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Abstract. In Wireless Sensor Network (WSN) applications, sensor nodes
are often deployed in harsh environments. Routine maintenance, fault
detection and correction is difficult, infrequent and expensive. Further-
more, for long-term deployments in excess of a year, a node’s limited
power supply tightly constrains the amount of processing power and
long-range communication available.
In order to support the long-term autonomous behaviour of a WSN
system, a self-diagnostic algorithm implemented on the sensor nodes is
needed for sensor fault detection. This algorithm has to be robust, so that
sensors are not misdiagnosed as faulty to ensure that data loss is kept to
a minimum, and it has to be light-weight, so that it can run continuously
on a low power microprocessor for the full deployment period. Addition-
ally, it has to be self-adapative so that any long-term degradation of
sensors is monitored and the self-diagnostic algorithm can continuously
revise its own rules to accomodate for this degradation. This paper de-
scribes the development, testing and implementation of a heuristically
determined, robust, self-diagnostic algorithm that achieves these goals.

1 Introduction

1.1 Background: The PROSEN project.

PROSEN (PROactive condition monitoring of SEnsor Networks) is an EPSRC
funded, multi-university project [1] which is investigating techniques to enable
automated control and proactive management of sensor arrays. The project aims
to develop a proactive Wireless Sensor Network (WSN) to enable condition mon-
itoring of a wind farm in an uncontrolled, unsupervised, outdoor environment
that will be deployed for a minimum of one year.

Each sensor node will measure temperature, wind speed, humidity, rainfall
and cloud cover and store the raw data on-board. Preliminary data checking,
analysis and sensor diagnosis will also be performed on-board. As long-range
wireless communication is power intensive, in order to prolong their life, each
node must pass only “events” (not raw data) to the management system which
will be located at one of the investigating universities. What is deemed an event is
determined from an overall system policy which is made up of a set of adapatable



policy rules which can be modified on individual nodes. For example, an event
could be generated when a sensor records a measurement above (or below) a
certain (policy determined) threshold, when a possible sensor fault is detected,
or when the battery voltage of the node reaches a certain critical level.

Figure 1 is a schematic showing the information flow within the PROSEN
WSN. Each node will also have a short range (174 MHz) radio in order to commu-
nicate with its nearest neighbour. This enables a second level of data verification
if, for example, one node is measuring an abnormally high temperature, it can
query its neighbour to verify the validity of the reading. If the sensor reading
is invalid then a possible sensor fault condition is flagged, and reported to the
management system.
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Fig. 1. Schematic showing information flow within the PROSEN WSN.

In traditional condition monitoring systems, the sensor nodes acquire data
under the control of a local microcontroller located on the node, and then raw
data is transmitted to a central base-station (e.g. PC). This central base-station
then performs high level, CPU intensive, functions such as data analysis and
decision making (e.g. [2]).

This type of approach is purely reactive, and prone to catastrophic failure in
reponse to unanticipated failure modes, degradation, changing operating condi-
tions or adverse environmental conditions. Moreover, a sole controlling central
station consitutes a single point failure, and should it fail the whole network
could be rendered ineffective.



To tackle the drawbacks of such a system, we are investigating and demon-
strating techniques that enable the automated control and management of sensor
arrays to be proactive. In order to achieve this goal, we need to give the sensor
nodes much more on-board ‘intelligence’ such as self-diagnosis, data analysis,
asessment of data quality and decision making routines.

The obvious challenge with such an approach, is that it requires a sophis-
ticated processor on each node to handle the data analysis, self-diagnosis and
decision making processes. Such processing power comes at the expensive of in-
creased power useage, thus further constraining the frequency and duration of
power hungry, long-range communications. There is therefore a requirement to
develop a self-diagnostic algorithm that is not only robust and adaptable, but
will run on a low power microprocessor.

1.2 Approaches to sensor self-diagnosis.

Automated fault detection techniques have been widely studied and developed
during the last few years (for example, Angeli et al. [3]) and the most popular
methods include model-based methods [4, 5] and artificial intelligence methods
[6]. These methods are highly reliable and are robust, but all are based on highly
complicated computation, thus requiring a high speed processor, large amounts
of memory, and therefore have a high power consumption. Two further examples
are Nithys et al. [7] and Farinaz et al. [8].

