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Abstract

In applications such as medical statistics and genetics, we encounter situations where

a large number of highly correlated predictors explain a response. For example, the

response may be a disease indicator and the predictors may be treatment indicators or

single nucleotide polymorphisms (SNPs). Constructing a good predictive model in such

cases is well studied. Less well understood is how to recover the ‘true sparsity pattern’,

that is finding which predictors have direct effects on the response, and indicating the

statistical significance of the results. Restricting attention to binary predictors and

response, we study the recovery of the true sparsity pattern using a two-stage method

that separates establishing the presence of effects from inferring their exact relationship

with the predictors. The uncertainty in the relationship between the predictors and the

recovered effects is represented by a discrete distribution giving the likelihood of the

effect originating from each of a collection of predictors. Simulations and a real data
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application demonstrate the method discriminates well between associations and direct

effects. Comparisons with lasso based methods demonstrate favourable performance of

the proposed method.

Keywords: Contingency table; Direct effect; High Dimensional; Lasso; Noncentral hy-

pergeometric distribution; Sparsity.

1 Introduction

It is commonplace in applications of statistics to encounter situations in which a large

number of predictors are available to explain a response. Consider the classical regression

Y = Xβ + ε, (1)

where Y is an n × 1 response vector explained by an n × p design matrix X through

an unknown p× 1 coefficient vector β with n× 1 noise vector ε. Having a large number of

predictors, p, possibly even p > n, should intuitively be beneficial, as we are maximising

the information available to explain the response. From the perspective of producing a

good predictive model, this is true, and many methods are available for this objective, such

as principal component regression [Massey, 1965], partial least squares [Wold, 1975], ridge

regression [Hoerl and Kennard, 1988] and more recent methods such as sparse sufficient

data reduction [Li, 2007].

In this paper we are interested in recovering the so-called ‘true sparsity pattern’ [Wasser-

man and Roeder, 2009], in which we search for a subset of predictors deemed to have a ‘direct
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effect’ on the response — that is an effect that is causally attributed to the predictor in

question rather than being due to the correlation of the predictor with other important

predictors. We wish to find a sparse solution to the regression given in Equation (1) and in

particular carry out significance tests of variable importance. The lasso [Tibshirani, 1996]

is a very popular sparse estimator, where sparsity is induced by applying an L1 penalty

to the size of the vector β. It is computationally fast thanks to the least angle regression

algorithm (LARS) of Efron et al. [2004]. Other possibilities for sparse estimation include

subset selection [Breiman, 1995], the Dantzig selector [Candes and Tao, 2007] and sure in-

dependence screening [Fan and Lv, 2008]. For the lasso, much work has been carried out

concerning consistency in terms of sparse pattern recovery [see for example Knight and Fu,

2000, Zou, 2006, Bunea et al., 2007].

Until recently, it has not been possible to reliably ascertain significance of parameters

included in a sparse model, that is to test for variable importance. Although standard errors

of lasso parameters are available [Tibshirani, 1996, Osborne et al., 1998] these are difficult to

interpret because of the discontinuity of the sampling distribution of the parameters. In the

situation where the predictors in the model are not too highly correlated, recent methods

that address this include the ‘screen and clean’ method [Wasserman and Roeder, 2009,

Meinshausen et al., 2008], and stability selection [Meinshausen and Bühlmann, 2008]. Such

methods are also appropriate when, in the highly correlated predictor case, it is satisfactory

to recover predictors that are correlated with those that are truly causal. However, carrying

out significance tests in the presence of multicollinearity is, according to Meinshausen [2008],

p266, ‘in some sense ill-posed’.
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There are many situations, however, when multicollinearity can be serious, and we

are interested nevertheless in recovering the true sparsity pattern, along with ascertaining

the significance of our result. For example, in genomewide association studies we study a

number of sites on the genome called single nucleotide polymorphisms (SNPs) which are

highly correlated with each other. We would like to identify exact regions on the genome

that influence the risk of disease, so that appropriate interventions can be considered. The

problem of multicollinearity can be seen by considering a group J of highly correlated

predictors, one of which has a true non-zero regression coefficient (or direct effect). Then

the lasso tends to select one variable from J , but there is no stability in which variable

is selected. This is noted by Zou and Hastie [2005], who propose as a solution the ‘elastic

net’, which modifies the lasso by adding an L2 penalty, that promotes inclusion of all the

predictors in the group J . Whilst this improves the sensitivity of recovering the sparsity

pattern, this is at the expense of inclusion of a potentially large number of noise predictors in

the model, and effect sizes becoming difficult to interpret because they are ‘shared’ amongst

the correlated predictors. Such an approach is useful, for example, in the recovery of gene

networks, but not for the true sparsity recovery problem considered here. Meinshausen

[2008] adopts a hierarchical approach, in which he looks for significance at the level of

groups of variables, rather than the level of individual variables. This is sensible, since in

the case of the group J of highly correlated predictors, it can be easy to identify that at least

one member of the group has a direct effect, but difficult or impossible to identify which

member(s) of the group have the effect. However, the method relies upon the selection of an

appropriate hierarchical clustering regime, and it is apparent that the results will depend
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upon the clustering method chosen.

