Modelling and Performance Analysis of Cache
Networks

George Bilchev?, lan Marshall?, Chris Roadknight®, and Sverrir Olafsson®

June 18, 1999

Abstract

This paper develops and implements a World Wide Web cache
infrastructure model which is to be used for anaysis of features that are
otherwise difficult to get from existing log data or for evaluation of non-
existing cache scenarios. A prominent feature of our model that
differentiates it from other similar models is its dynamical aspect, which
allows for the investigation of tempord features. Using the model we verify
and quantify observations made from red log data and provide a more
comprehensive picture of the caching processes that take place behind the
scenes. We also show how the model can be used to assess the economic
viability of the caching solution.

1. Introduction

Proxy caching has become an established technique for enabling effective file delivery
within the World Wide Web architecture [Abr95][Bae97a]. The addition of file caching
agents adds many positive features including robustness (by digributing files more
widely), a possible reduction in total bandwidth requirements (by moving popular files
near to the clients) and a reduction in pressure on origin servers, especialy on those
serving popular files. Understanding precise costs and benefits of inserting caches into the
network isahighly desirable goa for network management and design.

To gain an understanding of what affects a cache's behaviour and performance it
has been essentia to analyse behaviour of existing WWW caches currently in operation
[Roa98][Mar98][Arl96]. This analysis gives us some information about the inter-

! BT Laboratories, Martlesham Heath, Ispwich, Suffolk IP5 3RE.
Email: geor ge. bi | chev@t . com

2 BT Laboratories, Martlesham Heath, Ispwich, Suffolk 1P5 3RE.
Email: mar shal | @r ake. bt. co. uk

® BT Laboratories, Martlesham Heath, Ispwich, Suffolk 1P5 3RE.
Email: r oadkni c@ir ake. bt . co. uk

* BT Laboratories, Martlesham Heath, Ispwich, Suffolk IP5 3RE.
Email: sverrir. ol af sson@t. com

relationships of cache metrics and possible causes of observed behaviour [Roa99] but
only covers caches in existing locations, serving existing communities. It is therefore
highly desirable to be able to model cache behaviour so that non-existing cache scenarios
can be evaluated. A cache enabled WWW modelling toolbox would undoubtedly be of
use to network planners but also to many Internet researchers looking for a smple,
flexible model to test theories with.

In this paper we develop a WWW cache model that is easy to use, cheap to
implement and fast to Smulate. The model only requires a few simple input values and
yet isrealigic enough to verify observed datafrom real caches. We believe the model will
be of particular interest to operator technical staff who work under short time scales.

2. TheMod€

A schematic representation of a single proxy cache as seen in the simulation toolbox is
shown in fig. 1. The proxy can accept input from a number of user communities. Each
user community ismodelled by daily activity pattern (fig. 2a) and popularity gatistics (fig

= &1

Oszer: 1 Cache: 1

2b).

Fig. 1. A schematic representation of a single proxy cache as seen in the simulation toolbox. The
cache is fed in by one user community annotated as “User: 1".

The daily activity pattern consists of an underlying trend and a stochastic
component. To model the underlying trend we suggest using a ‘superposition’ of periodic
functions:

0 . t 0

ed (1) = max [, +b, sin(27e, —+d,),00

i () & (=) A
Y™) = maxy"™ (v}

where @ is an amplitude shiff). is the amplitudeC; is the frequency(. is the phase

andT is the period during which cyclic patterns are observed.
Once the trend has been approximated the stochastic component can be modelled
as a Brownian motion:

y*M @) =y™M(t-1+n

Two points are worth mentioning. First, since the number of requested files is always non-
negative we have to truncate a negative valug®¥{t) to zero. Second, bursts in positive

direction are higher than bursts in negative direction. To accommodate for this we define
nas.
if >0
= % otherwise
where 7’0 Norm(0,0) and A is a parameter determining the ratio between the heights of
the positive and negative bursts. The second modification also has the effect of reducing
the number of times the series has to be truncated due to negative values.

a) b)

