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Abstract: This paper presents a vision-based obstacle avoidance algorithm for a small indoor mobile robot built from
low-cost, and off-the-shelf electronics. The obstacle avoidance problem in robotics has been researched ex-
tensively and there are many well established algorithms for this problem.However, most of these algorithms
are developed for large robots with expensive, specialised sensors,and powerful computing platforms. We
have developed an algorithm that can be implemented on very small robotswith low-cost electronics and
small computing platforms. Our vision-based obstacle detection algorithm isfast and works with very low
resolution images. The control mechanism utilises both visual information and sonar sensor’s measurement
without having to fuse the data into a model or common representation. Therobot platform was tested in an
unstructured office environment and demonstrated a reliable obstacle avoidance behaviour.

1 INTRODUCTION

Autonomous navigation in an unstructured envi-
ronment, i.e. an environment that is not modified
specifically to suit the robot, is a very challenging
task. Current robots that can operate autonomously
in an unmodified environment are often large and ex-
pensive. Most of today robot navigation algorithms
rely on heavy and power-hungry sensors such as laser
range finders, high resolution stereo-visions (Thrun
et al., 1999; Manduchi et al., 2005; Stentz et al., 2003;
Ibanez-Guzman et al., 2004; Batalin et al., 2003). As
a consequence, these robots require powerful comput-
ing units to be mounted on-board. The size, com-
putational power, and energy requirements of these
robots limit the range of their applications and opera-
tional period. In this work, we have built a small mo-
bile robot from cheap off-the-self electronics to per-
form obstacle avoidance in an unstructured environ-
ment. Obstacle avoidance is the first basic behaviour
needed for an autonomous mobile robot. The robot
is equipped with a low-power camera and two ultra-
sonic sensors. Image processing is done in real-time
and on-board. Our robot is small and energy efficient;
it is powered by AA batteries.

Obstacle avoidance is one of the most fundamen-
tal and researched problems in the field of mobile
robotics. Most obstacle avoidance algorithms uses
active range sensors such as ultrasonic sensors, laser
range finders and infra-red sensors. Visual sensors
are an alternative solution for obstacle avoidance and
becoming increasingly popular in robotics. Visual
sensors often provides better resolution data, longer
ranges at faster rates than range sensors. Because vi-
sual sensors are inactive they are less dependent on
the environment. However image processing is a very
computationally expensive task. Vision often require
complicated software and powerful computing plat-
form or dedicated hardware module. For very small
robots, i.e. those that are man-carriable, vision is still
rare.

To perform obstacle avoidance, a robot needs
to know the distances to objects around it. The
most common method of extracting depth informa-
tion from visual images is stereo-vision. Stereo vision
often produces accurate depth maps. The downside
is this approach requires powerful computation plat-
form, complex calibration process, and two cameras.
For small constrained robot platforms, stereo-vision
is not hard to implement. Depth information can be



extracted from a sequence of images from a single
camera using motion parallax (Lu et al., 2004). This
technique was used for obstacle avoidance in (Santos-
Victor et al., 1993; Zufferey and Floreano, 2005). For
the output of this algorithm to be accurate, the im-
age processing rate must be high enough e.g. over
30 frames per second. Another class of algorithm is
based on colour-based terrain segmentation (Lorigo
et al., 1997; Lenser and Veloso, 2003; Ulrich and
Nourbakhsh, 2000). This approach works on a sin-
gle image. If we can assume the robot is operating
on a flat surface and all objects have their bases on
the ground, the distance from the robot to an object
is linear to the y-axis coordinate of the object in the
perceived image. The problem is reduced to classi-
fying a pixel into two classes, obstacle or traversable
ground. This approach is suitable for robots that oper-
ate indoor or on benign flat terrains. Since it does not
requires high resolution images or high frame rates
camera, we adopt this approach for our vision mod-
ule. What makes our algorithm different from exist-
ing algorithms is the use of a lookup map for colour
classification and a reduced colour space. Lookup
map is a very fast classification method. On a Gum-
stix computer clocks at 200 MHz, our algorithm can
process more than 500 frames of 87∗ 44 pixels per
second. The vision algorithm presented in (Lenser
and Veloso, 2003) uses 3 array access operations and
an AND bitwise operations for each pixel. Our al-
gorithm uses only one array access operation. Lug-
ino and her group developed an algorithm that can
work with low resolution image 64*64 pixels frame in
(Lorigo et al., 1997). Our algorithm works with even
use lower resolution image of 22*30 pixels frame.
This reduces the computing cycle required for the vi-
sion algorithm and enable our algorithm to run on em-
bedded computing devices.