In this paper we introduce a two-stage method that allows separation of the two inherent

kinds of uncertainty: presence of an effect (sufficiently large to be deemed significant) and

which predictor(s) the effect is allied to. The application of the method is to ‘fine mapping’

problems — those where the correlation is particularly high — and in particular may violate

the standard correlation structure assumptions relied upon by other methods for consistency

results [see Meinshausen and Bühlmann, 2008, for a summary of these assumptions and

further references]. Consequently, our method makes no claims about consistency of variable

selection. Instead, the idea is to acknowledge uncertainty about which predictor is the source

of a given effect by providing probabilities that a direct effect arises from each of a collection

of predictors. Currently, we restrict attention to binary predictors and response. The key

element of the method is a novel recasting of the regression problem as

Z = EM + ε, (2)

where Z is a p × 1 vector constructed to represent the marginal association of each

predictor with the response, M is an unknown p × 1 vector containing the direct effect of

each predictor with the response, and E is a p × p effect matrix constructed to translate

the direct effects into the observed associations, by considering the correlation structure of

the predictors. These objects are formally defined in Section 2. We estimate M via lasso

regression [Tibshirani, 1996], where Z is taken as the response and E the design matrix, to

give a collection of direct effects that are coherent with the observed association structure

of all the predictors with the response. We then separately consider the uncertainty of M
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in terms of the size of the effect, and which predictor is linked to the effect. The main

advantage of considering the regression in Equation (2) rather than Equation (1) is that,

under some assumptions, distributions for the effect size, not influenced by multicollinearity,

are readily available. The output of the method is then a collection of significant direct

effects, each with a probability distribution expressing the uncertainty in the associated

predictor across a set of predictors. We call the method direct effect testing (DET).

The method is similar in spirit to Meinshausen [2008] in that we identify significant

effects but acknowledge uncertainty about the specific predictors involved, but here we are

able to specify relative confidence in each predictor being the origin of a given effect. Also,

whilst the method of Meinshausen [2008] can be considered a ‘top down’ approach, starting

out with large clusters, and gradually moving down the hierarchy to smaller clusters, our

method works in the opposite direction, since we test on an individual predictor level for

effects, then generate a cluster that contains potential predictors for the true origin of a

given effect.

In the remainder of the manuscript, we formally define the methodology in Section 2,

before we investigate its behaviour on simulated data in Section 3 and real data in Section

4. We conclude with a summary and discussion in Section 5.
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Table 1: Notation for a 2×2 contingency table for a binary response Y and binary predictor

Xj

Observed Counts

Y = 0 Y = 1 Total

Xj = 0 aj bj t0j

Xj = 1 cj dj t1j

Total s r n

2 Method

2.1 Definitions and Notation

Suppose we are interested in a binary response Y , and its relationship to a set of p binary

predictors X = (X1, . . . , Xp). Consider the situation where we have n complete observations

of the form (yi, xi1, . . . , xip) ∈ {0, 1}p+1, i = 1, . . . , n. Table 1 gives further notation that

will be used. Without loss of generality we assume in the sequel that cor(Xj , Y ) ≥ 0,

j = 1, . . . , p, reversing the binary coding for Xj whenever this does not hold.

We will use the language of graph theory to introduce the concept of direct effects —

see, for example, Pearl [2009] for an introduction. Consider an undirected graph G = (V, E)

with vertex set V and edge set E . Let the vertices correspond to the p + 1 binary variables

{Y = X0, X1, . . . , Xp}, and the edges correspond to dependencies between the vertices.

With the understanding that X0 = Y , the edge (j1, j2) is absent if and only if Xj1 and Xj2
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are conditionally independent given all the other variables, i.e.

Xj1 ⊥⊥ Xj2 |X−(j1,j2),

where X−(j1,j2) means all the variables except Xj1 and Xj2 .

We are interested in dependencies between the variables X and the response Y . A path

is an unbroken sequence of edges through the graph; two variables are connected if there

exists a path between them. If Xj and Y are connected they are not independent, and

hence associated.

A hypothesis test of this association is

Hj
0 : Xj is not associated with Y ,

Hj
1 : Xj is associated with Y .

