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ABSTRACT Painlevé’s transcendental differential equation PVI may be expressed as the consis-

tency condition for a pair of linear differential equations with 2×2 matrix coefficients with rational

entries. By a construction due to Tracy and Widom, this linear system is associated with certain

kernels which give trace class operators on Hilbert space. This paper expresses such operators

in terms of Hankel operators Γφ of linear systems which are realised in terms of the Laurent co-

efficients of the solutions of the differential equations. Let P(t,∞) : L2(0,∞) → L2(t,∞) be the

orthogonal projection; then the Fredholm determinant τ(t) = det(I−P(t,∞)Γφ) defines the τ func-

tion, which is here expressed in terms of the solution of a matrix Gelfand–Levitan equation. For

suitable values of the parameters, solutions of the hypergeometric equation give a linear system

with similar properties. For meromorphic transfer functions φ̂ that have poles on an arithmetic

progression, the corresponding Hankel operator has a simple form with respect to an exponential

basis in L2(0,∞); so det(I − ΓφP(t,∞)) can be expressed as a series of finite determinants. This

applies to elliptic functions of the second kind, such as satisfy Lamé’s equation with ` = 1.
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1. Introduction

Tracy and Widom [32] observed that many important kernels in random matrix theory arise

from solutions of linear differential equations with rational coefficients. In particular, the classical

systems of orthogonal polynomials can be expressed in such terms. In this paper, we extend the

scope of their investigation by analysing kernels associated with Lamé’s equation and Painlevé’s

equation VI. As these differential equations have solutions which may be expressed in terms of

elliptic functions, we begin by reviewing and extending the definitions from [32].

Let P (x, y) be an irreducible complex polynomial, and n the degree of P (x, y) as a polynomial

in y. Then we introduce the curve E = {(λ, µ) ∈ C : P (λ, µ) = 0}, and observe that E ∪ {(∞,∞)}
gives a compact Riemann surface which is the n-sheeted branched cover of Riemann’s sphere P1.

Let K be splitting field of P (x, y) over C(x), so we can regard K as the space of functions of

rational character on E . Let g be the genus of E , and introduce the Jacobi variety J of E , which is

the quotient of Cg by some lattice L in Cg.
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Definition (Tracy–Widom system). By a Tracy–Widom system [32; (0.8), 8] we mean a differential

equation
d

dx

[

f
g

]

=

[

α β
−γ −α

] [

f
g

]

(x > 0) (1.1)

where α, β, γ belong to K or more generally are locally rational functions on J. Then for solutions

with f, g ∈ L∞((0,∞);R), we introduce an integrable operator on L2(0,∞) by the kernel

K(x, y) =
f(x)g(y)− f(y)g(x)

x − y
(x 6= y; x, y > 0) (1.2)

The kernel K compresses to give an integral operator KS on L2(S; dx) for any subinterval S

of (0,∞) and it is important to identify those KS such that KS is of trace class and 0 ≤ KS ≤ I .

In such cases, the Fredholm determinant det(I + λKS) is defined and KS is associated with a

determinantal random point field on S. In particular, det(I −K(t,∞)) gives the probability that

there are no random points on (0,∞). See [32, 6] for examples in random matrix theory.

Definition (τ -function). Suppose that K : L2(0,∞) → L2(0,∞) is a self-adjoint operator such

that K ≤ I , K is trace class and I − K is invertible. For a measurable subset S of (0,∞), let

PS : L2(0,∞) → L2(S) be the orthogonal projection given by f 7→ fIS , where IS is the indicator

function of S. Then the τ function is

τ(t) = det(I −KP[t,∞)) (t > 0). (1.3)

The purpose of this paper is to take kernels that are given by certain Tracy–Widom systems,

and show how to express the corresponding τ in terms of the solution of a Gelfand–Levitan integral

equation. Our technique involves linear systems, and extends ideas developed in [6], and leads to a

solution of the integral equation in terms of the linear system. We summarize the basic idea next,

and give details in section 2.

Let H be a complex separable Hilbert spaces, known as the state space, and let (e−tA)t>0 be

a bounded C0-semigroup of linear operators on H ; so that A has domain D(A) which is a dense

linear subspace of H , and ‖e−tA‖ ≤ M for all t > 0 and some M < ∞. Then let B : C → D(A)

and C : D(A) → C be bounded linear operators, and introduce the linear system

dX

dx
= −AX +BU (X(0) = 0),

Y = CX (1.4)

known as (−A,B,C). Under further conditions to be discussed below, the integral

Rx =

∫ ∞

x

e−tABCe−tA dt (1.5)

converges and defines a trace class operator on H . The notation suggests that Rx is a resolvent

operator.
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Definition (Hankel operator). For a linear system as above, we introduce the symbol φ(x) =

Ce−xAB, which gives a bounded function φ : (0,∞) → C; this term should not be confused

with the different usage in [29, p 6]. Generally, for E a separable complex Hilbert space and

φ ∈ L2((0,∞);E), let Γφ be the Hankel operator

Γφh(x) =

∫ ∞

0

φ(x+ y)h(y) dy (1.6)

defined on a suitable domain in L2(0,∞) into L2((0,∞);E).

By forming orthogonal sums of the state space and block operators, we can form sums of

symbol functions. Likewise, by forming tensor products of state spaces and operators, we can form

products of symbol functions. Using these two basic constructions, we can form some apparently

complicated symbol functions, starting from the basic multiplication operator A : f(t) 7→ tf(t) in

L2(0,∞). Thus we extend the method of section 2 to a more intricate problem.

In section 3, we consider operators related to the solution of Painlevé’s transcendental equation

PVI
d2y

dt2
=

1

2

(1

y
+

1

y − 1
+

1

y − t

)(dy

dt

)2

−
(1

t
+

1

t− 1
+

1

y − t

)dy

dt

+
y(y − 1)(y − t)

t2(t− 1)2

(

α+
βt

y2
+
γ(t− 1)

(y − 1)2
+
δt(t − 1)

(y − t)2

)

. (1.7)

with constants

α =
1

2
(θ∞ − 1)2, β = −1

2
θ20 , γ =

1

2
θ21 , δ =

1

2
(1− θ2t ) (1.8)

and

θ∞ = −2(z0 + z1 + zt) − (θ0 + θ1 + θt). (1.9)

Jimbo, Miwa and Ueno [18, 19] showed that the nonlinear differential equation PVI is the com-

patibility condition for the pair of linear differential equations

dΦ

dλ
=

(W0

λ
+

W1

λ− 1
+

Wt

λ− t

)

Φ (1.10)

dΦ

dt
=

−Wt

λ− t
Φ (1.11)

on the punctured Riemann sphere with 2 × 2 complex matrices W0,W1,Wt depending upon t;

see (3.3) for the entries. Using the Laurent series of Φ(λ) in (1.10), we introduce a linear system

(−A,B,C) that realises Φ and deduce information about ΓΦ. In previous papers [5, 6], we have

considered kernels that factorize as K = Γ†
φΓφ where Γφ is Hilbert-Schmidt, so that K ≥ 0 and

K is trace class. In the context of PVI, we show that the prescription (1.2) gives a kernel K

that admits a factorization K = Γ†
φσΓφ, where σ is a constant signature matrix. In section 4 we

introduce a suitable τ function and express this in terms of the solution of an integral equation of

Gelfand–Levitan type, which we can solve in terms of the linear system. A similar approach works
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for suitable solutions of Gauss’s hypergeometric equation with a restricted choice of parameters,

as we show in section 5.

Definition (Transfer function). Given a Hilbert space E, for φ ∈ L2((0,∞); dt;E) let

φ̂(s) =

∫ ∞

0

e−stφ(t) dt (1.12)

be the transfer function of φ, otherwise known as the Laplace transform, which gives an analytic

function from {s : <s > 0} into E.

We assume that φ̂ is meromorphic, and that, by virtue of the Mittag-Leffler theorem, one can

express φ as a series

φ(x) =
∞
∑

j=1

ξje
−λjx (1.13)

in which we shall always assume that <λj > 0 and that the e−λjx are linearly independent in

L2(0,∞). We wish to express various τ functions in terms of the determinants

DS×T = det
[ 1

λj + λ̄k

]

(j,k)∈S×T
(1.14)

where S and T are finite subsets of N of equal cardinality. In sections 6, we consider Hankel

operators with symbols as in (1.13), and establish basic results about the expansions of det(I−Γφ)

in terms of the bases. In particular, if (λj)
∞
j=1 forms an arithmetic progression in the plane, then

φ̂(s) =
∑∞

j=1
ξj

s+λj
gives a cardinal series. This occurs for differential equations which we explore

further.

In section 7, we consider the Bessel kernel, which arises in random matrix theory as the hard

edge of the eigenvalue distribution from the Jacobi ensemble [31]. Let Jν be Bessel’s function of

the first kind of order ν, and let u(x) =
√
xJν(2

√
x), which satisfies

d2u

dx2
+

( 1

x
+

1 − ν2

4x2

)

u(x) = 0. (1.15)

We introduce φ(x) = u(e−x), and the Hankel operator Γφ with symbol φ. The transfer function φ̂

is meromorphic with poles on an arithmetic progression on the positive real axis, so we are able to

obtain a simple expansion for τ(t) = det(I −Γ2
φP[t,∞)), and identify the determinants DN×N with

combinatorial objects.

In section 8 we consider solutions of Lamé’s equation

(

− d2

dz2
+ `(`+ 1)k2sn(z | k)2

)

Φ(z) = λΦ(z) (1.16)

which we express as a differential equation on the elliptic curve Z2 = 4(X − e1)(X − e2)(X − e3).