Although our vision algorithm is reliable, due to
hardware limitation, the camera we uses has a nar-
row field of view (FOV), two additional sonar sen-
sors were added to expand the robot’s FOV. This does
not conflict with our preference of vision sensor over
range sensor. Vision is the main sensor and the sonar
sensors were added to improve the performance of the
system only. The control mechanism is reactive, it
has no memory and acts upon the most current sen-
sor readings only. This allows the robot responds
quickly to changes in the environment. While many
other systems fuse data from different sensor sources
into a single representation or world model, our algo-
rithm does not. There is no attempt to fuse distance
estimates from visual images and sonar sensors into
any kind of model or representation. Instead, the con-
trol rules are tightly coupled with sensory data and

the hardware configuration. This gives rise to a fast
and robust obstacle avoidance behaviour. Our robot
is able to response to changes in the environment in
real-time. The approach we used is inspired by the
subsumption architecture (Brooks, 1985) and Brain-
tenberg vehicles (Braitenberg, 1984).

Our main contribution is an obstacle avoidance al-
gorithms that uses low-power off-the-self camera and
runs on a small constrained platform. Even with very
low resolution colour images our robot demonstrates
a robust obstacle avoidance behaviour. The robot was
tested in a real office environment and was shown to
be very robust; the robot could operate autonomously
over a long period of time. This work emphasised
the efficiency and simplicity of the system. We want
to build an autonomous robot with the minimal hard-
ware configuration. We implemented the controller
on the Gumstix Linux computer, which runs at 200
MHz. But the algorithm can run on a slower micro-
processor as it uses only a small fraction of the Gum-
stix’s processing cycle. The obstacle avoidance algo-
rithm might be used as a module in a more complex
system e.g. the first level of competence in a sub-
sumption architecture. It can be used on it own in
an application such as exploration, surveillance. Be-
cause only a small fraction of the CPU is required
for obstacle avoidance, more spaces are available for
more complex behaviours on the platform.

This paper is organised as follows. In section II,
we present the vision algorithm and control mecha-
nism. Section III describes the hardware configura-
tion and software implementation. The experiments
and results are reported in section IV. In section V, we
conclude with some remarks and our future plan.

2 Vision and Control Algorithm

2.1 Ground and obstacles segmentation

In our classification algorithm, pixels are classified
according to their colour appearance only. The colour
space we use is the RGB colour space. Each colour
in the colour space is set to be a ground or obsta-
cle colour. This classification information is stored
in a binary lookup map. The map is implemented as
a three dimensions vector of integers. To classify a
pixel, its RGB components are used as indices to ac-
cess the class type of the pixel. The classification pro-
cess is very fast since for each pixel only one array
lookup operation is needed.

The lookup map is populated from example pic-
tures of the ground. First, the algorithm counts the



number of pixels of each colour in the example pic-
tures. Then if the number of pixels of a colour is
more than 5% of the total number of pixels in those
pictures, that colour is set to be a ground colour. The
5% threshold is used to eliminate the noises in the im-
ages. Procedure 1 describes this calibration process.
A lookup map is also very efficient for modification.
At the moment, the calibration process is done once
before the robot starts moving and the lookup map
remains unchanged. We anticipate that the colour ap-
pearance of the ground and the lightning condition are
likely to change if the robot operates for a long pe-
riod or moves into different environments and there-
fore any classification technique is required to adapt
to these changes. In the near future, we plan to im-
plement an on-line auto-calibrating algorithm for the
vision module. Procedure 2 describes how a pixel is
classified during the robot’s operation.

The main drawback of using the lookup map is
memory usage inefficiency. In a constrained platform
the amount of memory needed to store the full 24 bits
RGB space is not available. To overcome this prob-
lem, we reduce the original 24 bits RGB colour space
to 12 bits and decrease the size of lookup table from
224 elements to 212 elements. Effectively, we lower
the resolution of the colour space but also make the
classifier more general since each element of the re-
duced table represents a group of similar colours in
the original space. We also use very low resolution
images of 22∗ 30 pixles. Fig. 1 has two examples
of the outputs from this segmentation procedure. At
the top row, there is a picture taken from the cam-
era mounted on our robot at maximum resolution and
the binary image produced by the segmentation pro-
cedure. The binary image contains some noise and a
falsely classifies a part of a box as ground since their
colours are similar. Nevertheless in this case, the dis-
tance to the box’s base is still correctly measured. At
the bottom row is the down-sampling version of the
top row picture and its corresponding binary image.