Since all the variables are binary, the null hypothesis Hj
0 implies that the count aj in the

contingency table (Table 1) is distributed according to a hypergeometric distribution with

mean µ0j and variance σ2
0j , given by

µ0j =
st0j

n
,

σ2
0j =

rst0jt1j

n2(n− 1)
.

Therefore, such a hypothesis test can be carried out using Fisher’s exact test for each

Xj , j = 1, . . . , p.

Two variables are adjacent if there exists an edge between them (i.e. they are connected

by a path of length one). If Xj and the response Y are adjacent we say there is a direct
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effect between Xj and Y . If there exists a path of length two between Xj and Y , we say

there is an indirect effect between Xj and Y . We ignore any path of length greater than

two. There may be numerous indirect effects between Xj and Y , and direct and indirect

effects can co-exist.

A hypothesis test of a direct effect is

H̃j
0 : Xj is not directly affecting Y ,

H̃j
1 : Xj is directly affecting Y .

Regardless of which of the above hypotheses apply, the count aj is distributed according

to Fisher’s noncentral hypergeometric distribution [McCullagh and Nelder, 1989] with, say,

mean µ̃ωj and variance σ̃2
ωj , under H̃j

ω, ω = 0, 1. Under H̃j
1 the noncentrality of the

distribution is allowed to include a potential direct effect between Xj and Y , but under

H̃j
0 the noncentrality accounts for indirect effects only. For convenience we will drop the

subscript ω when we talk about the noncentral hypergeometric distribution in general.

The mean, µ̃j , of Fisher’s noncentral hypergeometric distribution is available when the

noncentrality of the distribution is known [McCullagh and Nelder, 1989]. In this application,

however, the noncentrality is not known as it depends on the potential association of each

predictor Xj with Y . Once the mean is known, the variance can be approximated by [Levin,

1984]:

σ̃2
j ≈ ngh

(n− 1)(t0jh + t1jg)
,

g = µ̃j(t0j − µ̃j), h = (s− µj)(µj + t1j − s). (3)

The mean of the noncentral distribution µ̃j can be written as the sum of the standard
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hypergeometric mean µ0j and some function of the noncentrality. We propose modelling

the noncentrality part explicitly as a linear combination of the direct and indirect effects

between Xj and Y .

2.2 Noncentrality Model

The first stage in constructing the direct effect testing model is to estimate the direct and

indirect effects in a coherent framework that reflects the correlation structure of the dataset.

Let zj = σ−1
0j (aj − µ0j), so that zj is the count aj standardized to have zero mean and unit

variance under Hj
0 . Either aj or zj could be used to test an association hypothesis between

Xj and Y .

Next, define the event Ck = {Only predictor Xk has a direct effect with Y }. Under Ck,

any path in the graph G from Y to any Xj with j 6= k must pass through Xk — we say Y

is separated from X−k. As a consequnce,

Y ⊥⊥ Xj |Xk

for all j 6= k. Let ek
j = E(zj | Ck, zk), which is the regression function of zj on zk, under the

condition Ck. Then clearly ej
j = zj for each j, while for the general case, straightforward

algebra (see Appendix) can be used to derive

ek
j = σ−1

0j

{
n

(
γ0,0ak

ak + bk
+

γ0,1ck

ck + dk

)
− µ0j

}
, (4)

where

γω1,ω2 =
1
n

n∑
i=1

I(xik = ω1, xij = ω2), (5)

with I(·) denoting the indicator function.
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We now model zj , j = 1, . . . , p, as a linear combination of its indirect effect induced by

the other predictors, its own direct effect, and the residual noise, which can be written as

zj =
p∑

k=1

mke
k
j + εj , (6)

given in vector form in Equation (2). In Equation (6), each mk denotes the direct effect

between predictor Xk and Y . We expect most of these to be zero, and mk 6= 0 means that

predictor Xk has a direct effect on the response Y . Also, if mk = 0 this corresponds to the

truth of the hypothesis H̃k
0 . Since all mk, k = 1, . . . , p are unknown we will estimate them

by m̂k, k = 1, . . . , p via lasso regression [Tibshirani, 1996], using the least angle regression

algorithm [Efron et al., 2004]. In order to choose the constraint on the lasso, note that

because E(εj) = 0 for each j,

p∑
j=1

var(εj) = E
(
ε2j

)
=

p∑
j=1

σ̃2
1j

σ2
0j

. (7)

We therefore select the point on the lasso path where
∑p

j=1 ε2j is equal to its expectation

(Equation 7). The noncentral variance σ̃2
1j depends upon the current noncentrality estimate,

hence is recalculated for every step along the lasso path. We make no assumption about

the presence or absence of direct effects at this stage — this is controlled by the estimate

M̂ .

