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1 Introduction

References to Proposition 1 and Theorem 1 refer to items in the article Locally stationary
wavelet fields with application to the modelling and analysis of image texture by Eckley,
Nason and Treloar (2009) (henceforth ENT).

2 Proofs

Proposition 1. Let Cr be the autocovariance of a LS2W process, Xy, and C as in
Definition 6 of ENT. Then as R, S — oo

Cr(z,7) = C(z,7)| = O {min(R, 5)"'}, (1)
uniformly in ™ € Z* and z € (0,1)2.
Proof of Proposition 1
Using the LS2W process representation in equation 5 of ENT,

Cr(z,7) = Cov(X;r), XzR]++)
= E((Xpm) — tpr) (XgRj+r — HipRj4r)) -
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However, by Assumption 1, E(X,) = 0 for all r. Hence,

CR(ZaT) = E(X[ZR}X[ZR]—FT)

- Zzzw uq’bl» ZR EJUZZZ Jouo ;guo ZR]—I_T)g]ouo

lo Jo

= Z Z D000 wiath uy¥a(ZR)Y o, ([2R] + 7)€ WED o,

u lp jo uo

= ZZZZZZ w0V (ZRDVY o, ([ZR] + T)E(E 0 )

u lp jo uo

for the wé. u and the z/Jé u are deterministic. Moreover, since

l
COV(fiu, fgg uo) - (gj,u 70, uo) 6j7j05l,lo 511,1107
it follows that

Cria) = 3 Z 3 el (RO (R 7). nextletu = po+ R
= Z 22 2ty (R (R )
= Z Z 2 1ptarg i (0)55(7),

We now derive two limit results which are required to complete this proof.

Limit result 1 Using the definition of the local wavelet spectrum (ENT: Definition 5), it
is easily shown that S}(z) = H/le(z)\2 for all z € (0, 1)?. Furthermore, Assumption 2 of
ENT states that

Loy — 1 ! 2 2
Si(z) = R,l,Sl'IBoo W 1ary|~ forz € (0,1)%
By Assumption 2,
Cl
Lt “)‘ < i
Sﬂp’wj’“ W; (R ~ max{R,S}
The triangle inequality implies that
Cl
(2 ‘ N R
sup‘w]u‘ ‘VVJ (R) max{R, S}
Ct
L= E)’ Y B
j’wj’“ ‘WJ (R +O<max{R,S}>
2 un 12 Ct
l _ ! j ()2
= lua] = Wi ()] +O<max{3,5}> 2 25 W5 (@) < co.
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Hence, setting z = u/R, we obtain

Ct
2 l = —
jwh Sj(z)’ =0 (max{& S}) . ?

Limit result 2 Recall that the VVJl(z) are assumed to be Lipschitz continuous functions
(with respect to the Li-norm). Hence,

Wiz +7/R) - Wj(z)| < Lill(z+7/R)~2| wherer/R=(71/R,72/S)

= [Wi(z+7/R) = Wiz)| < Lir/Rl;

:>]Wl(z—|—T/R)|—\Wl( )| < LhlT/R|L by the triangle inequality
= Wiz +7/R)| = [Wi(z)|+0 (L}|m/R|}))
= [Wiz+T/R)? = Wi@)P+0 (Li|r/R|)

for> > |W]l (z)|> < oo and the Lé. are uniformly bounded in (7, ). Hence

‘|W}(z+T/R)|2—|WJl'(Z)|2‘ - O<L§ <|le+|7;|>)
= Wiz +r/R)P - (W] = O<L§ (M))
Thus, ‘Sl 2t /R’ ’ _ < ' (M)) , (3)

With the above limit results in place, we are now in a position to consider the asymptotic
convergence of Cr(z, 7) to C(z, T):

ICr(z,7) = Clz, )] = |D D > [wjuar[Wfu(0)dfu(r) =Y > Si(z)¥)(r)
l j u

L g

> Z )3 (10 wioml® = S5 (5 +2)) ¥u(00] u(7)

+ZZZSZ( +2) 0 (0)¢ha(r )= 25

IN

S (10 wrarl? — 8 (5 +2) ) wha(0)9hu(r)
l j u
ZZZSZ( ) U (0 (7 Zsl



However \112(7') =>4 wé,u(O)l/Jé»’u(T). Hence, using Limit Result 1
Ct
Cr(m) = Cnl < 3303 oy [0 u(r)]
I j u ’
Zzzsl (5 +2) Y@ ()
> Sz Zw 0)25(7)
T
Cj
zl:z]:zu: max{R, S} ‘1[)], wj’ (r ))
+§lzzz ’Sﬁ (% —i—z) —
j u