The solution gives rise to an elliptic function φ such that φ̂ has poles on a bilateral arithmetic

progression parallel to the imaginary axis in C. Hence we can prove results concerning the Fredholm

determinant of Γφ.
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2. The τ function associated with a linear system

In this section we introduce the basic example of the linear system which we will use in sections

3 and 5 to realise solutions of some differential equations. In [33], Tracy and Widom consider

physical applications of the kernels Rx that we introduce here.

Definition (Integrable operators). Let f1, . . . , fN , g1, . . . , gN ∈ L∞(0,∞) satisfy

N
∑

j=1

fj(x)gj(x) = 0 (x > 0).

Then the integral operator K on L2(0,∞) that has kernel

K ↔
∑N

j=1 fj(x)gj(y)

x− y
(2.1)

is said to be an integrable operator; see [12]. One can show that K is bounded on L2(0,∞).

Let D(A) = {f ∈ L2(0,∞) : tf(t) ∈ L2(0,∞)} and for b, c ∈ D(A) introduce the operators:

A : D ⊂ L2(0,∞) → L2(0,∞) : f(x) 7→ xf(x)
B : C → D(A) : α 7→ bα;
C : D(A) → C : f 7→

∫ ∞

0
f(s)c(s) ds

Θx : L2(0,∞) → L2(0,∞) : Θxf(t) = e−xtc̄(t)f̂(t)

Ξx : L2(0,∞) → L2(0,∞) : Ξxf(t) = e−xtb(t)f̂(s)

(2.2)

Then we introduce φ(s) = Ce−sAB and φ(x)(s) = φ(s + 2x), and the Hankel integral operator

Γφ(x)
with kernel φ(s+ t+ 2x). Then we introduce Rx =

∫ ∞

x
e−tABCe−tA dt which has kernel

Rx ↔ b(t)c(s)e−x(s+t)

s+ t
(s, t > 0). (2.3)

Proposition 2.1. Suppose that c(t)/
√
t and b(t)/

√
t belong to L2(0,∞), and that c and b belong

to L∞(0,∞).

(i) Then Γφ(x)
and Rx are trace class operators for all x ≥ 0.

(ii) Suppose further that I + λRx is invertible for some λ ∈ C. Then the kernel

Tλ(x, y) = −λCe−xA(I + λRx)
−1e−yAB (0 < x ≤ y) (2.4)

gives the solution to the equation

λφ(x+ y) + Tλ(x, y) + λ

∫ ∞

x

Tλ(x, z)φ(z + y) dz = 0 (0 < x ≤ y) (2.5)

and the diagonal of the kernel satisfies

Tλ(x, x) =
d

dx
log det(I + λΓφ(x)

) (x > 0). (2.6)
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(iii) The operator R2
x is an integrable operator with kernel

R2
x ↔ e−xub(u)

fx(u) − fx(t)

t− u
c(t)e−xt (2.7)

where

fx(u) =

∫ ∞

0

b(t)c(t)e−tx

u + t
dt. (2.8)

(iv) If I+λRx and I −λRx are invertible, then there exists an integrable operator Lx(λ) such

that

I +Lx(λ) = (I − λ2R2
x)

−1. (2.9)

Proof. (i) One checks that Θx has kernel e−ste−xtc̄(t) and that Ξx has kernel e−st−xsb(s); hence

Θ†
x and Ξx are Hilbert–Schmidt operators. One verifies that their products are Rx = ΞxΘ

†
x and

Γφx
= Θ†Ξx, and hence Rx and Γx are trace class.

(ii) Using (i), we can check that det(I + λRx) = det(I + λΓφ(x)
). Then one verifies the

remainder by using Lemma 5.1(iii) of [6].

(iii) This result is essentially contained in lemma 2.18 of [12], but we give a proof for com-

pleteness. The kernel of R2
x is

b(s)e−sxc(u)e−ux
∫ ∞

0

b(t)c(t)e−2tx

(s+ t)(u+ t)
dt (u, s > 0), (2.10)

and one can decompose this expression by using partial fractions. By the Cauchy–Schwarz inequal-

ity, |fx(u)|2 ≤
∫ ∞

0
t−1b(t)2dt

∫ ∞

0
t−1c(t)2dt, so fx is bounded.

(iv) Furthermore, (I − λRx)
−1(I + λRx)

−1 is a bounded linear operator; so by Lemma 2.8 of

[12], there exists an integrable operator Lx(λ) such that (I + Lx(λ))(I − λ2R2
x) = I.

Remarks. (i) Given an integrable operator K on L2(a, b) such that I−K is invertible, the authors

of [12] show how to express (I−K)−1 as the solution of a Riemann–Hilbert problem on the bounded

interval (a, b). See [29] for analysis of Carleman’s integral operator with kernel 1/(u+ t).

(ii) In [10], Borodin and Olshanski construct a kernel K from Whittaker functions by using a

similar approach, and show that K is the scaling limit of the discrete hypergeometric kernel. Their

analysis involves a similar computation to Proposition 2.1; indeed, one can take b(s) = sκ−1e−αs/2

and c(t) = Wκ,µ(αt) so that

∫ ∞

0

b(t)c(t)

u+ t
dt = Γ(κ+ µ+ 1/2)Γ(κ− µ+ 1/2)uκ−1eαu/2W−κ,µ(αu). (2.11)

for <α > 0, <κ > |<µ| − 1/2. The Whittaker function satisfies a form of the confluent hyperge-

ometric equation; see [35; (5.9) 5 ]. In section 5, we consider other kernels associated with the

hypergeometric equation.
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3. A linear system associated with Painlevé’s equation VI

The Painlevé equation PVI is associated with the system

dΦ

dλ
=

(W0

λ
+

W1

λ− 1
+

Wt

λ− t

)

Φ (3.1)

dΦ

dt
=

−Wt

λ− t
Φ (3.2)

where Φ is a 2 × 1 vector, the fixed singular points are {0, 1,∞} and

Wν = Wν(t) =

[

zν + θν/2 −uνzν
u−1
ν (zν + θν) −zν − θν/2

]

(ν = 0, 1, t) (3.3)

with parameters θν and zν satisfying various conditions specified in (1.8), (1.9) and [19]. The

consistency condition for the system (3.1) and (3.2) reduces to the identity

1

λ

∂W0

∂t
+

1

(λ− 1)

∂W1

∂t
+

1

(λ− t)

∂Wt

∂t
=

[W0,Wt]

λ(λ− t)
+

[W1,Wt]

(λ− 1)(λ− t)
, (3.4)

which leads, after a lengthy computation given in Appendix C of [19], to the equation PVI.

In the present context (3.1) is known as the deformation equation and (3.4) is associated with

the names of Schlesinger and Garnier [13]. Let J =

[

0 −1
1 0

]

. Note that traceW = 0 if and only

if JW is symmetric; also W is nilpotent if and only if JW is symmetric and det(JW ) = 0.

First we introduce a linear system for the differential equation (3.4); later we introduce a linear

system that realises the kernel most naturally associated with PVI. For notational simplicity, we

often suppress the dependence of operators upon t. The following result is a consequence of results

of Turrittin [34, 30], who clarified certain facts about the Birkhoff canonical form for matrices.

Lemma 3.1. Let W∞ = −(W0 +W1 +Wt) and suppose that the eigenvalues of W∞ are ±θ∞/2
where ±θ∞ is not a positive integer, and let Φ0 be a constant 2× 1 vector. Then there exist 2× 2

complex matrices Cj for j = 1, 2, . . ., depending upon t, such that

Φ(x) =
(

I +
∞
∑

j=1

Cj
xj

)

x−W∞Φ0 (|x| > t) (3.5)

satisfies the differential equation (3.1).

Proof. We can define x−W∞ = exp(−W∞ logx) as a convergent power series. By considering

terms in the convergent Laurent series, one requires to show that there exist coefficients C0 = I

and Cj that satisfy the recurrence relation

Cn(−W∞ − nI) = −W∞Cn +W1(C0 + . . .+ Cn−1)

+ tWt(t
n−1C0 + tn−2C1 + . . .+Cn−1), (3.6)

where W∞ + nI and W∞ have no common eigenvalues. Sylvester showed that, given square

matrices V,W and Z such that V and W have no eigenvalues in common, the matrix equation
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CV −WC = Z has a unique solution C; see [34, Lemma 1]. Hence unique Cn exist, and one shows

by induction that ‖Cn‖ is at most of geometric growth in n. In particular, if ‖W∞‖ < 1, then the

solution of W∞Cn − Cn(W∞ + nI) = Dn is

Cn = −
∫ ∞

0

esW∞Dne
−s(W∞+nI) ds. (3.7)

We have proved that (3.1) has a solution in a neighbourhood of infinity, and one can show

that it extends to an analytic solution on the universal cover of the punctured Riemann sphere

P1 \ {0, 1, t,∞}. (Jimbo, Miwa and Ueno [18] have shown that any C2 solution of the pair (3.1)

and (3.2) on R extends to a meromorphic solution on C; see [13, Remark 4.7].)

Extending the construction of (2.2), we realise this solution via a linear system. We intro-

duce the output space H0 = C2, then the Hilbert space H1 = `2(H0), the state space H =

L2((t,∞); ds;H1) and then let D(A) = {f ∈ H : sf(s) ∈ H}; then we choose

bj(s) = Γ(jI +W∞)−1s(j−1)I+W∞ (j = 0, 1, . . .), (3.8)

recalling that Γ(z)−1 is entire. With this choice and some convergence factor κ0 > 1, we introduce

linear maps
A : D(A) → H : f(s) 7→ sf(s);
BW : D(BW ) → H : β 7→ (κj0bj(s)β)∞j=0;

CW : D(A) → C2 : (fj)
∞
j=0 7→ ∑∞

j=0

∫ ∞

0
κ−j0 Cjfj(s) ds.