The model (6) is not homoskedastic because var(εj) = σ2
j /σ2

0j , so the variances depend

on the size of the noncentrality of each predictor Xj . However, scaling by the standard

deviation under each Hj
0 provides some stability. Furthermore, the more severe the non-

centrality of Xj , the smaller its variance tends to be, so there will not be points that exert

excessive leverage on the linear model due to large variances. Also, the εjs are not inde-
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pendent, they are partially determined through the correlation structure of the predictors.

Classical regression carried out in a situation of non-independent errors leads to coefficient

estimates that are still unbiased, but are unlikely to be the best linear unbiased estimator.

Ideally, we would like to carry out the hypothesis tests (H̃j
0 , H̃j

1) to establish whether

or not a direct effect exists between Xj and Y , for each j = 1, . . . , p. For a given j, if

we knew the direct effects on the other predictors, M−j , we could calculate the indirect

effect between Xj and Y , and hence the noncentrality of the noncentral hypergeometric

null distribution. Then, the distribution of aj under H̃j
0 would have mean µ̃0j and variance

σ̃2
0j where

µ̃0j = µ0j + σ0j

∑
k 6=j

mke
k
j .

This comes about by taking the central mean µ0j , and estimating the null noncentrality

parameter as a linear combination of all the indirect effects between Xj and Y , and then

σ̃2
0j is estimated via Equation (3). Thus any remaining association can be attributed to a

direct effect.

Unfortunately, we only have an estimate M̂ , and hence we cannot carry out the above

hypothesis tests explicitly. We therefore resort to a two-stage procedure in which we separate

the uncertainty in M̂ into effect size uncertainty and predictor assignment uncertainty.

2.3 Stage One — Hypothesis Testing for Effect Size

Recall that for a set J of highly correlated predictors, one of which has a direct effect, the

lasso tends to select one variable from the group, but there is no stability in which variable

is selected. Therefore, the coefficient estimate m̂j assigned to predictor Xj can be used to
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estimate the size of the corresponding effect, but we must bear in mind that Xj may not be

the actual predictor from which the effect originates — it may be one of its neighbours in

J . We test for significance of the size of the effect assigned by the lasso to each predictor

using a Fisher’s noncentral hypergeometric null distribution with the estimate M̂ plugged

in. Denoting the resulting mean by ˆ̃µ0j and the variance by ˆ̃σ2
0j ,

ˆ̃µ0j = µ0j + σ0j

∑
k 6=j

m̂ke
k
j ,

and again the variance is estimated via Equation (3). The test statistic is then calculated

as

T =
zj − ˆ̃µ0j

ˆ̃σ0j

,

and this can either be tested against the relevant non-central hypergeometric distribution,

or provided the margins of the contingency table are sufficiently large, an approximation to

a standard normal distribution is possible. It is interesting that m̂j = 0 could still lead to

the effect assigned by the lasso to Xj being deemed significant. The multiple testing issue

arising at this point can be addressed using one’s favourite method of error control — we

have simply used a Bonferroni correction in this paper.

2.4 Stage Two — Uncertainty in Direct Effect Predictor Assignment

Suppose predictor Xj has a direct effect on the response Y , but is highly correlated with

predictor Xk. Then by chance it may happen that cor(Xk, Y ) > cor(Xj , Y ), and thus the

lasso wrongly identifies the effect on predictor Xk [see also Zou and Hastie, 2005]. For

each detected effect, we therefore identify a class of predictors from which each effect could
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truly have originated. Moreover, we allocate a probability to each predictor in this class

measuring the likelihood that the effect originated from that predictor. Returning to the

graph theory analogy, in the first stage we have established the number of edges originating

from the response Y , and roughly where each edge leads. We now acknowledge uncertainty,

over a small set of vertices, for each edge.

When an effect is declared, in stage one, on a predictor Xk, we generate a class {Xj :

j ∈ J } of predictors highly correlated with Xk (including Xk itself). Then for each j ∈ J

we would like to calculate pj|k = pr(Xj true direct effect|Xk declared direct effect).

To proceed we use the result that

pj|k ∝ odds(Xk declared DE|Xj true DE, Xj or Xk declared DE)

×pr(Xj declared DE|Xj true DE)pr(Xj true DE), (8)

where DE stands for direct effect. A proof is given in the Appendix. We make three

assumptions in the sequel:

1. The set J covers all reasonable predictors, in that pj|k is negligible for any j /∈ J .

We discuss the choice of J at the end of this section.