Using Limit Result 2, in conjunction with the modelling assumptions made in Definition
2 of ENT that the Lipschitz constants Lé. and le are uniformly bounded in j,! and that

D2 22jL§~ <ooand ), >, C'Jl- < 00, we obtain

[ (@)] [} (00 (7))

cl
Crizm) = Cam)| = 330 e [¢ha(000hu(r)
I j u ’

D) p Lty 0 (n)

< DEF | G oo
< ()
O

Theorem 1. For any compactly supported Daubechies wavelet, the family of discrete 2D
autocorrelation wavelets {W,} is linearly independent. Hence,

1. the operator A is invertible (since all of its eigenvalues are positive) and for each
J €N, the norm || A;"|| is bounded above.

2. the LWS is uniquely defined given the corresponding LS2W process.



Proof of Theorem 1

The structure of the proof for the theorem is similar to that of the one dimensional case,
considered by NvSK, although added care is required when dealing with the zeros of mg(w)
and my (w). This is due to the addition of directionality, [ € {h,v,d}, as well as scale, 7j,
within the decomposition.

Suppose, by way of contradiction, that there exist two spectral representations of the

same LS2W process. In other words, assume that there exist w7(711)1 and w7(721), such that

‘uh(ﬁ; - Wéi) (%)‘ =0 <max{1R,S}> fori=1,2

which also possess the same covariance structure. In other words
Clz,m) =) SV (@)U (T) =) 5P (2)¥(T)
n n

. ; 2
where C i defined in equation 14 of ENT Vz € (0,1)2, V7 = Z2 and S} (z) = ’Wé’) (2)

fori=1,2.

Setting A, (z) = Sr(il)(z) - S,(72) (z) it therefore follows that to prove this result, we must
show that

0 = D Ay2)Ty(r) Vze(0,1)? VreZ?
n

= Ay(z) = 0 v, vz € (0,1)%.
What we actually show is that

0= ZAW(Z)\IJn(T) Vz € (0,1)%, VT € 72,
7

implies A,(z) = 0, Vn > 1, Vz € (0,1)2. Here A, (z) = 27%A,(z), where
jm)=n— L%JJ forn = 1,...,3J. |- denotes the floor function. Thus j(n) simply
refers to scale.

Before proving the theorem we state the following proposition.

Proposition 2. Let 1;(w) and ¢j(w) be the Fourier transforms of {jr} and {d;i}
respectively. Then

1 j(w) = S ype™F = 29/2my (29~ 1w) [TI23 mo(2w),
2. 9j(w) = Sy djre” ™k = 202 [TIZ ) mo(2'w),

where my(w) and mq(w) are the usual frequency response functions of the low- and high-
pass filters of Daubechies compactly supported wavelets.



Proof of Proposition 2

Part (i) was shown in NvSK, part (ii) can be shown similarly: both are simple consequences
of the scaling relations between wavelets and father wavelets.

O

To start, recall that the operator A = (A, )y.,>1 is defined by A, , = >V, (7)¥,(1).
However, by Parseval’s relation

Ay, = ZT:\I/U(T)\IIV(T) = (;)2//@77@)@,,(@@, 4)

where \Tln(w) takes one of the following forms:

W) = 2% |my (29 wn) Plmo (27 w2) 2 [T 25 Imao (2Pw1)mo (2Pws)
(@) = 2% |mo(29 wn) 2lma (29 ws) [ TG [mo (27w1 )mo(2Pws) 2
‘@?(W)P = 22j|m1(2j71W1)!2|m1(2j*1w2)!2H;j)|m0(2pw1)m0(2pw2)|2

The above follows as a consequence of the Fourier properties of discrete father wavelet
filters and discrete wavelets (see for example Lemma 3.1 of Eckley (2001), the separability

~ ~ 2 ~
of the 2D wavelets and the result that lllé(w) = ’wé(w)‘ . Thus, 0 = >, A(z)V,(7)
implies that

=0 = Y Af2)Ty(1)) AT, (r), Vze(0,1)°VreZ’
n v

Hence 0 = 37, 5%, A, ()4, (2) 3, W, (7)1, (7).