(3.9)

We prove below that e−xAβ ∈ H for all sufficiently large x. As usual, we introduce Ξx : L2(0,∞) →
H such that

Ξxf =

∫ ∞

x

e−sABW f(s) ds (3.10)

and the observability operator Θx : L2((0,∞);H0) → L2((t,∞);H1) by

Θxf =

∫ ∞

x

e−sA
†

C†
W f(s) ds. (3.11)

Proposition 3.2. (i) There exist κ0, x0 > 0 such that the operators Θx : L2((0,∞);H0) → H

and Ξx : L2((0,∞);H0) → H are Hilbert–Schmidt for x > x0.

(ii) For x > x0, the linear system (−A,BW , CW ) realises the solution Φ of (3.1), so that

Φ(x; t) = CW e
−xABWΦ0. (3.12)

(iii) Let φW (x; t) = CW e
−xABW . Then the Hankel operator on L2((x0,∞);H0) with symbol

φW is trace class.
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Proof. (i) We note that Θx has kernel (e−suκ−j0 C†
j )

∞
j=0, and hence the Hilbert–Schmidt norm

satisfies

‖Θx‖2
HS =

∞
∑

j=0

∫ ∞

t

∫ ∞

x

e−2suκ−2j
0 dsdu ‖C†

j‖2
HS

≤
∞
∑

j=0

‖C†
j ‖2
HSe

−2xt

κ2j
0 4xt

; (3.13)

so we choose κ0 so that this series converges. For notational convenience, suppose that ‖W∞‖ < 1.

Then by the functional equation of Euler’s Γ function, we have

‖Γ(jI +W∞)−1uW∞+(j−1)I‖ ≤ Γ(j − 1)−1uj‖(I +W∞)−1Γ(I +W∞)−1‖ (u > 1). (3.14)

Next we observe that Ξx : L2((x,∞);H0) → L2((t,∞);H1) has kernel (e−suκj0bj(u))
∞
j=0, and hence

has Hilbert–Schmidt norm

‖Ξx‖2
HS =

∞
∑

j=0

∫ ∞

x

∫ ∞

t

e−2suκ2j
0 ‖bj(u)‖2

HS duds

≤
∞
∑

j=0

∫ ∞

t

κ2j
0 e

−2xu(2u)−1‖bj(u)‖2
HS du. (3.15)

where the tail of the series is by (3.14)

≤ κW

∞
∑

j=2

κ2j
0 Γ(2j)

Γ(j − 1)2(2x)2j
‖(I +W∞)−1Γ(I +W∞)−1‖2

HS (3.16)

for some κW > 0. Having chosen κ0, we then select x0 so that the series converges for all x > x0;

then both Θx and Ξx are Hilbert–Schmidt.

(ii) Hence we can calculate

CW e
−xABW =

∞
∑

j=0

∫ ∞

0

Cje
−xsbj(s) ds

=
∞
∑

j=0

CjΓ(jI +W∞)−1

∫ ∞

0

s(j−1)I+W∞e−sx ds

=
∞
∑

j=0

Cjx
−W∞−jI . (3.17)

(iii) By (i), the operator Θ†
xΞx is trace class on L2((0,∞);H0) for all x > x0.

Furthermore, the operator Rx =
∫ ∞

x
e−sABWCW e

−sA ds on H may be represented as a kernel

with values in a doubly infinite block matrix with 2 × 2 matrix entries, namely

Rx ↔
[κj−k0 bj(u)Cke

−x(u+v)

u+ v

]

j,k=0,1,...
; (3.18)
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this generalises (2.3). Consequently one can in principle compute the kernel

GW (x, y) = −CW e−xA(I −Rx)
−1e−yABW , (3.19)

which satisfies the Gelfand–Levitan equation

GW (x, y) + φW (x+ y) −
∫ ∞

x

GW (x, w)φW (w + y) dw = 0 (t < x ≤ y) (3.20)

where φW (x; t) = CW e
−xABW .

We also introduce

σj,k =

[

Ij 0
0 −Ik

]

(3.21)

which has rank j + k and signature j − k.

Theorem 3.3. Suppose that W∞ is as in Lemma 3.1. Let Φ(λ; t) be a bounded solution of (3.1)

in L2((t,∞);λ−1dλ;R2) such that
∫ ∞

t
λ−1‖Φ(λ; t)‖2dλ <∞, and let

K(λ, µ; t) =
〈JΦ(λ; t),Φ(µ; t)〉

λ− µ
. (3.22)

(i) Then there exists φ ∈ L2((0,∞);λdλ;R6) such that

K(λ, µ; t) =

∫ ∞

0

〈σ3,3φ(λ+ s; t), φ(µ+ s; t)〉 ds (λ, µ > t;λ 6= µ). (3.23)

and hence K defines a trace class operator on L2((t,∞); dλ).

(ii) The kernel ∂
∂t
K(λ, µ; t) is of finite rank in (λ, µ).

Proof. Jimbo [17] has shown that the fundamental solution matrix to (3.1) satisfies

Y (x, t) =
(

1 +O(x−1)
)

[

x−θ∞/2 0
0 xθ∞/2

]

; (3.24)

hence there exist solutions that satisfy the hypotheses.

(i) We suppress the parameter t to simplify notation. From the differential equation (3.1), we

have

( ∂

∂λ
+

∂

∂µ

) 〈JΦ(λ),Φ(µ)〉
λ− µ

=
( 1

λ− µ

)

∑

ν=0,1,t

〈( JWν

λ− ν
+
W †
νJ

µ− ν

)

Φ(λ),Φ(µ)
〉

. (3.25)

Now

JWν =

[

−(zν + θν)/uν zν + θν/2
zν + θν/2 −uνzν

]

(ν = 0, 1, t) (3.26)

which have rank two and signature zero since detWν = −θ2ν/4 < 0. Hence JWν = V †
ν σ1,1Vν for

some 2 × 2 real matrix Vν , and JWν = V †
ν σ1,1Vν . Thus we find that (3.25) reduces to

−〈σ1,1V0Φ(λ), V0Φ(µ)〉
λµ

− 〈σ1,1V1Φ(λ), V1Φ(µ)〉
(λ− 1)(µ− 1)

− 〈σ1,1VtΦ(λ), VtΦ(µ)〉
(λ− t)(µ− t)

. (3.27)
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Let

φ(λ) =







V0Φ(λ)
λ

V1Φ(λ)
λ−1
VtΦ(λ)
λ−t






, (3.28)

which satisfies, after we permute the coordinates in the obvious way,

−
∑

ν=0,1,t

〈σ1,1VνΦ(λ), VνΦ(µ)〉
(λ− ν)(µ− ν)

= −〈σ3,3φ(λ), φ(µ)〉

=
( ∂

∂λ
+

∂

∂µ

)

∫ ∞

0

〈σ3,3φ(λ+ s), φ(µ+ s)〉 ds. (3.29)

We observe that both sides of (3.23) converge to zero as λ → ∞ and as µ → ∞. By comparing

the derivatives as in (3.25) and (3.29), we deduce (3.23).

Then K = Γ†
φσ3,3Γφ. We observe that the Hilbert–Schmidt norm of Γφ satisfies

‖Γφ‖2
HS =

∫ ∞

t

(λ− t)‖φ(λ)‖2 dλ

≤ κ

∫ ∞

t

‖Φ(λ)‖2

λ
dλ (3.30)

for some κ > 0, so K gives a trace class operator on L2(t,∞).

(ii) By a similar calculation, one can compute the derivative of K with respect to the position

of the critical point, and one finds

∂

∂t
K(λ, µ; t) =

1

(λ− t)(µ− t)

〈

[

−(zt + θt)/ut zt + θt/2
zt + θt/2 −utzt

]

Φ(λ; t),Φ(µ; t)
〉

; (3.31)

evidently this is a finite sum of products of functions of λ and functions of µ for each t.

4. The τ function associated with Painlevé’s equation VI

In [2], Ablowitz and Segur derived an integral equation involving the Airy kernel for the

solutions of PII. Here we solve an integral equation and derive an expression for det(I−KP(x,∞)),

where K is as in (3.22). From Proposition 3.2, we recall the linear system (−AW , BW , CW )

that realises φW , and likewise we introduce a linear system (−AV , BV , CV ) that realises φV =

diagonal(V0/x, V1/(x − 1), Vt/(x − t)). This give semigroups e−tAV : HV → HV and e−tAW :

HW → HW , from which we can form a semigroup e−tAV ⊗ e−tAW : HV ⊗HW → HV ⊗HW on

the tensor product Hilbert space; likewise, we introduce BV ⊗BW : C → HV ⊗HW and the linear

functional CV ⊗ CW : HV ⊗HW → C; hence we obtain a new linear system

(−(AV ⊗ I + I ⊗AW ), BV ⊗BW , CV ⊗CW )

that realises φV (t)φW (t). Thus we realise φ from Theorem 3.3, so that φ(x) = Ce−xAB.
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Next we let Γφ be the Hankel integral operator with symbol φ; also let φ(x)(y) = φ(y + 2x)

and let Lx be observability Gramian

Lx =

∫ ∞

x

e−sABB†e−sA
†

ds = ΞxΞ
†
x. (4.1)

To take account of the signature, we introduce the modified controllability Gramian