%1 User Community: User: 1 %3 User Community: User: 1

Fequest Rate Distibution I Popularity Distribution I Popularity Dynarics I Fiequest Flate Distribution Popularity Distribution I Popularity Dynarnics I

Request Rate Distribution Popularity Distribution
| npludeShl] Frequensy | Vaiiancs HIgHa 0.850 Domain Size
S e e] eem— L I 1000000 Files
< Amplitude Shitt = Freauency <] Variance o o
 Ampltude] Phase <] Random Walk 1000 requests were mads

and the frequency of the mozt popular file waz 28
Ho. of requests Relative popularity (normalized)
94 94 1.0 1.0
76 7E ne ne
a7 57 ne ne
38 -] n4 0.4
19 13 nz nz
1] 1] no Moo= 0.0
1 229 577 2E5 1152 1441 1 21 4 E1 N 1m
Tme m mmmuotes (a period of 24 hours 15 shown) File Ho. (m descendmg order of popularity)

Fig. 2. Interface to the user community model. The graph on the left shows how the daily activity
pattern can be tuned to approximate an observed pattern. The graph on the right shows the tuning of
the file popul arity as observed from the user community model .

Since the auto-correlated stochastic component (2) must be superimposed on the
trend (1), a way of “guiding” the random walk of the Brownian motion towards the trend
without destroying the desired properties is needed. We suggest using a sequence of non-
overlapping random walks each starting from around the trend:

y(kAt) = y"™ (kAt) + Norm(0, o ")

i.e., at each time steght, k =0,1,2,..., @ Brownian motion process begins far steps:

y* (kat +m) =y (kAt +m=-1) + 7

where, m=12,...,At—1. Then it stops and a new process begins. This completes our

model of the intensity of the http requests (i.e. the daily activity pattern). But before we
can use it in our amulations of Internet caches we also need to define the popularity
distribution of the requests. There is significant evidence in the literature suggesting that
the popularity distribution follows a Zipf's-like law, where the relative popularity of tife
most popular file is given by:

i 1
elative _
pil’ ative = IT
Therefore, we also need a random number generator that produces Zipf's
distributed numbers. We define it in the following way. First the total domairiNsasl

the exponentr must be specified. Then the probability of selectingi fitegiven by:

-a

N .
]ZIJ

A uniform random numben is generated in the range between 0 and 1 (most
programming languages have already defined uniform random number generators) and an
indexk is found such that the following inequalities hold:

nsipj
£

k+1

n>Zpj
&

The indexk is the desired random number coming from the specified Zipf's-like
distribution.

After developing the user community model we proceed with the cache proxy
model. The cache proxy is modelled by Web content expiry statistics (fig. 3) and it also
implements a simplified caching algorithm. The expiry statistics models both the rate of
change of Web pages (reflecting server assigned TTL) and cache purging due to stale data
(i.e., cache assigned TTL). For example, fig. 3 shows that in this particular case about
14% of the pages are not cacheable (i.e., cookies, stock quotes, etc.) and that the cache
purges all files older than about two months (80640 minutes). These parameters are, of
course, flexible. If the cache is of limited size, the model also implements a cache
replacement algorithm. Currently only the well-known least recently used (LRU) data
replacement algorithm is considered.

The simulation works as follows. The proxy cache receives requests for individual
files. It checks if the requested file has already been registered in the cache model before.
If not, the file is time-stamped, registered in the cache and a miss is reported (i.e., this
reflects downloading the file from the origin server and caching it). If the requested file
has been registered in the cache before, the proxy checks the TTL. If the file has expired
the proxy verifies whether the file has changed. If so, a miss is reported and the time
stamp of the file is reset (this reflects downloading of the new version of the file from the

P =

origin server). If the file has not changed, a hit is reported and again the time samp is
reset.

Once the single proxy has been modelled, we can build meshes of interconnected
proxy caches. To achieve this the smulation toolbox alows two caches to be linked
together. We consder two types of links:

e Parental links in which a miss is propagated to the parent cache and it is
responsible for providing that file back either from its cache neighbourhood or
from the origin server. On itsway back thefileis cached at each parental levd.

e Peer or sibling links, in which a peer proxy only checks if it has the file in its
neighbourhood, but does not download it from the origin server in case of amiss.