Applying Parseval’s relation, (4), we obtain
~ ~ 1\2 . .
0 — Enj Z A, (2)A, (z) (2W> //\Iln(w)lll,,(w) dw

_ / / o <2An(z)\/1\!,7(w)>2. 5)
n

By Definition 4 of ENT, S, (z) is positive, hence |S,(2)| = Sy (z). Furthermore, it is
easily shown that Zn Sy(z) < oo (see Eckley (Property 3.1, 2001) for details), uniformly
in z.  Thus, 37 [Ay(z)] < oo and hence 3, 22IM|A, (z)| < oco. We can infer

that 3, An(z)\ff”(w) is a continuous function for w € [—,7]? because 2_2j(’7)\fln(w)



is continuous in this domain (it is simply a trigonometric polynomial in two variables,
uniformly bounded above by 1). Hence, (5) if and only if

0=> A,)(2)¥,(w), Yw e [-ma]*Vze(0,1)

All that remains now is to demonstrate the pointwise implication of An(z) =0Vn >
1,Vz € (0,1)2. To achieve this, we use continuity arguments and the insertion of the zeros
of |mg(2'w)|? and |m; (2'w))?.

We start by fixing z € (0,1)? and set A,, = A, (z) at this fixed point z. Then,

0 = > ATy (w)
n

J 2J 3J
= Y ATW Y ATw+ Y AT W)
n=1 n=J+1 n=2J+1
= Z Ay2%|my (27 ) P Imo (27 tws) 2 H [mo(2'wy )mo(24ws) [
n=1 =0
2J ~ A ‘ ‘ -2
+ > A2 mg (27 wr) Pl (27 wo) P T [ Imo(2'wr)mo(2'wa) [ (6)
n=J+1 1=0
3 ‘ ‘ ‘ j—2
+ ) A2¥ |ma (2 wr) PIma (27 wa) P T T mo (2'wn)mo(2'ws) .
n=2J+1 =0

From Daubechies (1992, Chapter 5) we know that mg is a 2m-periodic function which is
such that [mg(&)[? + |mo(€ + m)[* = 1 and,

|mo(m)|? = 0. (7

Thus, |mo(0)|? = 1. Recall also that |m1(w)|? = 1 — |mo(w)|? for Daubechies compactly
supported wavelets.

To show that Al, A J+1 and Ag J+1 are all zero, consider the following: Let w; = 7 and wy
vary. Then by the construction of \fln(wl, wo) and using (7) it follows that \Tln(w, we) =0
forn=2,3,...,J,.J+1,...,2J,2J +2,...,3.J. However since |m1(7)|?> = 1, equation
6 simplifies to

0 = Agd|my(m)]*Imo(wa)* + Agyirdfma ()] [ma (w2)

= Aylmo(w2)]? + Aggpi|mi(we)]?, Vews € [—m, 7] ®)

Now suppose, without loss of generality, that wy = 0. Then |m;(0)[* = 1 — |mg(0)|*> = 0.
Hence, 0 = A1|mo(0)|? + Agyi1/m1(0)|> = A1|mo(0)|2. In other words, A; = 0.



To show that AQ J+1 18 zero, reconsider (8):

0 = Aqlmi(m)Imo(w2)|? + Agyia|ma(m)*Im1 (we)]?
= Agypa|ma(m)Pma(ws)l?,

= Agjpi|mi(wa)?* Vws € [~ 7.

as Aq is zero

Setting wo = 7, we obtain, 0 = AQJH\ml(ﬂ)]z,
— Ayjp1 = 0. 9)

To conclude this part of the proof, it remains to show that A J+1 = 0. To this end,
reconsider (6) setting wo = 7 and letting wy vary. Then, as |mo(7)|> = 0, it follows
that \T/n(wl, ) = 0 for all n except n = J + 1 and 2J + 1. However, we have already
shown that AQJH = 0. Thus (6) simplifies to 0 = AJ+1‘m0 (w1)]? Yw; € [—7, 7. Setting
w1 = 0 (= |mo(w1)|? = 1), we find that A ;.| = 0.