Qσx =

∫ ∞

x

e−sA
†

C†σ3,3Ce
−sA ds. (4.2)

We also introduce the (6 + 1)× (6 + 1) block matrices

G(x, y) =

[

U(x, y) V (x, y)
T (x, y) ζ(x, y)

]

(4.3)

and

Φ(x) =

[

0 φ(x)
φ(x)† 0

]

, (4.4)

and the Gelfand–Levitan integral equation

G(x, y) + Φ(x+ y) +

∫ ∞

x

G(x, w) ∗ Φ(w + y) dw = 0, (4.5)

where we have introduced a special matrix product to incorporate the signature σ3,3, namely

∫ ∞

x

G(x, w) ∗ Φ(w+ y) dw

=

[
∫ ∞

x
V (x, w)φ(w+ y)†σ3,3dw

∫ ∞

x
U(x, w)φ(w+ y)dw

∫ ∞

x
ζ(x, y)φ(w+ y)†dw

∫ ∞

x
T (x, w)σ3,3φ(w + y)dw

]

. (4.6)

Theorem 4.1. Suppose that Qx and Lx are trace-class operators with operator norms less than

one for all x > t. Then there exists a solution to the integral equation (4.5) such that τK(x) =

det(I − P(x,∞)K) satisfies
d

dx
log τK(x) = traceG(x, x). (4.7)

Proof. By Theorem 3.3, we have K = Γ†
φσ3,3Γφ, and so

τK(x) = det(I − P(x,∞)Γ
†
φσ3,3Γφ)

= det(I − Ξ†
xΘxσ3,3Θ

†
xΞx)

= det(I − Θxσ3,3Θ
†
xΞxΞ

†
x)

= det(I −QσxLx). (4.8)

One can verify that
[

U(x, y) V (x, y)
T (x, y) ζ(x, y)

]

(4.9)

=

[

Ce−xA(I − LxQ
σ
x)

−1Lxe
−yA†

C†σ3,3 −Ce−xA(I − LxQ
σ
x)

−1e−yAB

−B†e−xA
†

(I −QσxLx)
−1e−yA

†

C† B†e−xA
†

(I −QσxLx)
−1Qσxe

−yAB

]
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gives a solution to (4.6), so that

traceU(x, x) = trace
(

(I − LxQ
σ
x)

−1Lxe
−xA†

C†σ3,3Ce
−xA

)

= −trace
(

(I −LxQ
σ
x)

−1Lx
dQσx
dx

)

. (4.10)

Likewise we have

ζ(x, x) = trace
(

(I −QxLx)
−1Qσxe

−xABB†e−xA
†
)

= −trace
(

(I −QσxLx)
−1Qσx

dLx
dx

)

. (4.11)

Adding and rearranging, we obtain

traceG(x, x) = ζ(x, x) + traceU(x, x)

= −trace
(

(I − LxQ
σ
x)

−1Lx
dQσx
dx

)

− trace
(

(I −LxQ
σ
x)

−1 dLx
dx

Qσx

)

=
d

dx
trace log(I −LxQ

σ
x)

=
d

dx
log τK(x). (4.12)

Definition (Spectral curve). The spectral curve is the set

{

(x, λ) ∈ C2 : det
(

λI − W0

x
− W1

x− 1
− Wt

x− t

)

= 0
}

. (4.13)

Proposition 4.2 The spectral curve is birationally equivalent to a planar cubic.

Proof. We multiply by x2(x− 1)2(x − t)2 and then take the determinant, which simplifies since

traceW0 = traceW1 = traceWt = 0. Thus we obtain an equation of degree less than or equal to

four.

Remark. Soon after his discovery of PVI, R. Fuchs constructed a solution in terms of an inho-

mogeneous form of Legendre’s differential equation, and Guzzetti [16] has obtained bounds on this

solution. Brezhnev has obtained expressions for solutions of PVI for special values of parameters

of (1.7) in terms of tau function; see [11]. All of these solutions involve transformations of the vari-

ables in terms of elliptic functions; this is consistent with Proposition 4.2. For general parameters

in (1.7), there is no known correspondence bewtween explicit solutions and tau functions.
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5. Kernels associated with the hypergeometric equation

The PVI equation is closely related to Gauss’s hypergeometric equation [35, p 283]

λ(1− λ)
d2f

dλ2
+ (c− (a+ b+ 1)λ)

df

dλ
− abf(λ) = 0. (5.1)

We introduce c0 = c and c1 = a+ b− c+ 1, then introduce the matrix

W (λ) =

[

0 λ−c0(λ− 1)−c1

−abλc0−1(λ− 1)c1−1 0

]

(5.2)

so that we can express (5.1) in the form of the first order linear differential equation (5.4). For

special choices of the parameters a, b, c, we can obtain a factorization of the corresponding kernel

(5.5) which has the form of (1.2). For a separable Hilbert space H we introduce the identity

operator IH and

σH,H =

[

IH 0
0 −IH

]

. (5.3)

Theorem 5.1. Suppose that 0 ≤ c ≤ 1 and a + b = 0, that 2
√
−ab is not an integer, and that

−ab > 5/4, and let Ψ be a bounded solution for the equation

dΨ

dλ
= W (λ)Ψ(λ), (5.4)

such that
∫ ∞

1
x‖Ψ(x)‖2dx <∞; then let

K(x, y) =
〈JΨ(x),Ψ(y)〉

x− y
(x 6= y; x, y > 1). (5.5)

(i) Then there exists a separable Hilbert space H and φ : (1,∞) → H2 such that
∫ ∞

1+δ
x‖φ(x)‖2

H2 dx < ∞ and K = Γ†
φσH,HΓφ so that K defines a trace-class kernel on L2((1 +

δ,∞); dx) for all δ > 0.

(ii) The statement of Theorem 4.1 applies to

τK(s) = det(I −KP(s,∞)) = det(I − Γ†
φ(s/2)

σH,HΓφ(s/2)
), (5.6)

with obvious changes to notation; so d
dt log τK(t) is given by the diagonal of the solution of a

Gelfand–Levitan equation.

(iii) If moreover c is rational, then K arises from a Tracy–Widom system as in (1.1).

Proof. Let

q(λ) =
−ab

λ(λ− 1)
+

1

4

( c2 − 2c

λ2
+

2c(1− c)

λ(λ− 1)
+

c2 − 1

(λ− 1)2

)

, (5.7)

which is asymptotic to (−ab − 1/4)/λ2 as λ → ∞. By the Liouville–Green transformation [28,

p.229] , we can obtain solutions to (5.1) with asymptotics of the form

f±(λ) � λ−c/2(λ− 1)−(1−c)/2q(λ)−1/4 exp
(

±
∫ λ

2

q(x)1/2 dx
)

(λ→ ∞), (5.8)
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and one can deduce that
∫ ∞

2
xf−(x)2 dx < ∞. Hence there exist solutions that satisfy the hy-

potheses.

(i) We observe that c1 + c0 = 1, so 0 ≤ c0, c1, 1− c0, 1− c1 ≤ 1; we assume that 0 < c0, c1 < 1,

as the cases of equality are easier. Evidently the functions λ−c0(λ−1)c0−1 and λ−c1(λ−1)c1−1 are

operator monotone decreasing on (1,∞) in Loewner’s sense and by [1, p.577] we have an integral

representation

λ−c0(λ− 1)c0−1 =
sinπc0
π

∫ 0

−1

(−u)−c0(1 + u)c0−1 du

λ+ u
(λ > 1); (5.9)

clearly a similar representation holds for λ−c1(λ− 1)c1−1 with c1 instead of c0. Hence there exist

positive measures ω1 and ω0 on [−1, 0] such that

JW (x) +W (y)†J

x− y
=

[

abx
−c1(x−1)c1−1−y−c1(y−1)c1−1

x−y 0

0
x−c0(x−1)c0−1−y−c0(y−1)c0−1

x−y

]

=

∫ 0

−1

1

(x+ u)(y + u)

[

−abω1(du) 0
0 −ω0(du)

]

(5.10)

in which −ab ≥ 0. The matrix kernel (JW (x) +W (y)†J)/(x − y) operates as a Schur multiplier

on the rank-one tensor Ψ(x)⊗Ψ(y) in L2((1+ δ,∞);R2); hence for each δ > 0, there exists κδ > 0

such the Schur multiplier norm is bounded by κδ . Since Ψ(x+ s) gives a Hilbert–Schmidt kernel,

the operator
∫ ∞

0
Ψ(x+ s) ⊗ Ψ(y + s) ds is trace class on L2((1 + δ,∞); dx), and it follows that

K(x, y) =

∫ ∞

0

〈JW (x + s) +W (y + s)†J

x− y
Ψ(x+ s),Ψ(y + s)

〉

ds (5.11)

is also trace class. As in Theorem 1.1 of [4], we can introduce the Hilbert space H , the symbol

φ ∈ L2((1 + δ,∞); xdx;H2) and the corresponding Hankel operator Γφ such that K = Γ†
φσH,HΓφ,

so

K(x, y) =

∫ ∞

0

〈σH,Hφ(x+ s), φ(y + s)〉H2 ds (5.12)

where σH,H takes account of the fact that the Schur multiplier is positive on the top left matrix

block and negative on the bottom right matrix block.

(ii) We observe that

W (λ) =
1

λ

[

0 1
−ab 0

]

+O(λ−2) (|λ| → ∞), (5.13)

is analytic at infinity and the residue matrix has eigenvalues ±
√
−ab which do not differ by a

positive integer. Hence we can repeat the proof of Lemma 3.1 and realise the solution Ψ of

(5.4) by a linear system involving the coefficients in the Laurent series of Ψ. Then we can realise

φ ∈ L2((0,∞);H2) by means of a linear system (−A,B,C), where the state space is L2((0,∞);H2).
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We can now follow through the proof in section 4 and express τ in terms of the Gelfand–Levitan

equation.