Using the above-described links we can build a number of caching structures. For
example, fig. 4 shows how two user communities can be “merged” together to use the
same proxy cache. This can be useful to analyse file popularity, i.e., what happens to the
file popularity generated by a superposition of user communities as compared to the
individually generated file popularity.

Tﬁ.i.-l|n—'n.||—u._-t

| Paafuind Frobsbliy o B 0] | Fyobakiy o IF-SO0 ST Nagsiis

I I —

|. e |

reksinnty @ rpen i |

1 ————=i K

am e l)!:-

T [T jr

a4 ___———‘_ F-:-

adh k1]

am A
L] 103 e] 4 s AT

[

Fig. 3. Parameters defining a proxy cache model. The probability of expiry reflects both the server
assigned TTL and the cache assigned TTL.

Fig. 4. Merging two user communities

As another example consider fig. 5, which shows how several first level caches can
be connected to a parental higher level cache. This can be useful to analyse indirect co-
operation among caches from the same level.

Fig. 5. A higher level cache.

3. Performance M easures

In order to analyse the performance of a cache and to reliably compare it with other
caches, the following performance measures have been defined:

* Request Hit Rate is a measure of the efficiency of the cache. It does not correspond
one-to-one with the saved bandwidth since the requests are for files with various
sizes. The importance of this measure, however, stems from the fact that opening an
HTTP connection is a relatively expensive process comparable to the actua time
needed for smaller filesto be transferred.

Request Hit Rate=— VOO HitS 1o
Total No.of Requests

» Byte Hit Rate is dso a measure of the efficiency of the cache. It reflects the actual
amount of saved bandwidth.

Volume of Requested Data Found in the Cache

ByteHit Rate=
Volumeof theTotal Requested Data

(%]

e Saved Bandwidth is ameasure of particular interest to network designers. It showsthe
actual effect of the cache on the network.

SavedBandwidth=Volume of Requested Data—Volumeof Datanotin theCache [MBytes)

» Saved Poundsis a measure interesting to decision-makers. It can provide evidence of
the economic feasbility of a caching solution.

Saved Pounds = Saved Bandwidth* 0.02 [Pounds]

The last measure assumes that the current charging rate is 2 pence per MByte as
reported in [Spa98].

4. Experiments

When users share a cache proxy they indirectly co-operate with each other by replenishing
the cache with files other users might request in the near future. Since the files have
certain expiry gatistics, the more active the user community is, the more sharing is
achieved before the files become gale. This phenomenon has been observed in real data
[Dus97] and therefore, here we will verify our model by experimenting with the effect the
request rate (or number of requests per unit time) has on the previoudy defined
performance measures. Moreover, since our model allows us to monitor a number of
performance characteristics including dynamic behaviour, the produced results will
present a more complete picture of the caching processes than those previously published.

For the experiments we set up a user community and a proxy cache. All of the
model variables are kept constant apart from the number of requests per day, for which
three values (50000, 100000, and 250000 on average) are experimented with. All of the
experiments show a simulation of sixty days (figures 6, 7, and 8).

Figures 6a, 7a, and 8a show the number of requests incoming into the cache proxy
and the number of requests outgoing from the cache to the origin servers (or parent
cache). The outgoing requests represent the cache ‘misses’ and the gap between the two
graphs is a measure of the cache efficiency and defines the requests hit rate.

Figures 6b, 7b, and 8b show the data volume served by the cache proxy to the user
community and the data volume that actually comes from the origin servers (or parent
cache) to the cache. Again the difference between the two graphs (which in fact is the
saved bandwidth as shown in figures 6¢, 7c, and 8c) is a measure of the efficiency of the
cache and defines the byte hit rate presented in figures 6d, 7d, and 8d.

The saved bandwidth can also be expressed in monetary terms as is done in figures
6e, 7e, and 8e. This might be of particular interest to decision-makers to assess the
economic viability of the cache.

Figures 6f, 7f, and 8f show the required cache sizes in MBytes, a measure of
particular interest to network designers for cache dimensioning.

