]/
√

2, split away from zero by energy ǫ ≈ ±∆1

at the K point, leaving only two bands near zero, associ-

ated with Ψ′ =
(
[ψB1 − ψB3]/

√
2, ψB2

)T
. To obtain an

approximate Hamiltonian Heff for Ψ′, we denote H2 as
the diagonal block of Hamiltonian H corresponding to
these two low-energy components, H4 as the 4× 4 diago-
nal block corresponding to the high-energy components,
and V as the off-diagonal 2 × 4 block coupling H2 and
H4. The Schrödinger equation for Ψ′ can be expanded
up to first order in ε as [H2 − V H−1

4 V †]Ψ′ = εSΨ′ with
S ≡ 1 + V H−2

4 V †. Then, the effective Hamiltonian for

Ψ = S1/2Ψ′ becomes Heff ≈ S−1/2[H2−V H−1
4 V †]S−1/2.

For the moment, we focus on the role of ∆1 by consider-
ing ∆2 = γ2 = γ3 = γ4 = γ5 = δ = 0. For large enough
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∆1 (|γ1| ≫ |∆1| ≫ |ǫ|), Heff is written as

Heff ≈
(

0 X†

X 0

)
,

X = −∆1vπ√
2γ1

(
1 − v2ππ†

∆2
1

) (
1 +

v2ππ†

∆2
1

)−1/2

.

For plane-wave eigenstates at zero magnetic field, ππ†

is just a number, p2. The first factor of π = ξpx + ipy

in operator X ensures that such eigenstates are chiral,

Ψ =
(
e−iξθ/2,∓ξeiξθ/2

)T
/
√

2 with θ = tan−1(py/px).
The expression for the eigenenergies is

ǫ ≈ ± vp√
2γ1

(
v2p2 − ∆2

1

)
√
v2p2 + ∆2

1

, (8)

which generalizes Eq. (22) of Ref. 11, showing that there
is a small overlap δǫ ∼ ∆2

1/γ1 between the two low-
energy bands that cross at p = ∆1/v [11]. This behavior
contrasts with that of bilayer graphene, where interlayer
asymmetry introduces an energy gap between the low-
energy bands [9] and tends to suppress the chiral nature
of quasiparticles in them.

For given parameters ∆1, ∆2 and fixed total density
ntot, the electron densities n1, n2 and n3 may be deter-
mined by summing (|ψAi|2+|ψBi|2)/L2 over the occupied
eigenstates of the Hamiltonian (4). However, such densi-
ties are also related to ∆1 and ∆2 through Eqs. (2) and
(3), so it is necessary to solve this set of equations self-
consistently in order to obtain values of ∆1 and ∆2 for

given external parameters ntot and ∆
(ext)
1 . A similar pro-

cedure has been applied to bilayer graphene [12, 13, 14]
and to many-layered graphene [26]. This Hartree approx-
imation neglects effects including exchange interaction,
possible deformation of atomic orbitals in the applied
electric field, and the role of σ orbitals in screening, but
comparison with density functional theory [13] in bilayers
suggests that it is qualitatively accurate.

For γ2 = γ3 = γ4 = γ5 = δ = 0 with ntot = 0, it
is possible to perform a linear response calculation for

infinitely small ∆
(ext)
1 . Within the first order in ∆1, we

have n1 − n3 = Π∆1 with

Π =
∑

α,α′

f(εα)
2|〈α| ∂H

∂∆1

|α′〉|2

εα − εα′

= − gvgs

2
√

2π

γ1

(~v)2
, (9)

where gs = gv = 2 are the spin and valley degeneracies,
respectively, |α〉 and εα are the eigenstates and eigenen-
ergy of the Hamiltonian without ∆1 or ∆2, f(ε) is the
Fermi distribution function with zero Fermi energy. Us-
ing Eqs. (2) and (3), we obtain the self-consistent solution

∆1 = ∆
(ext)
1 /εeff with εeff = 1− (e2d/2εr)Π. ∆2 is never

induced. Typical parameters v = 1.0×106 m/s, γ1 = 0.4
eV, d = 0.334 nm, εr = 2 give 1/εeff ≈ 0.61.

To determine the band structure taking into account
all the parameters, we find ∆1 and ∆2 self-consistently
by employing an iterative numerical approach. We first

FIG. 2: Self-consistently calculated band structures in tri-
layer graphene near the K point, with ntot = 0. Left plots
are for the model including only γ0 and γ1, with (a) no

asymmetry ∆
(ext)
1 = 0 and (b) finite external asymmetry

∆
(ext)
1 = 0.5γ1. Right plots are for the full parameter model

including γi (i = 1, 2, · · · 5), δ, with (c) ∆
(ext)
1 = 0 and (d)

0.5γ1. Dashed and solid curves represent θ = 0 and π/6. The
self-consistently calculated value of ∆1 is shown in the lower
side of each plot. The thin horizontal line shows the Fermi
energy.

use ∆1 = ∆
(ext)
1 and ∆2 = 0 as initial values in the

Hamiltonian Eq. (4) and determine the Fermi energy so
that the total density is equal to ntot. Then we calculate
ni (i = 1, 2, 3) from the occupied eigenstates, which give
a new set of ∆1 and ∆2 through Eqs. (2) and (3). We
iterate this process until ∆1 and ∆2 converge.