(iii) Let c = k/n; then {(X,Z) : Zn = Xk(X − 1)n−k} gives a n-sheeted cover of P1, ramified

at 0, 1,∞. On this compact Riemann surface, the functions λ−c0(λ− 1)c0−1 and λ−c1(λ− 1)c1−1

are rational.

Remarks. (i) Our extended definition of Tracy–Widom system involves rational functions on a

compact Riemann surface. When c is irrational, λ−c(λ−1)c−1 is not algebraic, hence is not within

the scope of the definition.

(ii) The Painlevé equations can be expressed as Hamiltonian systems in the canonical variables

(λ, µ), where the Hamiltonian is a rational function of (λ, µ); see [27] for a list. Okamoto [27] showed

that there exists a holomorphic function τ on the universal covering surface of P1 \ {0, 1,∞} such

that HV I(t, λ(t), µ(t)) = d
dt

log τ(t). The methods of [18, 19, 20] involve complex analysis and

differential geometry, and are not intended to address the properties of K as an operator.

(iii) Borodin and Deift [8] identified an integrable kernel K involving solutions 2F1 of the

hypergeometric equation. Let ν1 = (z + z′ + w + w′)/2, ν3 = (z + w − z′ − w′)/2 and ν4 =

(z − w − z′ +w′)/2. Consider

ψ(x) =
sin πw sin πw′

π2

(

x− 1

2

)−z−z′(

x+
1

2

)−w−w′

(5.14)

and the functions

R(x) =
(x+ 1/2

x− 1/2

)w′

2F1

(

z +w′, z′ +w, 2ν1;
1

(1/2)− x

)

(5.15)

and

S(x) = C
(x + 1/2

x − 1/2

)w′

2F1

(

z + w′ + 1, z′ + w + 1, 2ν1 + 2;
1

(1/2)− x

)

(5.16)

where the constant is

C =
Γ(z +w + 1)Γ(z + w′ + 1)Γ(z′ +w + 1)Γ(z′ + w′ + 1)

Γ(2ν1 + 1)Γ(2ν1 + 2)
. (5.17)

Let Ks be the restriction of the kernel

K(x, y) =
√

ψ(x)ψ(y)
R(x)S(y)− S(x)R(y)

x− y
(5.18)

to (s,∞) for s > 1/2. Assume that ν1 > 0, |z + z′| < 1 and |w+ w′| < 1. Then

σ(s) = (s− 1/2)(s+ 1/2)
d

ds
log det(I −Ks) − ν2

1s+ ν3ν4/2 (5.19)

satisfies the σ form of Painlevé VI; see [18]. Olshanski showed that S satisfies

d2S

dx2
+

(1 − w − w′

x+ 1/2
+

1 − z − z′

x− 1/2

)dS

dx
+

( −ww′

x + 1/2
−2ν1 +

zz′

x− 1/2

) S

(x− 1/2)(x+ 1/2)
= 0; (5.20)
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R satisfies a similar equation, except that we omit the term in 2ν1. These differential equations

are similar to, but different from, (5.1) for the values of parameters considered in Theorem 5.1.

6. The τ function associated with a Hankel operator on exponential bases

We wish to find a more explicit expressions for τ and for σ(t) = d
dt

log τ(t) for suitable K, especially

those K that factor as K = Γ†
φΓφ. We can obtain an explicit formula for τ when φ has the

exponential expansion

φ(x) =
∞
∑

j=1

ξje
−λjx (6.1)

where the coefficients ξj lie in some Hilbert space E. In this section we establish the existence

of such expansions by using the theory of approximation of compact Hankel operators, while in

subsequent sections we consider the transfer function φ̂(s) of φ and use the Mittag-Leffler expansion

to give explicit formulas. The Hankel operator with symbol φ can be expressed in terms of the

exponential basis as a relatively simple matrix, so we can derive expressions for its Fredholm

determinant. Our applications in sections 7 and 8 are to cases in which the poles lie on an arithmetic

progression, which occurs when φ is a theta function or arises by a certain transformation of a

power series.

We suppose that λj ∈ C with <λj > 0 are such that (e−tλj )∞j=1 are linearly independent

exponentials, so that

DN = det
[ 1

λj + λ̄k

]N

j,k=1
> 0 (N = 1, 2, . . .). (6.2)

Suppose that ξ = (ξj)
∞
j=1 ∈ `1 and introduce the operators

B : C → `1 ⊂ `2 : a 7→ aξ
e−tA : `2 → `2 : (αj)

∞
j=1 7→ (e−tλjαj)

∞
j=1

C : `1 ⊂ `2 → C : (αj)
∞
j=1 7→ ∑∞

j=1 αj

Θ : L2(0,∞) → `2 : f 7→ (
∫ ∞

0
e−λ̄jsf(s) ds)∞j=1.

(6.3)

Theorem 6.1. Suppose that Θ is bounded and that there exist constants δ,M > 0 such that

<λj ≥ δ and
∑∞

k=1 |λj + λk|−2 ≤M for all j; let ξ ∈ `1.
(i) Then the symbol φ(x) = Ce−xAB gives rise to a Hankel operator Γφ : L2(0,∞) → L2(0,∞)

which is trace class.

(ii) The operator

Rx =

∫ ∞

x

e−sABCe−sA ds (6.4)

on `2 is trace class, and for µ is an open neighbourhood of zero, the kernel Tµ(x, y) = −µCe−xA(I+

µRx)
−1e−yAB gives a solution to the integral equation

Tµ(x, y) + µφ(x+ y) + µ

∫ ∞

x

Tµ(x, z)φ(z + y) dz = 0 (0 < x ≤ y). (6.5)
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(iii) Suppose that (I − Rt) is invertible for all t > 0. Then the Hankel operator Γφ(t)
with

kernel φ(x+ y + 2t) satisfies

det(I − Γφ(t)
) = exp

(

−
∫ ∞

t

T−1(u, u) du
)

. (6.6)

Proof. (i) The kernel may be expressed as a sum of rank-one kernels

Γφ ↔
∞
∑

j=1

ξje
−λj(x+y) (6.7)

where
∑∞

j=1 |ξj |/<λj converges, so Γφ is trace class.

(ii) By considering the rows of the matrix

Rx ↔
[ξje

−(λj+λk)x

λj + λk

]∞

j,k=1
(6.8)

we see that Rx is also trace class. When |µ|‖Rx‖ < 1, the kernel Tµ(x, y) is well defined, and one

verifies the identity (6.5) by substituting.

(iii) The operators

C : `1 → C, e−tA : `1 → `1, Rx : `1 → `1, B : C → `1 (6.9)

are all bounded, and ξ 7→ Rx is continuous from `1 to the trace class; hence T (x, y) depends

continuously on ξ in a neighbourhood of 0 in `1. Suppose that (ξ(n))∞n=1 is a sequence of vectors

in `1 that have only finitely many nonzero terms, and that ξ(n) → ξ as n → ∞. Denoting the

operators corresponding to ξ(n) by R
(n)
x etcetera, we can manipulate the finite matrices and deduce

that

T
(n)
−1 (x, x) =

d

dx
log det(I −R(n)

x ) (6.10)

and hence
∫ t

s

T
(n)
−1 (x, x) dx = log det(I −R

(n)
t ) − log det(I −R(n)

s ); (6.11)

so letting n→ ∞, we deduce that

∫ t

s

T−1(x, x) dx = log det(I −Rt) − log det(I −Rs). (6.12)

The operator Ξ : L2(0,∞) → `2 given by

Ξf =

∫ ∞

0

e−tABf(t) dt (6.13)

has matrix representation

ΞΞ† ↔
[ ξj ξ̄k
λj + λ̄k

]∞

j,k=1
(6.14)
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with respect to the standard basis (ej) of `2 , and hence Ξ is Hilbert–Schmidt since
∑∞

j=1 ‖Ξ†ej‖2 < ∞. The operator Θ is bounded by hypothesis; so R0 = ΞΘ† is also Hilbert–

Schmidt.

The operator Γφ is trace class by (ii), and the non-zero eigenvalues of Γφ = Θ†Ξ and R0 = ΞΘ†

are equal, hence

det(I − Γφ(x)
) = det(I −Rx); (6.15)

when this is combined with (6.12), they imply that

log det(I − Γφ(s)
) − log det(I − Γφ(t)

) =

∫ s

t

T−1(u, u) du. (6.16)

Evidently Γφ(s)
→ 0 as s→ ∞, and hence (6.6) follows from (6.16).

Theorem 6.2. Let K be an integral operator on L2((0,∞); dt;C) such that:

(i) 0 ≤ K ≤ I and I −K is invertible;

(ii) there exists a separable Hilbert space E and φ ∈ L2((0,∞); tdt;E) such that K = Γ†
φΓφ.

Then K has a τ -function τK and there exists a sequence (Kn)
∞
n=1 of finite-rank integral operators

with corresponding τ -functions τKn
such that:

(1) Kn → K in trace-class norm;

(2) τKn
(x) → τK(x) uniformly on compact sets as n → ∞;

(3) τKn
(x) =

∑Nn

j=1 ajne
−µjnx for some ajn, µjn ∈ C with <µjn > 0 that are given in Propo-

sition 6.4 below.