We have therefore shown that Al, A J+1 and Az J+1 = 0. Thus (6) simplifies to

J Jj—2
0 = |mo(wi)mo(w2)* ¢ > Ay2% |my (27 wr) Plmo (27 wo)[* T ] Imo(2'wi)mo (2'ws) [
+ ) Ay2% mo(27 wr) Pma (27 ws) | [ ] Imo(2w1)mo (2ws) | (10)
n=J+2 =1
3J _ A A A j—2
+ > A2 |ma (20 wr) Plma (27 wo) P T | mo(2Mwr )mo(2'ws) 2
n=2J+2 =1

As |mo(w)|? and |m1(w)|? are analytic and mq(w), m1(w), as trigonometric polynomials,
have finitely many zeros, it follows that the (continuous) function in the braces must vanish

identically. Setting wy = 7/2 and letting wo vary, we find that [mg(2w;)|> = |mo ()] = 0

and |m1(2wy)|? = 1. Hence (10) reduces to
0 = Ag2*fmy(m)*lmo(2w2)|* + Aoyya2t|ma(m)[?ma (2ws)
0 = AQ‘T)’LO(QCUQ)P + A2J+2]m1(2w2)‘2 Ywy € [—71',71']. (11)

‘Without loss of generality, let wy = 0. Then as |m; (0)|> = 0, the above simplifies
to Ay = 0. Thus the expression in (11), where wo can take any value, simplifies to

0= AQJ+2|TTL1(2W2)|2. Setting wy = 7['/2, we obtain 0 = A2J+2|m1(ﬂ')|2 = A2J+2.

Finally to show that A J+2 = 0, reconsider (10), this time allowing w; to vary and setting
wo = 7/2.The expression reduces to

0 = AJ+224|m0(2w1)\2]m1(ﬂ')]2 + AQJ+224|m1 (2w1)\2|m1(7r)|2 but A2J+2 = 0,
= AJ+2‘TTL)(2W1)’2 Ywy € [—71',71'].



Setting wy; = 0 it follows that .
Ay =0.

Continuing with this scheme for j(n) = 3,4, 5, ... leads to the result that
A, (z) =0 Vn,Vz € (0,1)%

Hence the LWS are uniquely defined given the corresponding LS2W process. Furthermore,
since we have shown that 0 = >° A, (z)¥,(7) if, and only if A;(z) = 0, we have
that {¥,(7)}72, are linearly independent. Moreover, since A is the Inner Product (or
Gram) matrix of the ¥, A is clearly symmetric and also positive definite. Consequently
the eigenvalues of A are positive.

O
Corollary 1. The inverse formula of equation 14 of ENT is
Si(z) =Y Ay > Clz,7)Wy, (7). (12)
m T

Proof of Corollary 1

This proof is identical to that of the one-dimensional case considered by Nason et al.
(Proposition 2, 2000). Consider,

ZA;}M ZC(Z,T)\I/W(T)

By definition, C(z, 7) = >, S, ¥, (7). Hence

Z Ag’}“ Z Clz, 7)¥y(1) = Z A;ﬂlh Z {Z SV(Z)\I'V(T)} Wy ()
m T m T v
- ZA;ﬂlh ZSV(Z) Z\I/V(T>\Pm (1)
m v T

The order of the summations may be changed above for Zn Sy(z) < oo Vz whilst the sum
over T is finite. By definition ) _ VU, (7)V¥,, (T) = A, = A, . Hence,

Do Ay 2O T(m) = 3D Su() Ay,
m T m v
- ZSV(Z)ZA;ﬂlﬂAWl,V
v it

= > S(2)onw
= 5y(2).



O]

Theorem 2. Let z = (21, 29), R = (R, S) and [zR)] = ([z1R], [225]) where R = 27, S =
2K for some J, K € N. Further, assume that the {fn,r} are Gaussian. Then,

1
0 [2R]) ZAWSm +O<min{R,S}>' (13)

Proof of Theorem 2
Let p=[zR]. By definition,
E(llp) = E[(d,)?]

2
= E (Z er)é»’p(r))

As {X,} is assumed to be a LS2W process, we obtain
- 2

E(L,) = E Z > wh gl L ()&, ¢ vl (r)

Lju

= E Z Z .71 ulel,U1 >£Jl’ule’p( )

r1 lp,j1,u1

Z Z J2 u2¢j2,u2 r2)§72 ugll}_], (rZ)

r2 lz,j2,u2

= Z ZZ Z ]1,111 32,1121/}]1,111( )wJQ,UQ( Q)wé,p(rl)¢é‘,p(r2>E<fﬁ,u1§§'§,ug)'

ri,r2 ly,ls j1,j2 u1,u2

By the orthonormality of the increment sequence and Assumption 1, it follows that
l2 _ L la
COV(£j1 u15327u2) - E(gjhulgjg,ug)
= 0j1,j200;,10u; us-