Figure 2 (a) and (c) show the self-consistent band
structures at zero external field ∆(ext) = 0 and zero
doping ntot = 0. To illustrate the role of the extra
band parameters we compare (a) the simple model in-
cluding only γ0, γ1 and (c) the full-parameter model with
γ2 = −0.05γ1, γ5 = 0.1γ1, δ = 0.125γ1, v3(∝ γ3) = 0.1v
and v4(∝ γ4) = 0.014v (typical values quoted for bulk
graphite [24]). The plots show the vicinity of zero energy,
covering the monolayer-like band and the lower branches
of the bilayer-like band. In (c), we see that γ2, γ5 and
δ shift the center of the monolayer-like band upward in
energy relatively to the bilayer-like band. Also, the trig-
onal warping effect due to γ3 is observed as a difference
between θ = tan−1(py/px) = 0 and π/6 [9]. Figures 2(b)
and 2(d) display the corresponding plots in the presence

of a finite external field ∆
(ext)
1 = 0.5γ1. The values of ∆1

determined self-consistently are shown in the lower side

of each plot. In every case the screening ratio ∆1/∆
(ext)
1

is about 0.6, which is close to the linear response theory.
For Fig. 2 (b), where only γ0 and γ1 are included, there
is a small overlap at zero energy described by Eq. (8). In
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FIG. 3: (a),(c) Density of states and (b),(d) conductivity at

ntot = 0 as functions of ∆
(ext)
1 for the model including only

γ0 and γ1 (left) and the full parameter model (right). Solid,
dotted, and dashed lines are for progressively larger disorder
strengths.

the full parameter model (d), there is a similar amount
of band overlap while the exact magnitude of momentum
at the crossing point vp ∼ ∆1 varies with angle θ in a
trigonal manner, and there is a tiny gap at those crossing
points. In (d), the self-consistent calculations yield tiny
∆2 < 0.01γ1 due to non-zero γ2, γ5 and δ.

For each band structure we estimate the density of
states (DOS) and conductivity using the self-consistent
Born approximation [27, 28]. We assume that the scat-
terers are on-site potentials localized on each layer, which
is modeled by V (r) =

∑
m=1,2,3

∑
i uiδ(r−ri)P̂

(m) where

ui and ri = (xi, yi) are the amplitude and the two-
dimensional position of the i-th scatterer, respectively,
and P̂ (m) is the projection operator onto the m-th layer.
We neglect inter-valley scattering between K±. The dis-
order strength is characterized by W = nimpu

2/(4π~
2v2)

[27] where nimp is the total number of scatterers over all
the layers, and u = 〈u2

i 〉. For the model with only γ0

and γ1, the energy scale for the level broadening at zero
energy is given by Γ ∼ (π/

√
2)Wγ1. Following Ref. 27,

we compute the self-energy and the vertex corrections
for the velocity operators, and calculate the conductivity
using the Kubo formula.

Figures 3(a) and 3(c) show the DOS as a function

of ∆
(ext)
1 at ntot = 0, for several values of the dis-

order strength W . The left and right panels corre-
spond to the simple model with γ0 and γ1, and the
full parameter model discussed previously, although the
behavior in each case is similar, DOS increases with

∆
(ext)
1 . Figure 3(b),(d) are plots of the conductivity cor-

responding to (a),(c) respectively. The general trend is

for an increase of conductivity as ∆
(ext)
1 increases, ex-

cept for the vicinity of ∆
(ext)
1 = 0 in panel (d). This

may be roughly understood by considering the relation
σ = e2ρF v

2
F τ/2 with velocity vF , DOS ρF and relax-

ation time τ at the Fermi energy. When we assume that
all the states on the Fermi energy are equally mixed by
disorder, we have τ ∝ ρ−1

F , suggesting that the conduc-
tivity is determined by v2

F . The dispersion, Eq. (8), ap-
proximates, in regions far from the origin vp ≫ |∆1|, to

ǫ ≈ ±(v2p2 − 3∆2
1/2)/(

√
2γ1), showing that the electron

and hole bands are pushed towards zero energy by the in-
troduction of ∆1. This leads to an increase in the expec-
tation value of the band velocity in a disorder-broadened
energy window near ǫ = 0, and thus the conductivity at
the charge neutral point is enhanced.

In the simple γ0-γ1 model, Fig. 3(b), the conductivity

at ∆
(ext)
1 = 0 takes a universal value σ = 3gvgse

2/(2π2
~)

independently of W . This is because the Fermi energy
coincides with the degeneracy point of the monolayer
and bilayer bands, and the value is indeed equal to the
summation of the minimum conductivity of monolayer
graphene [27] and that of bilayer graphene [28] estimated
in the self-consistent Born approximation. In Fig. 3(d),
for the full parameter model, the conductivity is largely

enhanced around ∆
(ext)
1 = 0, because, as observed in

Fig. 2(c), the Fermi energy crosses the off-center part
of the monolayer-like band making a large contribution
to the typical band velocity. The conductivity drops

sharply as ∆
(ext)
1 grows from zero as the monolayer band

is gapped away. When ∆
(ext)
1 is increased further, the

conductivity grows similarly to, but a little more slowly
than, Fig. 3(b), because of the tiny gap at the band
crossing point observed in Fig. 2(d). The differences be-
tween Fig. 3(b) and (d) become smaller for larger W ,
as disorder-broadening masks details dependent on the
precise values of band parameters.

To conclude, we have shown that the breaking of mirror
reflection symmetry by interlayer asymmetry ∆1 in ABA-
stacked trilayer graphene causes hybridization of the lin-
ear and parabolic bands, leaving just two bands in the
vicinity of zero energy. The band hybridization produces
an increase in density of states and typical band velocity
with asymmetry ∆1, leading to an increase in minimal
conductivity in qualitative agreement with recent trans-
port experiments [19]. As demonstrated in Fig. 1(b),
which compares the conductivities of trilayer and bilayer
graphene, the response of trilayers to gate-induced asym-
metry is in sharp contrast with bilayers, where the con-
ductivity is suppressed by a perpendicular electric field
owing to the opening of a gap between the electron and
hole bands [16].
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