The output of the image segmentation is a binary
image differentiating obstacles from the ground. As-
suming all objects have their bases on the ground, the
distance to an object is the distance to its base. This
distance is linear to the y-coordinate of the edge be-
tween the object and the floor in the binary image.
For obstacle avoidance, we only need the distance
and width of obstacles but not their height and depth.
Therefore a vector of distances to the nearest obsta-
cles is sufficient, we call this obstacle distance vector
(ODV). We convert the binary image to the required
vector by copying the lowest y-coordinate of a non-
floor pixel in each column to the corresponding cell
in the vector. Each element of the vector represents

the distance to the nearest obstacle in a specific direc-
tion.

Procedure 1 PopulateLookupMap ( n: number of
pixels , P : array of n pixels

for i = 0 to n−1 do
(R,G,B) =⇐ rescale(P[i]r,P[i]g,P[i]b)
pixel counter[R][G][B] ⇐

pixel counter[R][G][B]+1
end for
for (R,G,B) = (0,0,0) to MAX(R,G,B)do

is ground map[R][G][B] ⇐

pixel counter[R][G][B] > n∗5%
end for
return is ground map

Procedure 2is ground(p : pixel )

(R,G,B) ⇐ rescale(pr, pg, pb)
return is groundmap[R][G][B];

2.2 Control algorithm

The control algorithm we adopted is reactive. Deci-
sions are made upon the most recent sensory readings.
The inputs to the controller are the obstacle distance
vector, produced by the visual module, and distance
measurements from two sonar sensors pointing at the
sides of the robot. The ODV gives a good resolution
distance map of any obstacle in front of the robot.
Each cell in the vector is the distance to the nearest
obstacle in a direction of an angle of about 2.5◦. The
angular resolution of the two sonar sensors are much
lower. So the robot has a good resolution view at the
front and lower at the sides. The controlling mecha-
nism consists of several reflexive rules.

• If there are no obstacles detected in the area mon-
itored by the camera, run at maximum speed.

• If there are objects in front but further than the
trigger distance, slow down.

• If there are objects within the trigger distance,
start to turn to an open space.

• If a sonar sensor reports a very close object, within
5 cm, turn to the opposite direction.

The control algorithm does not calculate how far the
robot should turn. It will keep turning until the area
in front is clear. The robot looks for an open space
by first looking in the opposite direction to the per-
ceived obstacle, if the half image in that side is free
of obstacles, the robot will turn to this direction. If
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Figure 1: The images processed by the vision module. A is a full resolutioncolour image. B is the binary obstacle-ground
image of A. C is a low resolution image from A and D is its corresponding binary image

there are obstacles in both left and right half of the
image, the two measurements from sonar sensors are
compared and the robot will turn to the direction of
the sonar sensor that reports no existence of obstacles
or a biger distance measurement. There is no attempt
to incorporate or fuse data from the camera and sonar
sensors together into a uniformed representation. The
algorithm uses the sensor readings as they are.

3 Platform Configuration And
Implementation

The robot control software runs on the Gumstix
(gum, ), a small Linux computer that has an Intel
200 MHz ARM processor with 64 Mb of RAM. The
vision sensor is a CMUcam2 module connected to
the Gumstix via a RS232 link. A Brainstem micro-
controller is used to control sonar sensors and servos.
The robot is driven by two servos. These electronic
devices are mounted on a small three wheeled robot
chassis. The total cost of all the components is less
than 300 US dollars. The robot can turn on the spot
with a small radius of about 5cm. Its maximum speed
is 15cm/s. The robot is powered by 12 AA batteries.
A fully charged set of batteries can last for up to 4

hours. Fig. 2 shows the area in front of the robot that
is monitored by the robot’s sensors. The CMUcam is
mounted on the robot pointing forward at horizontal
level and captures an area of about 75cm2. Because
the camera has a relatively narrow FOV of about 55◦,
the two sonar sensors on the side are needed. In total,
the robot’s angle of view is 120◦. The robots dimen-
sions are 20cm ∗20cm ∗15cm. The hardware config-
uration was determined by the trial and error method.
The parameters we presented here were the best that
we found and were used in the experiments reported
in section IV.

The maximum frame resolution of the CMUCam2
is 87∗ 144 pixels, we lower the resolution to only
22∗ 30 pixels. We only need the first bottom half
of the picture so the final image has dimensions of
22∗ 15. The resolution down-sampling and picture
cropping is done by the CMUcam module, only the
final images are sent to the control algorithm running
on the Gumstix.