Hence,

E(Ijl',p) = Z ]17 th, r %p r1) th ull2 % p(r2). (14)

li,j1,u

Upon making the substitution u = x + p we obtain:

2
E(Ijlm) = Z Jl,x+p {Z¢]1X+P %p()}

l1,j1,x

2
= > (W)’ {Z%;xﬂ, U r} . (15)

l1,J1,

10



As the sum over x ranges over {x = (x1,22) : x1.x2 € Z}, it follows that p in the final
summation of equation (15) becomes redundant. Hence,

) D) {z% w}

h 51 x

It is easily shown that
2 l
(= g)l <
| 2t - maX{R S}

See the proof of Proposition 1 for further details. Hence

”w [zZR]+x

ct
! 9 1 X < J
w j.[zR] +x| =5 (Z+ R) ~ max{R, S}

In other words,

lq
15 2 ol X+ |Y C]l
|wj1,x+p| - Sjl ( R > +0 <max{R, S}) :

Thus
) = (5% (52) 0 (i) (T e i
- T () [Tt b} 0 (st

Aside: The remainder term can be brought out because

1. the number of terms in the wavelet product {Z wjl X r¢l.7_r} is finite and bounded

as a function of x due to j being fixed and the fact that discrete wavelets have compact
support.

2. andas )’ >, C]l- < 0.

Moreover, as we show in the proof of Proposition 1, if we set z = (z1, 22) and 7 = (71, 72),
then

Sk(z1 +11/R, 22+ 12/8) — (21722)‘ _ O(Ll <’7;| +|;|>>
Thus,
_l’_
Sl(zl+7‘1/R 22—1—7‘2/5') (21’22)+O<LZM> (16)

11



Incorporating this Lipschitz property of the {S;} (16), we obtain

-y (s (B) o () (St )

lh j1 X

o <mx{1w>

Sy Sl @ {Set ) o ()

Lo x
again due to {Z ¢ 1 x— r¢l47_r} being finite and the summability of the Lipschitz constants
Lt
i

Expanding the squared wavelet product term yields

ZZZSZI (*) {Zw i1 x— rle,—rl Zw Ji,x— T2¢j’_r2}+0 <H1111{1R,S}> '

i j1 X

Upon making the substitution s = ry — r; we obtain

E(I]l,p) - ZZZSZI <7> {Zwﬁ,x rlw],frl Zwﬁ,x s— rlwé',srl}

i j1 X

1
0 (min{R S})
= Zzsll( )Zzwjﬁl'leﬁs ry nglx ry glx ri—s
Ji

l1
¢ (mfm) '

By recognition, this last summation is simply the discrete a.c. wavelet, \Iléll (s). Thus,

By = Y8 (B) S wh e S vt v 0 (i)

i J1 s —r1

- S (RS e 0 () 0

Il

Setting n = (j,1) and 1 = (j1,11), and recalling that >, ¥, (s)¥, (s) = A, ., , equation

(17) reduces to:
1
ZA” m S ( ) +0 (min{R, S’}> ’

as required.

12
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Theorem 3. Assume that the {,, } are again Gaussian. Then the covariance between I]li p

and I]lj q Mmay be expressed as follows:

2

l l _ 2 lhlo l2,lo
COU(IJi pIJ;q Z Z Z ]0 uo Y5140 (p,u )am Jo (q,up)

lo jo uo

Thus the correlation between these quantities decreases with increasing distance between
location p at scale-direction (j1,11) and the location q at (ja,1l2). In particular, when
Jj1 = ja, the covariance is zero when ||p — q|| exceeds the overlap of the corresponding
wavelets support. Moreover

Var(Il ) = 2E(I},)?
2 i)
- 2<;Annlsnl<[p/m>> +0<H12(RS>> (18)

where j(n) =n — L%j J simply denotes the scale element of n(j, ).
Proof of Theorem 3
Variance: The variance of a wavelet periodogram,

Var([ip) = Var ((dé',p)2>

= E((d,))-E ((dé-’p)Z)Q

We already know the asymptotic form of E ((dé‘,p)2> . We therefore focus on
4
E ((dé-,pr*) = E (Z szz);,p@))
_ l
= E ZZZZ Wii,m 11,U1 )fjlyulw (r)

r i Jj1 wm

4
= E(J]D D DD wf wfw ®)E) utp(rs)