Nithys et al. [7] developed a cross-validation based technique for on-line de-
tection of sensor faults. Their idea is to compare the results of multisensor fusion
with, and without, each of the sensors involved using non-linear function min-
imization and then identify the faulty sensor using non-parametric statistical
techniques. Their simulation results indicate the high accuracy of the approach,
but the implementation complexity of non-linear function minimization is too
high for a low power microprocessor with limited memory and processing speed.

Farinaz et al. [8] propose a distributed, localized, sensor fault detection al-
gorithm for WSNs. In their algorithm, each node monitors its health status
and that of its nearest neighbours. This data is correlated and exchanged be-
tween the nodes. Each node therefore has knowledge of its own status and all its
neighbours. The drawback of this algorithm is that there is a large amount of
information transferred between nodes, resulting in a high power overhead due
to the wireless communications required.

A further avenue is to use a rule-based approach. Betrand-Krajewski et al.

[9] present a formal approach to the establishment of a such a rule-based system.
The major advantage which such a system is the low processing power required,
and the rapidity in which a working rule-set can be tested, evaluated, modified
and retested.

Jinran et al. [10] explore rule-based fault detection techniques for helping
improve the quality of the data collected by their WSN in Bangladesh. Their
research is based on the idea that fault diagnosis and repair are knowledge-
intensive and experiential tasks. After analysing a dataset, some rules have been
established to suggest actions a user can take to remedy, or validate data. For



example, such a directive could be: “If measurements from a sensor are identified

as noisy, either check the battery or the connectors on the sensor and to the

sensor-board”. Their approach is a high level fault detection technique running
on the base station side, but requires a large amount of node-human interaction
to quickly identify, then remedy problems.

In this paper, we describe and evaluate a light weight heuristically determined
rule-based algorithm to identify possible sensor faults for each of our sensor
nodes. It has a low computing complexity and (so far) has achieved a 100%
sucess rate in detecting faults, with no false-positives reported.

We describe the architecture of our prototype platform in Section 2. Sec-
tion 3 describes our low level self-diagnosis routines, and presents some practical
results, and Section 4 gives conclusions and future work.

1.3 Hardware development strategy.

From the outset, our design strategy has been to minimise the duration and
frequency of long range communications, and limit such communications to the
transmission of events (ie. alarms, alerts, node health status etc.), and the re-
ception of policy rules which determine the conditions under which these events
are generated.

We therefore adopted the following methodology:

1. Deploy a “first generation” prototype node in a controlled external envi-
ronment to measure base-line operational parameters of the sensors and
communications components. This has a simple self-diagnostic rule set, and
event generating capability.

2. Develop a “second generation” node that will have full system functional-
ity. This will have an adaptive self-diagnostic rule-set, full event generating
capability and be able to receive updates from the management system. It
will also incorporate two processors, a low power micro-processor that per-
forms low-level tasks, and a higher power processor which is powered up
intermittently to perform more CPU intensive tasks.

3. Using data from the first and second generation nodes, fully optimise the
hardware architecture and system parameters for the finalised “third gener-
ation” node to maximise the node lifetime.

2 A prototype sensor node

In order to minimise to development time (and cost), we built the first generation
prototype sensor node using readily available commercial products in order to
quickly obtain experimental baseline data to establish an intital rule-set. The
station selected is called the Davis Vantage Pro2 [11] and consists of two major
components: the Integrated Sensor Suite (ISS), which houses and manages the
external sensor array, and the console (connected to a PC) which provides the
user interface and data display. The ISS and console communicate via a 868



MHz RF transmitter and receiver. We also integrated a Campbell Scientific
CR216 wireless datalogger [12], which has five 12-bit analogue inputs, two pulse
inputs, two digitial I/O lines, a RS-232 port and a RF416 spread spectrum radio
(operating at 2.4 GHz) so that we can monitor the sensors in parallel with the
Davis ISS (via the custom built sensor interface) [13]. This logger has a user-
programmable 8-bit microprocessor with 6.5 KBytes of program space, and 250
KBytes of data storage, and it is on this platform we have implemented our data
acquisition and self-diagnosis algorithm for our first generation node.