5. Observations

It must be clearly understood that the 'bandwidth savings' our model predicts are typical
figures (for each day) and should be used for comparative purposes only. The fact that the
request rate and request locality are extremely bursty at a wide range of timescales
[Mar98], indicates that there will be times when the 'saving' is minimal because the cache

is not being used, or because the current burst of requests did not generate any hits. The
saving is probably best regarded as indicating a reduced frequency of congestion and
increased customer satisfaction (due to reduced latency at busy periods). Unfortunately it
is hard to quantify the value of this benefit. However, some observations can be made;

e« Under the simulation assumptions and provided that the users are active
throughout the year, the achieved caching saving for the three scenarios are
approximately 3395, 9125 and 31750 pounds per year. These numbers are small
compared to the cost of the large dedicated cache servers used by commercial
operators (approx. 50K pounds). This indicates that most of these operators are
using caches to reduce latency to their customers, and not (asis widely presumed
in the academic research community) to avoid spending on network capacity.
The misperception is easily explained - academic network operators are more
strongly motivated by cost than customer perception, whereas for commercia
operatorsthe reverseistrue.

e Thelarger the user community isthe less spaceisrequired per user. Thisis
simply because the space taken by popular filesis shared amongst more users.

e In order to achieve the reported cache performances the three modelled caches
would require disk alocations of approximately 7.5 GB, 12GB, and 20GB. The
request rates correspond to the traffic typically generated by 500, 1000 and 2500
users respectively. When caches were first introduced vendors recommended
around IMB/user. Clearly this is woefully inadequate for current traffic
conditions. It seems 15MB/user at a small cache and 8MB/user at a large cache
would be more appropriate. Since 10GB disks are now standard on new PCs,
and larger disks are relatively cheap, we would expect al new cache servers to
operate with disks larger than 20GB. Operators of older caches would be weel
advised to upgrade their disk rather than worry about the efficiency of their cache
replacement algorithm.

In the future latency is likey to become the most important cache metric,
particularly when the Internet is widely used for real time traffic as many predict. In this
case the congestion reduction provided by caches will increase the quantity of potentially
high value real time traffic that the network can support. We are accordingly extending
our modd to include the smal queuing delay at each cache in the hierarchy.

6. Conclusions and Future Work

In this paper we have presented an analytic WWW cache model capable of redligtically
simulating some aspects of real Internet cache structuresin real time, with alow overhead
in terms of CPU usage and log analysis. The mode only requires a few simple input
values. Neverthe ess, we have demongrated that the model can be used to verify observed
data from real caches. We therefore claim that the simplifying assumptions we have made
appear to work. The toolbox will be of great benefit to operators needing to plan capacity

in their cache networks. The model isnot yet complete, as there are some extra features to
be incorporated such as user perceived latency.

References

[Abros] M. Abrams, C.R. Standridge, G. Abdulla, S. Williams and E.A. Fox.
Caching Proxies: Limitations and Potentials. Proc. 4th Inter. World-Wide
Web Conference, Boston, MA, Dec. 1995.

[Arl96] M. Arlitt and C. Williamson. Web server workload characterization: The
search for invariants In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, May
1996.

[Bae974d] M. Baentsch, L. Baum, G. Moalter, S. Rothkugel and P. Sturm. Enhancing
the web’s infrastructure: From caching to replicatiohEEE |nternet
Computing. March 1997. pp. 18-27.

[Dus97] Bradley M. Duska et. al., The Measured Access Characteristics of World-
Wide Web Client Proxy Caches,
http://www.cs.ubc.ca/spi der/marwood/Proj ects/ SPA/wwwap

[Mar9g] I Marshall, C Roadknight, Linking cache performance to user behaviour,
Computer Networksand IDSN Systems, 30, pp. 2123-2131.

[R0a98] C Roadknight, | Marshall, Variations in cache behaviour, in Computer
Networks and ISDN systems 30 (1998), pp.733-735.