1=1 r; l; Ji 44

- HZZZZ (Jhul jz,u2§Jl?3’,u3€;i,u4) wéii,uzwjnuz( )w ( )

=1 ry I; J; g

13



Consider the term E <§ 2 §l.3 51-4 > Using a result due to (Isserlis, 1918),

J1, u1€]27u2 J3,U3>]4,U4

l l l [ l [ [ [
E (&) 02 wlnebiin) = E (6 utum) B (6 wta,)
[ [ l
+E (f J1 ulgj?s,us) E <£j§,u2§ji,u3)
l l l
+E <€.71 u1€Ji,u4) L (gj;lmgj;ug,) TR

where k4 is the fourth order cumulant of the distribution of {f o 5;2 s ,f g géi w }

Moreover when {fiu} is Gaussian, as in this case, k4 = 0. (See Priestley (Section 5.3,
1981) for further details.)

Using this quadravariate decomposition, the expression of [E ((dé-vp)‘l) simplifies to

M%ﬁ):HZZZZﬁmemwﬂ(%ﬁmﬁ@m%@

=1 1 'L Ji u;
l l l l L:
+E (gh U1€J§,U3> E (@i,ua% U3) +E <£J1 u1£]i,u4> E (éj;ugfj;,u:a)}
= L+ I+ I3,

where, for example,

HZZZZMMWQM%&@%me%mw%

=1 r; l; ]7, u;

By construction

l1 l2 _ l2
E(§j17u1€j27u2> - Cov(gjl up’ j27u2)

5j17j25U1,u2511,l2'

14



Hence (19) simplifies as follows:

h:HZZZZﬁMM D (r)E (&) 060 )

=1 ry I; J; g

xHZZZZﬁmmzw<>%ﬁm)

1=3 Ir; l; Ji u;

= > > > (Wi, Zwlulrlw (r1 Zw;lulrzw (r2)

h 51 wm

ZZZ W g Z%;ud rs wyp rs Z g (T4 d’y p(ra)

I3 J3 us

= ZZZ Wh uy) th,m r w]p ry) an u, (12 wﬂp(rQ)

i 7517 wm
= E(/ ;-7p)2 (by recognition from formula (14))
= Ig and 13.

Thus, (changing to 7(j, ) notation)

Var(—’n,p) = 3E(In, )Q_E(In,p)2
= 2E(J,

However, from Theorem 2, we know that

P 1
Iyp) = nzsm (ﬁ) Ay + 0O <w) :
1
Hence,

Var(ln,p) = 2E(In,p)2

- St ()0 (s

From the work of Nason ef al./ (2000) it is known that ‘llé () = O(1), uniformly in 7.
Hence it follows that

n(5,0)m1,l) = Z \Ill \I’ll 0(221'(77)).

Thus, as 7 is fixed

2 .
p 227 (n)
vt =2{ S a0y (B)f <0 (s )
m ’

15



Covariance:
Cov(Ile . I? ) = C de V' (ab )
OVljopr Ljpa) = ov Jja,P ) 7\ "Jbd

(a.0)" ()~ ( (2 5,)°)

2
We already know the form of E ((d ,p> > . Hence we focus on the term

£((4) (4.)°)

= E

(St o) (S tpi0)

Il
=
/-~ -

2
_ I l
= E ZZZZ Wi uy ]1 ug )gjl,ulezyp(r)
r [ 51 w
2
ZZZZ (8632 1,001 ()
Wy, s J2,u2 J2,u2 ¥ jp,q
s 2 J2 u2

2
= TID°D D> wli v ea)¥f ()

=1 r; li jz u;

HZZZZ Jz,ul ]Z,ul )lbé';q(si)

=3 S; z‘ ]z u;
A l2 I3 lg
I (gjhm5j2,U2§j3,U3§j4,U4)

Using Isserlis’ theorem, together with the fact that the fourth order joint cumulant of
Gaussian random variables is zero, we can expand the above expression as follows:
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Now recall that by construction E(£ i ulfb

) = 0j1,j20us,uz01y 1, It therefore follows

16



that:
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However, recall from equation (14) that
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Finally, it is easily shown that I3 = I5.
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Drawing our expressions for I, Is and I3 together we find that,

Cov(
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