Figure 2 shows the various components of the node. The “Base Station” side
is located within the School of Physical Sciences building at the University of
Kent, and the “Sensor Node” is deployed on the first floor roof of the same
building (Figure 3). Initial deployment was carried out in July 2006.
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Fig. 2. Components of our first generation prototype node.

In addition we have also connected the Campbell data logger to a GSM
modem via its RS-232 interface. This allows us to send events and alarms to a
remote system via SMS. This has proved to be very effective, felixble and reliable
and will be developed into a two-way process in our second generation node [14].

As we also anticipate that the time between battery replacements in the
field could be anywhere between one and two years, we have added a 0.18 m2, (6
watts maximum output) solar panel to keep the 12 Volt (7 Ah) lead-acid battery
topped-up. This has provided sufficient power to keep the battery fully charged,
even over the winter.



Fig. 3. A photograph of the deployed first generation sensor node.

3 Self-Diagnostic methods

3.1 Establishing the initial rule-set.

To establish an effective rule set, we used heuristic, phenomenological and sta-
tistical methods to establish:

1. Sanity levels. This is simply a set of values based upon possible non-physical
readings, ie. a humidity reading greater than 100% (or less than 0%), tem-
peratures less that -40o centigrade, or greater than +40o centigrade etc. Any
reading outside of these values is a probable sensor malfunction.

2. Maximum and minimum environmental parameters (ie temperature, humid-
ity, wind speed) over a long period. This was achieved by analysing a data
set from a nominally identical weather station that has been deployed for
two years within a mile of our prototype node [15], plus additional data ob-
tained from the met office [16]. Any deviation of the measured values outside
of these values could be indicative of a sensor fault.

3. Noise parameters. Specifically the standard deviation of the noise of a sensor
over a long period. Again, any increase (or decrease) in these values may
suggest a sensor problem.

4. The correlation between different, but complementary sensors. For example,
the solar radiation sensor and solar panel both output a voltage proportional
to the intensity of the solar radiation incident upon them. Thus they should



be strongly correlated, and any deviation from this correlation could be
characteristic of a malfunction in either sensor.

In order to illustrate our methodology, we now discuss three examples of how
we obtained our base-line performance parameters for the temperature sensors,
the solar radiation sensor and the anemometer.

We have installed two Campbell Scientific (Model 109) temperature sensors
on our prototype node. They are housed within their own radiation shields and
are approximately 1 metre from the floor with a horizontal separation of 25 cm.

In Figure 4 (top) we have plotted the temperature as measured by our two
temperature sensors for a three day period, and (bottom) the residuals between
the two readings.

In order to calculate a base-line noise value, we calculated the standard de-
viation, σ, of the residuals for 50,000 readings (equivalent to 33 days of data),
also plotted on the bottom graph of Figure 4 are the ±3, 7 and 11σ levels.

As these temperature sensors are nominally identical, in the absence of sys-
tematic effects, the error between the two readings should be ±1% [17] and the
residual values should be normally distributed.

In Table 1, we show the number of records that should deviate more than
3, 5, 7, 9 and 11σ assuming a normal distribution, and the actual number of
records from our 50,000 data points sample that do deviate.

1000 2000 3000 4000 5000
Record number

-20

0

20

40

T
em

pe
ra

tu
re

 (
D

eg
re

es
 C

)

1000 2000 3000 4000 5000
Record number

-4

-2

0

2

4

6

D
iff

er
en

ce
 (

D
eg

re
es

 C
)

Fig. 4. Plot of the temperature recorded from the two temperature sensors (top) and
the difference (residuals) between the two readings (bottom).

As can be seen from Table 1 and Figure 4, the noise is clearly not normally
distributed and has a bias consistent with a regular systematic effect. Closer



Table 1. Analysed results from 50,000 readings.