Proof. (1) For φ ∈ L2((0,∞); tdt;E), the operator Γφ is Hilbert–Schmidt and hence K is trace

class. By the Adamyan–Arov–Krein theorem [29], there exists a sequence (Γφ(n))∞n=1 of finite-rank

Hankel operators such that Γφ(n) → Γφ in Hilbert–Schmidt norm.

Kronecker showed that a Hankel operator Γφ(n) has finite rank if and only if the transfer

function φ̂(n)(s) is rational; see [29]. Hence the typical form for φ(n) is a finite sum

φ(n)(t) =
∑

j,k

ξk,jt
ke−λjt (6.17)

where ξk,j ∈ E and <λj > 0; the terms with factor tk give poles of order k + 1. To resolve the

poles of order greater than one into sums of simple poles, we introduce the difference operator ∆ε

by ∆εg(λ) = ε−1(g(λ+ ε) − g(λ)), which satisfies limε→0 ∆k
εg(λ) = g(k)(λ) whenever g is k-times

differentiable with respect to λ. By the dominated convergence theorem,

∫ ∞

0

t|k!(−∆ε)
ke−λjt − tke−λjt|2 dt→ 0 (6.18)

as ε→ 0, so we can replace tke−λjt by k!(−∆ε)
ke−λjt at the cost of a small change in the operator

Γφ(n) in Hilbert–Schmidt norm. Thus we eliminate poles of order greater than one, and we can
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ensure that 0 ≤ Γ†
φ(n)Γφ(n) ≤ I , with I − Γ†

φ(n)Γφ(n) invertible. Let Kn = Γ†
φ(n)Γφ(n) so that Kn

has finite rank and Kn → K as in trace norm as n→ ∞.

(2) Let φ(x)(t) = φ(t + 2x) and φ
(n)
(x)(t) = φ(n)(t + 2x). We have Γ†

φ
(n)

(x)

Γ
φ

(n)

(x)

→ Γ†
φ(x)

Γφ(x)
in

trace class norm as n→ ∞ so

τ(x) = det(I −KP(x,∞))

= det
(

I − Γ†
φ(x)

Γφ(x)

)

= lim
n→∞

det
(

I − Γ†

φ
(n)

(x)

Γ
φ

(n)

(x)

)

= lim
n→∞

τKn
(x) (6.19)

since the Fredholm determinant is a continuous functional on the trace class operators.

(3) To calculate the function τKn
(x) in (3) of Theorem 6.2, we assume that φ(n) has the form

φ(n)(t) =
N

∑

j=1

ξ†je
−λ̄jt (t > 0) (6.20)

where ξj ∈ E and <λj > 0. Without loss of generality we can replace E by the subspace span(ξj)
N
j=1

and for notational simplicity we take ξj ∈M1,ν(C) where ν ≤ N.

We introduce

aj = row
[ξje

−2λjx

λj + λ̄k

]

∈M1,νN (C) (6.21)

and

bm = column
[ξ†ke

−2λ̄kx

λ̄k + λm

]N

k=1
∈MνN,1(C). (6.22)

Lemma 6.3. The matrix

K = [ajbm]Nj,m=1 (6.23)

represents the operator Γ†

φ
(n)

(x)

Γ
φ

(n)

(x)

with respect to the (non-orthogonal) basis (e−λjs)Nj=1.

Proof. We observe that the transfer function of φ
(n)
(x) is the rational function

φ̂
(n)
(x)(s) =

ν
∑

j=1

ξ†je
−2λjx

s + λj
. (6.24)

The operator Γ†

φ
(n)

(x)

Γ
φ

(n)

(x)

has kernel in the variables (s, t)

∫ ∞

0

〈φ(n)(2x+ s+ u), φ(n)(2x+ t + u)〉 du (6.25)
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and hence one computes

Γ†

φ
(n)

(x)

Γ
φ

(n)

(x)

: e−λms 7→
N

∑

j,k=1

〈ξj , ξm〉e−2(λ̄k+λj)x

(λj + λ̄k)(λ̄k + λm)
e−λjs. (6.26)

Recalling the definitions (6.21) and (6.22), one computes

ajbm =
N

∑

k=1

〈ξj , ξk〉e−2(λj+λ̄k)x

(λj + λ̄k)(λ̄k + λm)
(6.27)

and by comparing this with (6.23), one obtains the stated identity.

We can proceed to compute the τ function when φ(n) is as in Theorem 6.2. For S, T ⊆ {1, . . . , N},
let KS,T be the submatrix of Kn that is indexed by (j, k) ∈ S × T , and let ]S be the number of

elements of S.

Proposition 6.4. (i) Suppose that φ(n) : (0,∞) → C is as in (6.20). Then

τKn
(x) =

N
∑

`=0

(−1)`
∑

T,S:]S=]T=`

∏

j∈S

ξje
−2λjx

∏

k∈T

ξ̄ke
−2λ̄kx det

[ 1

λj + λ̄k

]2

j∈S,k∈T
. (6.28)

(ii) Suppose that φ(n) : (0,∞) → E where E has orthonormal basis (er)
ν
r=1 and let ξ

(r)
j =

〈ξj , er〉. Then

τKn
(x) =

∑

S,T :]S=]T

(−1)]S det
[ξ

(r)
j e−2λjx

λj + λ̄k

]

j∈S;(k,r)∈T
det

[ ξ̄
(r)
k e−2λ̄kx

λm + λ̄k

]

m∈S;(k,r)∈T
(6.29)

and the sum is over all pairs of subsets S ⊆ {1, . . . , N} and T ⊆ {1, . . . , N}× {1, . . . , ν} that have

equal cardinality.

Proof. (i) By Lemma 6.3 we have τKn
(x) = det(I −Kn), and by expansion of the determinant

we have

det(I −Kn) =
∑

S:S⊆{1,...,N}

(−1)]S detKS,S (6.30)

where detK∅,∅ = 1 and otherwise

detKS,S = det
[

N
∑

k=1

ξj ξ̄ke
−2(λj+λ̄k)x

(λj + λ̄k)(λ̄k + λm)

]

j,m∈S
(6.31)

which reduces by the Cauchy–Binet formula to

∑

T :]T=]S

det
[ξje

−2λjx

λj + λ̄k

]

j∈S,k∈T
det

[ ξ̄ke
−2λ̄kx

λ̄k + λm

]

k∈T,m∈S
(6.32)

=
∑

T :]T=]S

(

∏

j∈S

ξje
−2λjx

∏

k∈T

ξ̄ke
−2λ̄kx

)

det
[ 1

λj + λ̄k

]

j∈S,k∈T
det

[ 1

λm + λ̄k

]

m∈S,k∈T
.
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By taking the sums over both S and T , we obtain the stated formula.

(ii) To prove (ii) one follows a similar route until line (6.32), except that we have 〈ξj , ξk〉 =
∑ν

r=1 ξ
(r)
j ξ̄

(r)
k , so the indices in the Cauchy–Binet formula are over the product set T ⊆ {1, . . . , N}×

{1, . . . , ν}.

7. The τ function for the hard spectral edge

Our first application of section 6 is to the hard edge ensemble. The Jacobi polynomials arise when

one applies the Gram–Schmidt process to (xk)∞k=0 with respect to the weight (1 − x)α(1 + x)β

on [−1, 1] for α, β > −1. The zeros of the polynomials of high degree tend to accumulate at the

so-called hard edges 1− and (−1)+, and they cannot escape beyond them. According to [31], the

kernel that describes the limiting behaviour of the joint distribution of the scaled zeros near to the

hard edges is given by

Jν(2
√
x)
√
yJ ′

ν(2
√
y) −√

xJ ′
ν(2

√
x)Jν(2

√
y)

x− y
=

∫ 1

0

Jν(2
√
tx)Jν(2

√
ty) dt (7.1)

on L2((0, 1); dt); here Jν is Bessel’s function of the first kind of order ν. Hence we change variables

and introduce the Hankel operators on L2((0,∞); dt).

Proposition 7.1. For ν > −1, let φ(x) = e−x/2Jν(2e
−x/2) and let Γφ be the Hankel integral

operator on L2(0,∞) with symbol φ. Then Theorem 6.2 applies to Γφ.

Proof. From the power series for Jν , we obtain a rapidly convergent series

φ(x) =
∞
∑

n=0

(−1)ne−(2n+ν+1)x/2

n!Γ(ν + n+ 1)
(x > 0) (7.2)

giving a meromorphic transfer function

φ̂(s) =
∞
∑

n=0

(−1)n

n!Γ(ν + n+ 1)(s+ n + (ν + 1)/2)
, (7.3)

for which the poles form an arithmetic progression along the negative real axis. One can alterna-

tively express φ̂ in terms of Lommel’s functions.

We choose λn = (2n+ ν + 1)/2, so (λn)
∞
n=0 gives an arithmetic progression along the positive

real axis, starting at (ν + 1)/2 > 0, and
∑∞

n=0 λ
−2
n < ∞. The operator Θ : `2 → L2(0,∞) is

bounded by duality since

∫ ∞

0

∣

∣

∣

∞
∑

n=0

ane
−λnx

∣

∣

∣

2

dx =
∞
∑

n,m=0

anām
λn + λm

≤ C
∞
∑

n=0

|an|2 (7.4)

by Hilbert’s inequality. Hence Γφ is a self-adjoint trace class operator, and Theorem 6.2 applies.
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We can now compute some of the finite determinants that appear in the expansion of det(I −
Γ2
φ(x)

) from Proposition 6.4.

Definition (Partition). By a partition λ we mean a list n1 ≥ n2 ≥ . . . ≥ n` of positive integers, so

that the sum |λ| =
∑`

j=1 nj , is split into ` = `(λ) parts. For each λ, the symmetric group on |λ|
letters has an irreducible unitary representation on a complex inner product space Sλ, known as

the Specht module. For notational convenience, we introduce a null partition with `(∅) = 0 and

write dim(S∅) = 1.