2. Each predictor is a-priori equally likely to be responsible for a direct effect on Y .

3. For each j ∈ J , pr(Xj declared DE|Xj true DE) is the same. In other words the

sensitivity of the method does not depend on which predictor happens to possess the

effect.
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These assumptions allow us to calculate pj|k for each j ∈ J as

pj|k =
odds(Xk declared DE|Xj true DE, Xj or Xk declared DE)∑
l∈J odds(Xk declared DE|Xl true DE, Xl or Xk declared DE)

. (9)

We now outline the procedure for calculating the right hand side of Equation (9). Sup-

pose an effect has been observed in stage one between Xk and Y . Let βk be the size of the

direct effect, measured as the change in the estimated effect size if Xk were changed from

{Xk = 0} to {Xk = 1}, but all other variables X−k were held constant, and let αk be the

baseline effect size under {Xk = 0}, with the other variables unchanged, so that

βk = pr(Y{Xk=1} = 1)− pr(Y{Xk=0} = 1),

αk = pr(Y{Xk=0} = 1). (10)

We estimate αk and βk using the association measure zk, with the indirect effects re-

moved,

α̂k =
t0k − µk − σk(zk −

∑
k 6=j mke

k
j )

t0k
,

β̂k =
r − t0k + µk + σk(zk −

∑
k 6=j mke

k
j )

t1k
− α̂k, (11)

see the Appendix for further details.

Suppose that Xj has a true direct effect on Y , but this effect has been detected, in stage

one, on predictor Xk. The effective number of observations that we can use to distinguish

between Xj and Xk as the origin of the effect is given by

NE(j, k) = n(γ(0,1) + γ(1,0)),

i.e. when the two predictors take different values. Evidence towards Xj rather than Xk truly

possessing direct effect, the ‘truth’ in this case, occurs when (Xj , Xk, Y ) = (0, 1, 0) or (1, 0, 1).
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Suppose this happens ET (j, k) times. Evidence towards predictor k rather than predictor j

having a direct effect, the incorrect conclusion, occurs when (Xj , Xk, Y ) = (0, 1, 1) or (1, 0, 0).

Suppose this happens EF (j, k) times. It is clearly possible to observe EF (j, k) > ET (j, k),

and is particularly likely for small βj , small n or large correlation between Xj and Xk, re-

sulting in the aforementioned scenario, that Xk is wrongly detected as possessing the direct

effect.

Using straightforward algebra (see Appendix),

PEF (j,k) = pr [(Xj,Xk,Y) = (0, 1, 1) or (1, 0, 0) | Xj 6= Xk]

=
γ(1,0)αk + γ(0,1)(1− αk − βk)

γ(1,0) + γ(0,1)
, (12)

with γ(ω1, ω2) as in Equation (5). For intuition, note that if we assume t0j = t0k this

reduces to

P̂EF (j,k) =
1− βk

2
.

It follows that

EF (j, k) ∼ Binomial(NE(j, k), PEF (j,k)), (13)

so we can use this to calculate, for each j ∈ J ,

pr{EF (j, k) > ET (j, k)} = pr(EF > NE/2).

However, note the equality of events

{EF (j, k) > ET (j, k)} = {k declared DE | j true DE, j or k declared DE} (14)

that comes about as a consequence of the behaviour of the lasso. Hence, recalling Equation

(9), this gives us a mechanism to calculate pj|k for j ∈ J .
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There are various ways that J could be chosen. A cut-off value of ρ could be found

so that, where ρjk is the correlation between Xj and Xk, pr{EF(j, k) > ET(j, k)} is small

for ρ̂jk < ρ, i.e. Xj is very unlikely to be the true causal predictor associated with Xk.

Alternatively, one could fix the size of J to, say, the ten predictors that are most highly

correlated with Xk; or in the spirit of Meinshausen [2008], one could consider using clustering

algorithms to select J . In the subsequent work, we adopt the first approach, and choose

ρ such that pr{EF(j, k) ≥ ET(j, k) | ρ̂jk < ρ} ≤ 0 ·01. Practically, provided conservative

bounds are selected when choosing J the choice of the set is not important. Indeed, one

could simply allow J to contain all the predictors, in this case those predictors that are not

highly correlated with Xk would turn out to have a negligible probability of containing the

true direct effect.

3 Simulated Data

We will now evaluate direct effect testing on the ‘ge03d2’ dataset taken from the ‘GenABEL’

package [Aulchenko and Struchalin, 2008] in R [R Development Core Team, 2008]. This

dataset contains n = 897 subjects, with p = 7480 SNPs measured on each subject. We

restrict our attention to dominant effects of the SNPs so that, in the usual coding of 0, 1

or 2, we translate all the 2s to 1s. We select two disjoint subsets of the data (subsetting

on SNPs not observations), one with p = 2000 to study the p > n case, and the other with

p = 400 to look at the p < n case.