Noise Number of records Number of records

deviation (Normally distributed) (Measured)

3σ 67 1132

5σ < 1 130

7σ 0 19

9σ 0 8

11σ 0 0

investigation revealed that this effect was caused by the physical location of the
two temperature sensors. One of the sensors is on the east side of the node, and
the other on the west side of the node. As the sun rises in the morning, the east
sensor warms more quickly than the west sensor causing a large (∼2 degree)
temperature differential. However, during the course of the day, this difference
reduces and becomes unnoticeable. However, as this is a regular, systematic
effect, it does not change our methodology for detecting sensor faults.

3.2 Solar radiation sensor.

In order to do self-diagnosis on the solar radiation sensor, we have adopted a
different approach to that used for the temperature sensors. As we only have
one solar radiation sensor, we cannot use the same statistical method described
above.

However, we do have access to the output voltage measured where the solar
panel connects to the battery and this give us a direct reading of the output
voltage of the solar panel (plus the battery voltage). Therefore, we should see a
strong correlation between the voltage from the solar radiation sensor and the
solar panel voltage.

Figure 5 shows the correlation for a period of three days, and Figure 6 shows
the solar radiation sensor output voltage plotted against the solar panel voltage
for 72,000 readings. As can be seen, there is a clear envelope that all the data
lie within, showing a strong correlation between the two readings.

The observed hysterisis type appearance is due to the charging cycle of the
battery. In the early morning (before dawn), the battery level is low (typically
∼13 volts) and during the course of the day the battery charges up, so that after
dusk its voltage level is ∼14 volts. The battery then discharges back to 13 volts
during the course of the night, and the cycle repeats.

In order to quantify this correlation we calculate the linear correlation coef-
ficient, r, via:
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Fig. 5. Three days of data illustrating the correlation between the solar radiation
intensity, and the measured solar panel + battery voltage.
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Fig. 6. Correlation between solar radiation intensity and solar panel + battery output
voltage for 72,000 records.

r =

∑

i
(xi − x)(yi − y)

√
∑

i
(xi − x)2

√
∑

i
(yi − y)2

(1)



where (xi, yi), i = 1, . . . , N represent the measured values of the battery +
solar panel voltage and the solar radiation sensor respectively, and x is the mean
of x and y is the mean of y [18].
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Fig. 7. Correlation coefficient, r, plotted for a 50 day period.

By using Equation 1, we calculated the daily correlation coefficient, r, be-
tween solar radiation and battery level for a 24 hour period. Figure 7 is a the
plot of r for fifty days for the data set shown in Figure 6. These data illus-
trate that the daily correlation coefficient between solar radiation and battery
+ solar panel voltage is always greater than 0.6, even on very overcast days.
Therefore, based on this analysis, we set a threshold value, rth, of 0.6 in our
self-diagnostic algorithm. A calculated value of r < rth will flag an alert of a
possible degradation in the performance of either the solar panel, or the solar
radiation sensor.

3.3 Anemometer diagnosis.

In order to check the operation of the anemometer, we again used the fact that it
consists of two different, but complementary sensors; a wind direction sensor, and
a wind speed indicator. Due to the mechanical nature of these sensors, the most
probable failure mode is a “sticking” of the sensor in a fixed position. However, a
wind speed of zero, and/or an unvarying wind direction could just be indicative
of a very still day and not necessarily a failed sensor. We therefore analysed
our weather data for the last two years [15] in order to establish what were the
longest periods of exceptional stillness, ie. where the wind speed indicator was
zero, and when the wind direction was unvarying.



This established the following rule.

IF (Wd is changing) and (Ws is unchanged for 30 mins)

THEN ReportFault (2)

and

IF (Ws > 2 mph) and (Wd is unchanged for 30 mins)

THEN ReportFault (3)

where Wd is the measured wind direction and Ws is the measured wind speed.

3.4 Algorithm testing.

In order to test out self-diagnosis routines we forced a failure condition upon
several of the sensors to ascertain the robustness of the self-diagnosis routines,
and their ability to generate the appropriate alarm event.