Proposition 7.2. Suppose that ν = 0. Let K = Γ2
φ and τ(x) = trace(I −KP[x,∞)). Then K is a

trace-class operator on L2(0,∞) such that 0 ≤ K ≤ I and

τ(x) =
∑

λ

(−1)`(λ) dim(Sλ)
2

(|λ|!)2 e−2|λ|x (7.5)

where the sum is over all partitions.

Proof. Let En = span{e−(2j+ν+1)x : j = 0, . . . , n} and let Qn : L2(0,∞) → En be the orthogonal

projection; likewise we introduce the closure E∞ of the subspace ∪∞
n=1En and the corresponding

orthogonal projection Q∞ : L2(0,∞) → E∞. Observe that Qn → Q∞ in the strong operator

topology as n → ∞ and that Γφ(x)
Q∞ = Q∞Γφ(x)

; hence det(I − Γ2
φ(x)

) = limn→∞ det(I −
QnΓ

2
φ(x)

Qn).

The matrix of QnΓ
2
φ(x)

Qn with respect to (e−(2j+ν+1)s)nj=0 satisfies

QnΓ
2
φ(x)

Qn ↔
[ (−1)j+me−2x(j+m+ν+1)

j!m!Γ(ν + j + 1)Γ(m+ ν + 1)

∞
∑

k=0

1

(j + k + ν + 1)(m+ k + ν + 1)

]n

j,m=0
. (7.6)

We observe that the corresponding infinite matrix for Q∞Γ2
φ(x)

has entries that summable with

respect to j and m over j,m = 0, 1, . . . ; thus det(I − Γ2
φ(x)

) is a determinant of Hill’s type.

We consider the determinant in (6.28). We change notation so as to allow the running indices

in sums to be j, k = 0, 1, . . . , and we let S and T be subsets of {0, 1, 2, . . .} that are finite and of

equal cardinality. Suppose that the elements of S are m1 > m2 > . . . > m`, while the elements of

T are k1 > k2 > . . . > k`; next let N = ` +
∑`

i=1(mi + ki). Then in Frobenius’s coordinates [9,

24], there is a partition λ↔ (m1, . . . , m`; k1, . . . , k`) with |λ| with a corresponding Specht module

Sλ such that

det
[ 1

m!Γ(m+ 1)(m+ k + 1)

]

m∈S,k∈T

∏

k∈T k!
∏

m∈S m!

dim(Sλ)

(|λ|)! (7.7)

as in the hook length formula of representation theory; see in [24]. Hence the pair of sets S and

T , each with `(λ) elements give rise to the product of determinants

det
[ 1

j!Γ(j + 1)(j + k + 1)

]

j∈S,k∈T
det

[ 1

m!Γ(m+ 1)(m+ k + 1)

]

m∈S,k∈T
=

dim(Sλ)
2

(|λ|!)2 (7.8)

and the exponential

e
−

∑

j∈S
(2j+1)x−

∑

k∈T
(2k+1)x

= e−2|λ|x. (7.9)
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Conversely, each partition λ of some positive integer gives a Ferrers diagram and we can

introduce subsets S, T ⊂ {0, 1, . . .} that are finite and of equal cardinality which gives a contribution

to the sum (6.28) from the prescription of (7.9) and (7.10). By summing over all partitions, or

equivalently all pairs of sets S and T , we obtain the series (7.5).

Remark. Borodin, Okounkov and Olshanski [9] have computed a Fredholm determinant for the

discrete Bessel kernel, and used this to prove asymptotic results for the Poisson version of Plancherel

measure on the symmetric group. A key linkage in [(2.7), 9] between the Bessel kernel and the

Plancherel measure involves Lommel’s identity

∞
∑

m=0

Γ(ν − s+m)

Γ(ν +m+ 1)

zm

m!
Jm+s(2z) =

Γ(ν − s)

Γ(s+ 1)

Jν(2z)

zν−s
, (7.10)

where the left-hand side involves an expression that is closely related to the matrix in (7.6). For a

fuller discussion on this, see section 10.4 of [7]. Forrester and Witte have computed the asymptotic

forms of τ functions various circular ensembles [14] in terms of the Painlevé equations. Basor and

Ehrhardt have considered asymptotics of Bessel operators [3].

8. A τ function related to Lamé’s equation

To conclude this paper, we consider Hankel operators related to Lamé’s equation. First we

review some ideas regarding finite gap potentials that originate with Hochstadt and are developed

by McKean and van Moerbecke in [26].

Let E be a compact Riemann surface of genus g, and J the Jacobi variety of E , which we

identify with Cg/L for some lattice L in Cg. An abelian function is a locally rational function

on J, or equivalently a periodic meromorphic function on Cg with 2g complex periods. A theta

function (or elliptic function of the second kind) θ : Cg → P1 with respect to L is a meromorphic

function, not identically zero, such that there exists a linear map x 7→ L(x, u) for x ∈ Cg and

u ∈ L and a function η : L → C such that θ(x + u) = θ(x)e2πi(L(x,u)+η(u)) for all x ∈ Cg and

u ∈ L. The pair (L, η) is called the type of θ, as in [23].

Suppose that q : R → R is infinitely differentiable and periodic with period one. Let Uλ be

the fundamental solution matrix for Hill’s equation

− d2

dt2
f + q(t)f(t) = λf(t) (8.1)

so that Uλ(0) = I , and let ∆(λ) = traceUλ(1) be the discriminant. Suppose in particular that λ

lies inside the Bloch spectrum of − d2

dt2
+q(t), but that 4−∆(λ)2 6= 0. Then any nontrivial solution

of (8.1) is bounded but not periodic. We suppose that 4 − ∆(λ)2 has only finitely many simple

zeros 0 < λ
(1)
0 < λ

(1)
1 < . . . < λ

(1)
2g , and let λ

(2)
k be double zeros for k = 1, 2, . . . ; then

4 − ∆(λ)2 = c1

2g
∏

j=0

(

1− λ

λ
(1)
j

)

∞
∏

k=1

(

1 − λ

λ
(2)
k

)2

. (8.2)
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Then the Bloch spectrum has only finitely many gaps.

Suppose in particular that q is elliptic with periods 2K and 2K ′i where K,K′ > 0. Gesztesy

and Weikard [15] have shown that the Bloch spectrum has only finitely many gaps if and only

if z 7→ Uλ(z) is meromorphic (and possibly multivalued) for all λ ∈ C. By a classical result of

Picard, there exists a nonsingular matrix Aλ such that Uλ(z + 2K) = Uλ(z)Aλ. If Aλ has distinct

eigenvalues, then there exists a solution f to (8.1) that is a theta function with respect to the

lattice L = {2Km+ 2K′in : m,n ∈ Z}.
Next we describe in more detail the case of genus one. We recall Jacobi’s sinus amplitudinus

of modulus k is sn(x | k) = sinψ where

x =

∫ ψ

0

dθ
√

1 − k2 sin2 θ
. (8.3)

For 0 < k < 1, let K(k) be the complete elliptic integral

K(k) =

∫ π/2

0

dt
√

1− k2 sin2 t
; (8.4)

next let K′(k) = K(
√

1 − k2); then sn(z | k)2 has real period K and complex period 2iK ′. We

introduce
(

e1, e2, e3) =
(2 − k2

3
,
2k2 − 1

3
,−k

2 + 1

3

)

, (8.5)

and

g2 =
4(k4 − k2 + 1)

3
, g3 =

4(k2 − 2)(2k2 − 1)(k2 + 1)

27
; (8.6)

then let Weierstrass’s function be

P(z) = e3 + (e1 − e2)
(

sn(z | k)
)−2

. (8.7)

Likewise, P(z) has periods 2K and 2iK ′, and P(x + iK′) is bounded, real and 2K-periodic. In

terms of the new variable x = z + iK ′ and the constant B = −λ(e1 − e2) − `(` + 1)e3, Lamé’s

differential equation (1.16) transforms to

(

− d2

dx2
+ `(`+ 1)P(x)

)

Φ(x) +BΦ(x) = 0. (8.8)

Writing X = P(x), Y = P(y) and Z = P ′(x), the point (X,Z) lies on the elliptic curve

E : Z2 = 4(X − e1)(X − e2)(X − e3) (8.9)

and the elliptic function field K consists of the field of rational functions of X with Z adjoined

and we think of B as a point on E . For (x0, z0) on E , we introduce the function

Φ(X,Z; x0, z0) = exp
(1

2

∫

γ

z − z0
x− x0

dx

z

)

, (8.10)
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which takes multiple values depending upon the path γ from (x0, z0) to (X,Z). Then for integers

` ≥ 1, and typical values of B, there exist κ ∈ C and polynomials A0(X) and A1(X) such that

Ψ(X) =
(

A0(X) +A1(X)
( Z + z0
X − x0

))

Φ(X,Z; x0, z0) exp
(

κ

∫

γ

dx

z

)

(8.11)

gives a solution of

−
(

Z
d

dX

)2

Ψ(X) + `(`+ 1)XΨ(X) +BΨ(X) = 0, (8.12)

known as a Hermite–Halphen solution. Maier [25, Theorem 4.1] has shown how to compute (x0, y0)

and the spectral curve in terms of κ and B, thus making (8.12) convenient for computation. As Z

is rational on the elliptic curve, Lamé’s equation gives rise to a Tracy–Widom system (1.1) that

closely resembles the Laguerre system of orthogonal polynomials with parameter one, as considered

in [5, 32].