We study DET by simulating binary responses on the data, with various relationships

to the binary predictors. Throughout this section we select the significance level for stage
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one of DET via a Bonferroni correction to achieve a family-wise error rate of 0.05. We

record two kinds of finds from the DET method — a ‘primary find’ (pfind) means that

a true causal predictor is identified by the first stage of the method, whilst a ‘secondary

find’ (sfind) means that a true causal predictor is contained in the set J associated with

a significant direct effect, and has a probability of at least 0.1 of being a direct effect. A

‘false find’ (ffind) occurs when a significant direct effect is found but there are no associated

primary or secondary finds.

We compare DET with a standard logistic regression with a lasso penalty, where the

strength of the penalty is chosen via BIC. We define a ‘find’ under the standard lasso

occurring when a true causal predictor is assigned a non-zero coefficient. Significance testing

is not appropriate because the relatively small sample size coupled with the multicollinearity

of the dataset means that we do not find coefficients that are significantly different from

zero. A lasso ‘false find’ (ffind) occurs when a non-zero coefficient is assigned to a non-

causal predictor. We additionally compare with the ‘screen and clean’ (S&C) method of

Wasserman and Roeder [2009], where the strength of the penalty in the ‘screen’ stage is

chosen via BIC. In Wasserman and Roeder [2009] cross validation is used to determine

the penalty for the ‘screen’ stage — this leads to more variables being carried forward to

the ‘clean’ stage, compared with BIC, and hence more true and false finds. Due to the

high multicollinearity in this particular dataset, the increase in false finds was particularly

damaging for both the lasso and the ‘screen and clean’ methods, so using BIC seemed to

give more favourable results for these methods. The significance level for the ‘screen’ stage

of the screen and clean procedure is again chosen to achieve a family-wise error rate of 0.05.
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It must be noted that, for the lasso and screen and clean methods, a find is usually

declared to have occurred when a non-zero co-efficient is found on a predictor highly corre-

lated with the causal predictor. However we are considering the case when it is of interest

to recover the causal predictor exactly.

For each of the p > n and p < n cases, we carry out 100 independent simulations,

where in each case, causal predictor(s) are randomly selected, and a response is simulated

via various relationships to these causal predictor(s). We study here cases of one and two

causal predictors, with effect sizes of 10% and 20%. Table 2 gives the results for the p > n

case and Table 3 gives the results for the p < n case. The number of finds made by lasso

and DET are very similar, despite DET implementing a stringent significance test and lasso

merely reporting non-zero coefficients. In addition, the lasso makes a larger number of false

finds in general. The screen and clean method achieves similar false find control to DET,

but this is at the expense of a far smaller number of true finds.

4 Heart Disease Data

We now illustrate the method on a real dataset. The Coronary Risk-Factor Study [Rousseauw

et al., 1983] was carried out in three rural areas in South Africa, in the White Cape region,

where incidence of heart disease is particularly high. A subset of the study is analysed

extensively in Hastie et al. [2001]. In this subset a binary response is measured, whether

or not the subject has heart disease, and 160 cases and 302 controls are collected. Each

subject has nine measurements taken as predictors. These are ‘sbp’ (systolic blood pres-

sure); ‘tobacco’ (cumulative tobacco); ‘ldl’ (low density lipoprotein cholesterol); ‘adiposity’;
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Table 2: Comparison of lasso and DET finds for p > n case for various effect sizes, for one

and two causal predictors

Effect 0.2 0.1 (0.2,0.2) (0.1,0.1)

Lasso finds 36 1 95 5

Lasso ffinds 24 5 45 11

S&C finds 17 0 28 0

S&C ffinds 10 7 12 2

DET pfinds 37 2 80 6

DET sfinds 7 1 17 0

DET finds 44 3 97 6

DET ffinds 11 4 19 5

‘famhist’ (family history of heart disease); ‘typea’ (type-A behaviour); ‘obesity’; ‘alcohol’

(current alcohol consumption); and ‘age’ (age at onset, or age of testing for controls). To

illustrate DET, we have dichotomized the predictors where necessary, by setting a single

threshold level, at an appropriate point where possible: for example, the ‘obesity’ predictor

measures Body Mass Index (BMI) so we we have used 30 as the cut-off point, since persons

with a BMI exceeding 30 are classed as obese.