In one test, the solar radiation sensor was totally obscured for a period of one
hour. Figure 8 (top plot) shows the point (indicated arrow) where the sensor was
covered, at approximately noon, on the 78th day, and the middle graph shows
the corresponding solar panel voltage.

The bottom plot of Figure 8 shows the correlation coefficient, r, between
the two datasets. Each point is the correlation coefficient as calculated from the
previous 24 hours of data. Also shown is our phenomenologically determined
threshold value of rth = 0.6. As can be seen, the value of r drops below rth and
an alarm signal was generated.

3.5 Detection of a real sensor failure.

During the latter part of the tests conducted above, we frequently received alerts
indicating a failure of one of the temperature sensors. In Figure 9 (top), we have
plotted the residuals for the two temperature sensors over the period in question,
and our 11σ threshold level. As can be seen, there are many points where the
data exceeded this threshold. The bottom graph of Figure 8 shows the raw data
for the sensor. Clearly one of the sensors is faulty as it is intermittently recording
temperatures in excess of 100o centigrade!

In this section, we introduced our base-line self-diagnosis routines, explained
some technical methods for low level sensor fault detection and showed some
experimental results. Our self-diagnosis algorithm is a rule-based system, where
knowledge obtained from analysis of a large dataset has helped determine these
rules. Practical results have shown that these rules sucessfully report sensor
failure and it can be easily implemented on a low power microcontroller.
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Fig. 8. Solar radiation and solar panel + battery voltage, indicating a forced failure of
the solar radiation and detection of the failure.

3.6 Towards self-adaptability.

In the proceeding analysis and examples, our node reacted solely on a fixed set
of conditions imposed upon it; ie., ”if X > Y generate event”. However, we have
anticipated the need for these set of conditions to be modifiable, either by the
management system or the node itself, as the base-line performance of the node
changes during its deployment. As a simple example, we consider the possible
long term degradation of the solar radiation sensor caused by buildup of deposits
on the transparent external casing of the sensor. This would manifest itself as a
weakening of the correlation between its output and that of the solar panel. In
order to compensate for any such degradation, the node can actively update the
value of rth required to generate an alert by performing a running average over
the last 50 days worth of data. Any sensor degradation would lead to a gradual
decrease in the value required to generate an alert. Such a method does not
preclude the self-diagnosis system failing the sensor in the case of a catastrophic
malfunction, but does mean the sensor can remain operational for longer without
generating false-positive alerts and thus (erroneously) discarding useful data.
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Fig. 9. Detecting a real failure of one of the temperature sensors.

4 Conclusions and further work.

Previous approaches to self-diagnostics routines have involved WSNs with ac-
cess to powerful CPUs, a high level of human supervision, short (in the field)
deployment times and/or a large data transmission requirement

We have identified the need for a WSN self-diagnostic routine that can be
implemented autonomously on a low power microprocessor for periods in excess
of a year.

By using readily available off-the-shelf components we have constructed a
prototype sensor node that can be quickly deployed. Using the data from this
deployed node, we have successfully developed and trialled a light weight, robust,
rule-based self-diagnostic algorithm that very sucessfully detects sensor faults.
Since its deployment in July 2006, the algorithm has sucessfully reported the
failure of one of the temperature sensors, and (just as importantly) not generated
any false-positive alarm events.

Our experimental results shows that this approach has a low computing com-
plexity and achieves a high probability of correct diagnosis. It can be imple-
mented on a broad set of low power microprocessors that have limited memory
and processing speed.

We thus intend to migrate our current Campbell Scientific datalogger based
system to our second generation node within the next two months. This node will
be a hybrid node, incorporating a low-power microcontroller (Texas Instruments’
MSP430F1611) to acquire data and run the low-level algorithm discussed here,
and an Intel PXA-255 embedded Linux machine (such as a “Gumstix” [19])
which is swtiched on intermittently to do more CPU intensive tasks, such as
double-checking the low-level diagnostic routine to validate alarm events.
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