Suppose henceforth that ` = 1. For λ ∈ [k2, 1] ∪ [k2 + 1,∞), all solutions to (1.16) are

bounded; however, except for the countable subset of values of λ that gives the periodic spectrum,

these solutions are not K or 2K periodic; see [25]. Write B = P(α) where α is the spectral

parameter. Weierstrass introduced the functions

σ(z) = z
∏

ω∈L∗

(

1 − z

ω

)

exp
( z

ω
+

1

2

( z

ω

)2)

(8.13)

where L∗ = L \ {(0, 0)}, and ζ(z) = σ′(z)/σ(z) so that P = −ζ ′. Then by [22, (13)] the equation

(8.8) has a nontrivial solution

Ψ(x;α) = − σ(x− α)

σ(α)σ(x)
eζ(α)x (8.14)

such that Ψ(x;α)Ψ(−x;α) = P(α)−P(x) and α 7→ Ψ(x;α) is doubly periodic.

The solutions give rise to a natural kernel, for after we make the local change of independent

variable x 7→ X and write f(X) = Ψ(x;α) and g(X) = Ψ′(x;α), we have by [22, (18)]

f(X)g(Y ) − g(X)f(Y )

X − Y
= Ψ(x+ y;α). (8.15)

The right-hand side has the shape of the kernel of Hankel integral operator. In the remainder of

this section we introduce this operator, and compute the corresponding Fredholm determinant.

Lemma 8.1. Let β = −2Kζ(α) + αζ(α + 2K) − αζ(α), suppose that <β > 0 and let t ∈ C

be such that Ψ(x + 2t;α) is analytic for x ∈ [0, 2K]. Let φ(t)(x) = Ψ(x + 2t;α) and h(s) =
∫ 2K

0
e−suφ(t)(u) du. Then φ(t) is a theta function and has an exponential expansion

φ(t)(x) =
∞
∑

m=−∞

1

2K
h
(2πim− β

2K

)

ex(2πim−β)/(2K) (x > 0) (8.16)

and φ̂(t) is a meromorphic function with poles in an arithmetic progression.
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Proof. We introduce η = ζ(α + 2K) − ζ(α) and η′ = ζ(α + 2iK′) − ζ(α). Then σ is a theta

function and satisfies a simple functional equation given in [23, p.109]; from this we deduce that

Ψ is also a theta function and satisfies the functional equations

Ψ(x+ 2K;α) = Ψ(x;α)e2Kζ(α)−αη, Ψ(x+ 2iK′;α) = Ψ(x;α)e2iK
′ζ(α)−αη′. (8.17)

By the hypothesis on β, the function x 7→ Ψ(x+ 2t;α) is of exponential decay as x→ ∞ through

real values.

Due to (8.17), the transfer function of φ(t)(x) is

φ̂(t)(s) =
∞
∑

k=0

∫ 2K(k+1)

2Kk

e−suΨ(u+ 2t;α) du

= (1 − e−2Ks+2Kζ(α)−αη)−1

∫ 2K

0

Ψ(u+ 2t;α)e−su du (8.18)

which is meromorphic with possible poles at the points s = (2K)−1(2Kζ(α) − αη + 2πmi) for

m ∈ Z which form a vertical arithmetic progression in the left half plane. The position of the poles

is determined by the type of the theta function.

We can deduce the exponential expansion by inverting the Laplace transform. Let T =

(2m + 1)π/(2K) let x > 0 and consider the contour [−iT, iT ]⊕ ST , where ST is the semicircular

arc in the left half plane with centre 0 that goes from −iT to iT ; then by Cauchy’s Residue Theorem

we have

∫

ST

esxφ̂(t)(s) ds+

∫

[−iT,iT ]

esxφ̂(t)(s) ds =
πi

K

m
∑

n=−m

h
(2πni− β

2K

)

ex(2πni−β)/(2K). (8.19)

We integrate
∫ 2K

0
Ψ(u+ 2t;α)e−su du by parts and write

esxφ̂(t)(s) =
esx

s(1 − e−2Ks−β)

(

−e−2Ksφ(t)(2K) + φ(t)(0) +

∫ 2K

0

e−suφ′(t)(u) du
)

(8.20)

and then use Jordan’s Lemma to show that
∫

ST
esxφ̂(t)(s) ds→ 0 as T → ∞. Hence

φ(t)(x) =
1

2πi

∫ i∞

−i∞

esxφ̂(t)(s) ds =
∞
∑

n=−∞

1

2K
h
(2πni− β

2K

)

ex(2πin−β)/(2K). (8.21)

Theorem 8.2. Let φ(t)(x) = Ψ(x+2t;α) and let Γφ(t)
be the Hankel integral operator on L2(0,∞)

with symbol φ(t). Then the conclusions of Theorem 6.1 hold for Γφ(t)
.

Proof. Let λn = (2πin+β)/(2K) where <β > 0. Then by a standard argument from the calculus

of residues, we have
∞
∑

k=−∞

1

|λj + λk |2
=
K2< coth β

<β (j ∈ Z). (8.22)
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The operator Θ : L2(0,∞) → `2 given by

f 7→
(

∫ ∞

0

e−λ̄jsf(s) ds
)∞

j=−∞
(8.23)

is bounded. Indeed, we observe that the sequence (e−λnx)∞n=−∞ forms a Riesz basic sequence in

L2(0,∞), in the sense that there exists a constant C > 0 such that

C−1
∞
∑

n=−∞

|an|2 ≤
∫ ∞

0

∣

∣

∣

∞
∑

n=−∞

ane
−λnx

∣

∣

∣

2

dx ≤ C
∞
∑

n=−∞

|an|2 (8.24)

for all (an) ∈ `2. To prove this, one uses a simple scaling argument and orthogonality of the

sequence (e2πinx)∞n=−∞ in L2[0, 1]. In particular, this shows that Θ† : `2 → L2(0,∞) is bounded,

so Θ is bounded.

We can now use the general Theorem 6.1. Given this rapid decay and the fact that Ψ(x+ y+

2t; a) is analytic, one can easily check that Γφ(t)
is trace class.

Our final result gives the order of growth of the determinant

DN = det
[ 1

λj + λ̄k

]N

j,k=1
. (8.25)

Proposition 8.3. Suppose that λj = (2πij + β)/(2K) where <β > 0 and K > 0. Let µ be the

Haar probability measure on the unitary group U(N), and let arg eiθ = θ for 0 < θ < 2π.

(i) Then

DN =
( 2K

1 − e−2<β

)N
∫

U(N)

exp
(

−<β
π

trace argU
)

µ(dU). (8.26)

(ii) There exists a constant c > 0 such that

( K

sinh<β
)N

e−(2c)1/3N2/3(<β)2/3 ≤ DN ≤
( K

sinh<β
)N

e(2c)
1/3N2/3(<β)2/3

. (8.27)

so

D
1/N
N → Kcosech<β (N → ∞). (8.28)

Proof. (i) Let

f(u) =
2Ke−2<βu

1 − e−2<β
(0 < u < 1) (8.29)

and let the Fourier coefficients of f be ak =
∫ 1

0
f(u)e−2πikudu, which we compute and find

1

λj + λ̄k
= aj−k. (8.30)
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Then we can use an identity due to Heine [7, p. 176], and express the Toeplitz determinant of

[aj−k] as an integral

det[aj−k]j,k=1,...,N =
1

N !

∫

[0,1]N

∏

1≤j<k≤N

∣

∣e2πiθj − e2πiθk
∣

∣

2
N
∏

j=1

f(θj) dθ1 . . .dθN , (8.31)

which we regard as an integral over the maximal torus in U(N), and hence we convert the expression

into an integral over the group U(N), obtaining

det
[ 1

λj + λ̄k

]N

j,k=1
=

∫

U(N)

exp
{

trace log f
(

argU/(2π)
)

}

µ(dU). (8.32)

(ii) Note that log f(arg eiθ/(2π)) = log(2K/(1 − e−2<β)) − <βθ/π. Let U ∈ U(N) have

eigenvalues eiθ1 , . . . , eiθN where 0 ≤ θ1 ≤ . . . ≤ θN ≤ 2π; then the expression

trace argU − πN = θ1 + . . .+ θN −Nπ (8.33)

satisfies a central limit theorem, but we need to adjust the functions slightly to accommodate the

discontinuity of arg. Let g1, g2 : R → R be Lipschitz functions with Lipschitz constant L, that are

periodic with period 2π, and satisfy g1(θ) ≤ θ ≤ g2(θ) for 0 ≤ θ < 2π, and

π − 1

L
≤

∫ 2π

0

g1(θ) dθ ≤
∫ 2π

0

g2(θ) dθ ≤ π +
1

L
. (8.34)

By Szegö’s asymptotic formula [21], there exists a constant c such that

∫

U(N)

exp
(

−<β
π

N
∑

j=1

θj

)

µ(dU) ≤
∫

U(N)

exp
(

−<β
π

N
∑

j=1

g1(θj)
)

µ(dU)

≤ exp
(

−N<β
∫ 2π

0

g1(θ)
dθ

π
+ c(<β)2L2

)

; (8.35)

hence we have an upper bound on DN of

( 2K

1 − e−2<β

)N
∫

U(N)

exp
(

−<β
π

N
∑

j=1

θj
)

µ(dU) ≤
( 2K

e<β − e−<β

)N

e<βN/L+c(<β)2L2

. (8.36)

Using g2 instead of g1, one can likewise obtain a lower bound on DN . To conclude the proof, we

choose L = N1/3(2c<β)−1/3.
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