We then carry out five analyses on the dichotomized data: the standard single predictor

association test, a standard logistic regression, a logistic regression with lasso penalty, the

screen and clean method and the direct effect testing method. Results of the single predictor

test, the logistic regression and the screen and clean method are given in Table 4. For the
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Table 3: Comparison of lasso and DET finds for p < n case for various effect sizes, for one

and two causal predictors

Effect 0.2 0.1 (0.2,0.2) (0.1,0.1)

Lasso finds 53 6 115 11

Lasso ffinds 27 3 51 9

S&C finds 25 2 48 5

S&C ffinds 9 3 13 4

DET pfinds 49 3 82 13

DET sfinds 7 0 15 1

DET finds 56 3 97 14

DET ffinds 10 4 17 4

screen and clean method, some variables are ‘dropped’ at the screen stage, so they do not

have associated p-values. For the lasso method, four non-zero coefficients were identified

— on ‘tobacco’, ‘ldl’, ‘famhist’ and ‘age’. For the direct effect testing method, four direct

effects were found at the Bonferroni significance level of 0.0056, and the details are in Table

5. The probabilities in Table 5 do not always sum to one, due to rounding and exclusion of

predictors with low (< 0·01) probabilities, using the cut-off rule specified in Section 2.4.

To summarize the findings of the DET analysis, we are virtually certain that ‘age’,

‘famhist’ and ‘tobacco’ have a direct effect on heart disease, this is reflected in the small

p-values in both the logistic regression and the single predictor analysis. There is a possible

fourth direct effect, and ‘tobacco’ re-appears as a possible predictor to possess this direct
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Table 4: Comparing p-values calculated via the standard single predictor test and a logistic

regression, for the heart disease data

Covariate Single Predictor Logistic Regression S& C

age 1·1× 10−11 9·0× 10−4 3·7× 10−3

famhist 4·8× 10−9 1·1× 10−5 7·0× 10−3

ldl 4·4× 10−7 6·9× 10−2 3·4× 10−2

adiposity 4·4× 10−6 2·4× 10−1 dropped

tobacco 3·2× 10−7 1·0× 10−1 8·3× 10−2

typea 2·3× 10−1 4·3× 10−2 dropped

sbp 8·1× 10−4 2·8× 10−1 dropped

alcohol 1·3× 10−1 7·0× 10−1 dropped

obesity 1·3× 10−1 3·3× 10−1 dropped
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Table 5: Details from direct effect testing method for heart disease data

Direct Effect p-value Location Probability

4·5× 10−8 age 1

3·0× 10−6 famhist 1

2·1× 10−4 tobacco 1

1·3× 10−3 tobacco 0·64

ldl 0·31

age 0·02

typea 0·02

adiposity 0·01
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effect. We interpret this as either evidence that the direct effect is elsewhere so that ‘ldl’

becomes the most likely origin for the fourth direct effect; an interaction effect; or evidence

that this fourth direct effect is in fact a false positive.

5 Discussion

In this paper we have introduced, for binary predictors and response, a method that sep-

arates the testing for the presence of a direct effect and the selection of the predictor that

produces the effect. This allows, in the first stage, direct effect hypothesis tests to be car-

ried out in the presence of highly correlated predictors without suffering multicollinearity

issues. The uncertainty in the assignment of a direct effect to a predictor, caused by the

multicollinearity, is taken into account in the second stage, so that the method gives a set

of predictors that could represent each direct effect, with probabilities on each predictor

in the set. We demonstrate that the method works effectively to find single and multi-

ple direct effects, and compares very favourably with the lasso. Whilst similar methods are

available [Meinshausen, 2008], DET is unique in offering a probabilistic assessment of which

predictors could be associated with the detected effect.

The second stage of the method can be viewed from a Bayesian perspective, by relaxing

assumption 2 given in Section 2.4, and instead placing a discrete prior on pr(Xj true DE).

The enforcement of assumption 2 corresponds to a uniform prior.

The method easily handles missing data, provided we use the missing completely at

random assumption [Rubin, 1976]. Since we deal with cell counts only, values, i.e. a spe-

cific xij , that are missing at any point can be excluded from the count, and therefore no
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imputation is required. The column totals in Table 1 would then depend on j so we would

replace s by sj , and so forth.

One of the shortcomings of the method is that it does not allow for multiple levels of

the predictor variables. One way to address this issue is by introducing multiple binary

predictors for a single discrete predictor. For example, consider a three level predictor Xj ,

taking values 0,1 or 2. Then we introduce two binary predictors, Xj1 and Xj2 . Code Xj1 = 1

if Xj ≥ 1 and Xj1 = 0 if Xj = 0; and code Xj2 = 1 if Xj = 2 and Xj2 = 0 if Xj ≤ 1. A

more general extension that makes use of the multivariate hypergeometric distribution will

be investigated in the future.

Another interesting point for future investigation are the connections of the introduced

method to Genomic Control [Devlin and Roeder, 1999, Devlin et al., 2001] and Delta Cen-

tralisation [Gorroochurn et al., 2006], which are methods used to account for subpopula-

tion structure or other unobserved confounding effects in a dataset, particularly applied in

genetic contexts. This is achieved by assuming the better known noncentral χ2 null distri-

bution in tests of association, with a noncentrality parameter ν that is common to all tests.