In our implementation, the obstacle distance vec-
tor has 22 cells, each cell corresponds to an angle of
2.5◦ . The vector is then outputted to the controller.
Since the control algorithm doesn’t build a model,
there is no need to convert the pixels y-coordinate to
an absolute measurement e.g. cm or inch. Because
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Figure 2: A visualisation of the monitored area. ABCD :
the area captured by the camera. Shaded areas represent the
sonar sensors views. Segment EF is the trigger distance line

the resolution of the images is very low, the distance
estimation is not very accurate. At the lowest row of
the image, where the ratio between pixel and the pro-
jected real world area is highest, each pixel represents
an area of 2∗1.5cm2.

The distance that triggers the robot to turn is set to
30cm. The robot needs to turn fast enough so that the
object will not be closer than 15cm in front of it since
the distance of any object in this area can not be cal-
culated correctly. At maximum speed , the robot will
have about two seconds to react and if the robot has
already slowed down while approaching the object, it
will have about three seconds. We have tried many
different combinations of trigger distances and turn-
ing speeds to achieve a desirable combination. The
first criteria is that the robot must travel safely, this
criteria sets the minimum turning speed and distance.
The width of view of the camera at the distance of
30 cm from the robot or 35cm from the camera is
30 cm. The width of our robot is 20cm, so if the vi-
sion module does not find an obstacle inside the trig-
ger range, the robot can safely move forward. The
second criteria is the robot needs to be able to go
to cluttered areas. This means it should not turn too
early when approaching objects. Also when the robot
is confronted by the wall or a large object, it should
turn just enough to move along the wall/object and
not bounce back. This criteria encourages the robot
to explore the environment.

The main drawback of the no map approach is that
the robot might get stuck in a confined or looped area.
A common solution and opposite to ours is to build a
model of the environment surrounding the robot. The
model is a global map and can be used for planning
a desirable path. Also the model can give the robot a

virtual wider angle field of view by remembering ob-
jects that a robot saw from the previous experience.
However with our robot configuration, the reactive
mechanism can solve this problem. Since the robot
can turn on the spot, we can guarantee that the robot
will not be trapped indefinitely.

4 Experiments

4.1 Experiment Setup and Results

We tested the robot in two environments, a 1.5∗2.5m2

artificial arena surrounded by 30cm height walls and
an office at the University of Kent Computing de-
partment, shown in Fig. 3. The surface of the arti-
ficial arena is a flat cartoon board with green wall-
papers on top. We put different real objects such as
boxes, shoes, books onto the arena. We first tested the
robot in the arena with no objects (the only obstacless
are walls) and then made the tests more difficult by
adding objects. The office is covered with a carpet.
The arena presents a more controlable environment
where the surface is smooth and relatively colour-
uniformed. The office environmnent is more chal-
lenging where even though the ground is flat its sur-
face is much more coarse and not colour-uniformed.

For each test, the robot run for 5 mins. We placed
the robot in different places and put different objects
into the test area. In general, the robot is quite compe-
tent; Table I summaries the result. The vision-based
obstacle detection module correctly identified obsta-
cle with almost 100% accuracy, that is if there was an
obstacle in the camera view, the algorithm would reg-
ister an non-ground area. Although the calculated dis-
tances of obstacles are not very accurate, they provide
enough information for the controller to react. The
simple mechanism of finding an open space worked
surprisingly well. The robot was good at finding a
way out in a small area such as the areas under tables
and between chairs. The number of false positives are
also low and only occured in the office environment.
This is because the office’s floor colours are more dif-
ficult to capture thoroughly. Further analysis revealed
that false positives often occurred in the top part of the
images. This is explained by the ratio of pixels/area
in the upper part of the image being lower than the
bottom part. At the top row of the image, each pixel
corresponds to an area of 7∗ 4cm while at the bot-
tom row the area is 2∗1.5cm. Fortunately, the upper
part also corresponds to the further area in real world.
Therefore, most false positive cases resulted in unnec-
essary decreasing of speed but not changing direction.
Because of the robot’s reactive behaviour, it is capa-
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Figure 3: Snapshots of the robot in the test environments and its trajectories. A: the artificial arena with 4 objects. B: A small
area near the office corner. C: A path that went through a chair’s legs. D: An object with no base on the ground.

Table 1: Performance summary

Environment No of Obstacles Duration Average speed No. of collisions False positive

Arena 0 60 min 13 cm/c 0 0%

Arena 1 60 min 10 cm/s 0 0%

Arena 4 60 min 6 cm/s 2 0%

Office > 10 180 min 9 cm/s 7 3%



ble of responding quickly to changes in the environ-
ments. During some of the tests, we removed and put
obstacles in front of the robot. The robot can instantly
recognise the changes and changed it’s course accord-
ingly.

