Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions

Wu, Shiliang and Duncan, Bryan N. and Jacob, Daniel J. and Fiore, Arlene M. and Wild, Oliver (2009) Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions. Geophysical Research Letters, 36 (n/a). n/a. ISSN 0094-8276

[img]
Preview
PDF
2008GL036607.pdf - Published Version

Download (204kB)

Abstract

Model studies typically estimate intercontinental influence on surface ozone by perturbing emissions from a source continent and diagnosing the ozone response in the receptor continent. Since the response to perturbations is non-linear due to chemistry, conclusions drawn from different studies may depend on the magnitude of the applied perturbation. We investigate this issue for intercontinental transport between North America, Europe, and Asia with sensitivity simulations in three global chemical transport models. In each region, we decrease anthropogenic emissions of NOx and nonmethane volatile organic compounds (NMVOCs) by 20% and 100%. We find strong nonlinearity in the response to NOx perturbations outside summer, reflecting transitions in the chemical regime for ozone production. In contrast, we find no significant nonlinearity to NOx perturbations in summer or to NMVOC perturbations year-round. The relative benefit of decreasing NOx vs. NMVOC from current levels to abate intercontinental pollution increases with the magnitude of emission reductions.

Item Type:
Journal Article
Journal or Publication Title:
Geophysical Research Letters
Additional Information:
©2009. American Geophysical Union. All Rights Reserved.
Uncontrolled Keywords:
/dk/atira/pure/researchoutput/libraryofcongress/ge
Subjects:
ID Code:
27975
Deposited By:
Deposited On:
27 Oct 2009 14:48
Refereed?:
Yes
Published?:
Published
Last Modified:
03 Jul 2020 00:08