This begs the question of whether the direct effect testing method can be used in a similar

context, and whether additional power is gained by allowing for a different noncentrality

parameter for each test.

The most important generalization required for this method, perhaps, is to allow for

continuous predictors and response. Whether this is possible remains an open question —

we envisage that the main difficulties would be calculation of the matrix E, and whether it

is possible to perform parametric hypothesis testing in this case.
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Appendix

Derivation of Equation 4

First, by definition

ek
j = E(zj | Ck, zk) = σ−1

j

{
npr(Xj = 0,Y = 0 | Ck, zk)− µj

}
,

where the observation index i is suppressed. Assumption Ck means that Xj is conditionally

independent of Y , given Xk, since Xk separates X−k from Y in the graph. Using this

conditional independence, we then find

pr(Xj = 0,Y = 0 | Ck, zk) = pr(Xj = 0,Y = 0 | Xk = 0,Ck, zk)pr(Xk = 0 | Ck, zk)

+pr(Xj = 0,Y = 0 | Xk = 1,Ck, zk)pr(Xk = 1 | Ck, zk)

= pr(Xj = 0 | Xk = 0,Ck, zk)pr(Y = 0 | Xk = 0,Ck, zk)pr(Xk = 0 | Ck, zk)

+pr(Xj = 0 | Xk = 1,Ck, zk)pr(Y = 0 | Xk = 1,Ck, zk)pr(Xk = 1 | Ck, zk),

(15)

We proceed by collecting the first and third terms from each of the above lines, to give
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pr(Xj = 0,Y = 0 | Ck, zk) = pr(Xj = 0,Xk = 0 | Ck, zk)pr(Y = 0 | Xk = 0,Ck, zk)

+pr(Xj = 0,Xk = 1 | Ck, zk)pr(Y = 0 | Xk = 1,Ck, zk)

=
γ0,0ak

ak + bk
+

γ0,1ck

ck + dk
,

where the last line follows from deriving (ak, bk, ck, dk) from zk, which we have conditioned

on throughout.

Derivation of Equation (8)

Write pj|k = pr(Xj true|Xk dec.), abbreviating in the obvious way. Now by Bayes’ Theorem,

pj|k ∝ pr(Xk dec.|Xj true)pr(Xj true).

But

pr(Xk dec.|Xj true) = pr(Xk dec.|Xj true, Xk or Xj dec.)pr(Xk or Xj dec.|Xj true)

= pr(Xk dec.|Xj true, Xk or Xj dec.)
{
pr(Xk dec.|Xj true) + pr(Xj dec.|Xj true)

}
,

then re-arranging gives

pr(Xk dec.|Xj true) =
pr(Xk dec.|Xj true, Xk or Xj dec.)pr(Xj dec.|Xj true)

1− pr(Xk dec.|Xj true, Xk or Xjdec.)
.

So that

pj|k ∝ odds(Xk dec.|Xj true, Xk or Xj dec.)pr(Xj dec.|Xj true)pr(Xj true)

as required.
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Derivation of Equation (11)

Referring to Table 1, if we were interested in the size of the association between Xk and Y ,

we would estimate this as

Pr(Y = 1 | Xk = 0) =
bk

t0k

=
t0k − ak

t0k

=
t0k − µk − σkzk

t0k
,

where we replace ak by the noncentrality model of Equation (6). Removing the indirect

effect part,
∑

j 6=k mje
j
k then immediately yields α̂k in Equation (11).

In order to find the expression for β̂k, consider

Pr(Y = 1 | Xk = 1) =
dk

t1k

=
r − t0k + ak

t1k

=
r − t0k + µk + σkzk

t1k
.

Removing the indirect effect part and subtracting α̂k then yields the desired result.

Derivation of Equation (12)

Recall that we assume a true direct effect between Xj and Y . We then find

PEF (j,k) = pr {(Xj,Xk,Y) = (0, 1, 1) or (1, 0, 0) | Xj 6= Xk}

=
pr {(Xj,Xk,Y) = (0, 1, 1)}+ pr {(Xj,Xk,Y) = (1, 0, 0)}

pr {(Xj,Xk) = (0, 1)}+ pr {(Xj,Xk) = (1, 0)]}

=
γ(1,0)αk + γ(0,1)(1− αk − βk)

γ(1,0) + γ(0,1)
,
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where the last line is obtained by writing pr (Xj,Xk,Y) = pr (Y | Xj,Xk) pr (Xj,Xk), and

using Equation (10) for the conditional probabilities of Y .