[Roa99] C. Roadknight, |. Marshall and D. Vearer. File Popularity
Characterisation. Submitted to the 2™ Workshop on Internet Server
Performance (WISP 99)

[Spags] Michael Sparkset. al., Report on Statistical Analysis of the National Cache
Performance,
http://wwwcache.ja.net/ Stati stics’yNovember Graphs/Report.html

a) Number of requests. b) 1/0 bandwidth.

of Reque x| =]
B5406 55496 | || 1638 1538
5049 50459 | (1290 1390
45452 Incoming requests from users 45452 111243 4———_ Datatousers Ted3
40434 Outgoing requests to origin servers 40434 § 11095 Data from origin servers (or 1095
/417 (or parent cache) \4 BT || 948 parent cache) 948
304001 13 25 36 48 5030400 - 1 13 25 36 48 EDBDD
¢) Saved bandwidth. d) Bytehitrate.
Saved Bandwidth 3| Byte Hit Rate [%]: =|
530 50| |o.a7 na?
502 B2 | |0.35 035
474 474|034 034
445 445 [|naz naz
a7 a7 [|0 ke
3E=E'1 13 25 36 48 50389 ! 291 13 25 £ 48 snu' i
€ Savings. f) Cachesize.

e x|
106 106 | ||7a22 7422
100 100 ||7353 7353
95 a5 7284 7284
84 a9 7215 7215
83 83 7145 7145
e 1 13 25 36 48 sn?'s F"0??1 13 25 £ 48 sum??

Fig. 6. Sixty-day simulations of a user community using a proxy cache to connect to the
Internet. The user community generates approximately 50,000 requests per day.

a) Number of requests. b) 1/0 bandwidth.
x| x|
108010 108010 || || 2978 2978
96229 WVW‘\/N\A/\N\A—V\/\W 96229 2642 2642
B4448 K Incoming requests from users Bad4E 2308 V\ Datato users 2308
FIEET Outgoing requedtsto origin F2BE7 1971 Data from origin servers (or 1971
E0885 m E0385 1635 m 1535
9 1 13 25 3 48 5049105 12991 13 25 £ 48 BD1 >
¢) Saved bandwidth. d) Bytehitrate.
Saved Bandwidth 1| Byte Hit Rate [Z] =|
1408 1405 [| 0.49 0.49
1343 1343 0.4a 043
1280 1280 048 046
1217 1217 045 045
1154 1154 044 0.44
1DE‘21 13 25 £ 48 BD1 i D'431 13 25 £ 48 BDD' *
e) Savings. f) Cachesize.
x| x|
28 28| ||11853 11853
27 7 11744 11744
26 26| ||11635 11635
24 24| 11526 11526
23 23 11417 11417
221 13 25 £ 48 5022 " 3081 13 25 36 48 501 1308

Fig. 7. Sixty-day simulations of a user community using a proxy cache to connect to the
Internet. The user community generates approximately 100,000 requests per day.

a) Number of requests. b) 1/0 bandwidth.
of Req x| B andwidth [x|
272950 272050 | || 7408 7405
234651 WW 234651 | || 6349 W\MM\W/W\/\ B34
196352 V. incon ngrequests from users | ygeaey | |50y K Datato USers 5234
1580531 Outgoing requedtsto origin servers | 158053 | || 4233 Datafrom origin servers (or 4238
119754 m azsd | | 183 m il
A 13 o5 5 = | 7 13 75 * 48 B
c) Saved bandwidth. d) Bytehitrate.
d Bandwid 5 |l Byte Hit Rate [2 |
40 a0t | | nese 0,666
4621 4621 | |nes? 0.657
44411 a4a0| | 0643 0.649
4259 4259 | | 0640 0.640
4078 aove | |63z 0632
9 13 75 3 48 minl I e 13 5 3 43 B
e Savings. f) Cachesize.
x| |
5 9| | 136ss 19686
g2 g2| 19544 19544
& ga| 13402 19402
&5 85| | 19261 19261
82 g2| [19m13 19113
" 13 75 3 45 o] | 13 25 a6 15 o

Fig. 8. Sixty-day simulations of a user community using a proxy cache to connect to the
Internet. The user community generates approximately 250,000 requests per day.