There are a small number of cases where the robot
collided. Most of the collisions occurred when there
are close objects in the direction that the robot was
turning into and the sonar sensor failed to report the
obstacles. Also there are objects that do not have their
bases on the ground for the robot to see, in those sit-
uations there were miscalculations of the distances to
the objects and hence collisions. In our environment,
one of the objects that presented this problem was ta-
ble cross-bar, ( Fig. 3 D )

Fig. 3 shows 4 snapshots of the robot during op-
eration and its trajectory. In picture A, the robot ran
in the arena with 4 obstacles, it successfully avoided
all the objects. On picture B, the robot went into a
small area near a corner with a couple of obstacles
and found a way out. On picture C, the robot success-
fully navigated through a chair’s legs which presented
a difficult situation. Picture D was a case where the
robot failed to avoid an obstacle. Because the table
leg cross-bar is off the floor, the robot underestimated
the distance to the bar.

4.2 Discussion

We found that adding more obstacles onto the arena
did not make the number of collisions increase sig-
nificantly. However the average speed of the robot
dropped as the arena get more crowded. The speed
loss is admitedly due to the robot’s reactive behaviour.
The robot does not have a path planning therefore it
can not always select the best path and only reacts
to the current situation. In some cluttered areas, the
robot spent a lot of time spinning around before it
can find a viable path. We can improve the robot’s
behaviour in these situations by having a mechanism
to detect cluttered and closed areas so the robot can
avoid them. The assumption that the travelling sur-
face is flat holds for most indoor environments. How-
ever, there a few objects that do not have their bases
on the ground or protrude from their bases. Another
sonar sensor pointing at the front of the robot will
solve this problem. The additional sensor can also
be used for auto-calibarating the vision module.

Each control cycle takes about 150ms or 7Hz. Ta-
ble II shows the time spent on each task in the cycle.
Most of the times is spent waiting for the camera im-
ages and sonar data. The algorithm used only 15%
of the CPU during operation. This leaves plenty of
resources for higher behaviours if needed. It is possi-

Table 2: Speed performance

Task Time

Image acquiring 95 ms

Sonar sensor reading125 ms

Image processing 5 ms

Controller 1 ms

Servos updating < 1ms

Logging 3 ms

Total 150 ms

ble to implement this algorithm with a less powerful
CPU. Since only 10% of the CPU time is spent on
processing data, a CPU running at 20 MHz would be
sufficient. So instead of the Gumstix computer we can
use a micro-controller such as a Brainstem or a BA-
SIC STAMP for both image processing and motion
control without any decrease in performance. The
memory usage is nearly one Mb which is rather big.
We did not try to optimise memory usage while im-
plementing the code so improvements could be made.
We plan to implement this control algorithm on a
micro-controller instead of the Gumstix. This change
will reduce the cost and power usage of the robot
by a large amount. To the best of our knowledge,
there has not been a mobile robot that can perform
reliable obstacle avoidance in unconstrained environ-
ments using such low resolution vision and slow mi-
croprocessor. A robot with only obstacle avoidance
behaviour might not be very useful apart from appli-
cations such as exploration or surveillance. However
given that our algorithm is very computationally ef-
ficient and requires low resolution images, it can be
incorporate into a more complex system at a small
price and leaves plenty of resources for higher level
behaviours.

5 Conclusion and future research

We have developed a vision-based obstacle avoid-
ance algorithm that is efficient enough to run on a
small computing platform. Our robot uses digital
camera as the main sensor which is usually only avail-
able for bigger robot platforms. Even when the vi-
sual image resolution is decreased dramatically, by
factor of 16, it still provides enough information for
detecting obstacles and a robust behaviour. The cam-
era shortcoming of narrow FOV is compensated by
sonar sensors. Our robot control strategy consists of
several reactive rules. No world model is built, in-



stead the controller only reacts to immediate sensor
measurements. The obstacle avoidance strategy is de-
rived from the combination of the robot’s dynamics
and sensor setting. The robot was tested in a real of-
fice environment and performed very well.

One of the biggest disadvantages of colour-based
object detection is the need of calibrating the vision
module before operation. It is very desirable to have
a robot that can be deployed in any environment that
meets some specific requirements without prepara-
tion. We are implementing a simple auto-calibrating
procedure on-board the robot. This procedure will be
run before each operation. The robot must be de-
ployed in a place where the immediate area in front
of it is free of obstacles. The robot will move forward
for a few seconds and take pictures of the floor for the
calibration process. Another approach is to add an-
other sonar sensor pointing forward with the camera.
The correlation between this sonar measurement and
the visual module output can be learned. This corre-
lation then can be used for auto-calibrating the visual
module.
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