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Abstract A finite-dimensional Lie algebra L over a field F' of character-
istic zero is called elementary if each of its subalgebras has trivial Frattini
ideal; it is an A-algebra if every nilpotent subalgebra is abelian. This paper
is a continuation of the study of these algebras initiated by the authors in
[10]. If we denote by A, G, £, L, ® the classes of A-algebras, almost algebraic
algebras, F-algebras, elementary algebras and ¢-free algebras respectively,
then it is shown that:

LCdCG, LCACE and GNA=L.

It is also shown that if L is a semisimple Lie algebra all of whose min-
imal parabolic subalgebras are ¢-free then L is an A-algebra, and hence
elementary. This requires a number of quite delicate properties of parabolic
subalgebras. Finally characterisations are given of EF-algebras and of Lie
algebras all of whose proper subalgebras are elementary.
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1 Introduction

This paper is a continuation of the study initiated by the authors in [10].
Throughout L will denote a finite-dimensional Lie algebra over a field F.
The Frattini ideal of L, ¢(L), is the largest ideal of L contained in all
maximal subalgebras of L. The Lie algebra L is called ¢-free if ¢(L) = 0,
and elementary if ¢(B) = 0 for every subalgebra B of L. Lie algebras all of
whose nilpotent subalgebras are abelian are called A-algebras; Lie algebras
L such that ¢(B) < ¢(L) for all subalgebras B of L are called E-algebras.
We are seeking to determine properties of, and inter-relationships between,
these three classes of algebras. A linear Lie algebra L < gl(V) is almost
algebraic if L contains the nilpotent and semisimple Jordan components of
its elements; an abstract Lie algebra L is then called almost algebraic if
adL < gl(L) is almost algebraic.

Throughout sections two and three F' is assumed to have characteristic
zero. In section 2 we show first that L is ¢-free if and only if it is almost
algebraic and its nilradical is abelian. It follows from this that if L is almost
algebraic then ¢(L) = N2, where N is the nilradical of L. Zhao and Lu
proved in [13] that every almost-algebraic A-algebra is elementary, whenever
the ground field is algebraically closed of characteristic zero. We generalise
this by showing that L is an almost-algebraic A-algebra if and only if it is
elementary (and without the assumption of an algebraically closed field).
From this we deduce that if L is a Lie A-algebra with a ¢-free solvable
radical, then L is elementary. The final result in this section is that if L is
a Lie A-algebra then it is an F-algebra.

A subalgebra P of L is called parabolic if P @ F contains a Borel sub-
algebra (that is, a maximal solvable subalgebra) of L ® F, where F is the
algebraic closure of F. The main purpose of section 3 is to prove two re-
sults. The first is that if P is a minimal parabolic subalgebra of L then
the following are equivalent: P is ¢-free; the nilradical of P is abelian; and
P is elementary. The second is that if L is a semisimple Lie algebra all
of whose minimal parabolic subalgebras are ¢-free then L is an A-algebra,
and hence elementary. In order to establish these results we need a number
of properties of parabolic subalgebras. Some of these may be known, but
we know of no references to them other than that Volklein in [12] shows
that if L is semisimple then the minimal parabolic subalgebras of L are
the idealisers of the maximal nil subalgebras of L. He uses, however, the
canonical correspondence between the connected subgroups of the identity
component of the automorphism group of L and the algebraic subalgebras
of L. Our proofs are based entirely on internal properties of L itself and so,



we believe, are of interest in themselves. We also include these proofs for
the convenience of the reader.

In the final section we look more closely at Lie F-algebras. In particular
we give a characterisation of them over a field of characteristic zero. We also
characterise Lie algebras all of whose proper subalgebras are elementary.
These generalise Theorems 4.3 and 4.7 and Corollaries 4.4 and 4.5 of [9] by
removing the requirement that the underlying field be algebraically closed.

We will denote vector space direct sums by @ and semidirect products
by x. If A is a subalgebra of B we will write A < B, whereas A < B
will mean that A is a proper subalgebra of B. The (solvable) radical (resp.
nilradical) of L will be denoted by R(L) (resp. N(L)), whilst Asoc(L) will
denote the sum (necessarily direct) of the minimal abelian ideals of L.

2 Preliminary results

First we reveal the relationship between almost-algebraic and ¢-free Lie
algebras.

Proposition 2.1 Let L be a Lie algebra over a field of characteristic zero.
(i) If L is ¢-free, then L is almost algebraic.

(ii) Let L be almost algebraic. Then L is ¢-free if and only if its nilradical
is abelian.

Proof. (i) Let L be ¢-free. By [8] we have that L = N(L) + S where S
is a subalgebra of L such that ad;S is completely reducible and N(L) =
Asoc(L). From [1, Theorem 2.2] it follows that L is almost algebraic.

(ii) By [1, Theorem 2.2] we have that L = N(L) + S where S is a
subalgebra of L such that adp.S is completely reducible. Now, assume that
N(L) is abelian. Then we have that N(L) = Asoc L. So L is ¢-free by [8].
The converse follows from [8].

Corollary 2.2 Let L be an almost-algebraic Lie algebra over a field of char-
acteristic zero. Then ¢(L) = N2, where N is the nilradical of L.



Proof. Clearly N2 is almost algebraic and so L/N? is almost algebraic, by [1,
Lemma 4.1]. Moreover, N (L/N?) is abelian and hence ¢-free by Proposition
2.1. Tt follows that ¢(L) C N2. The reverse inclusion is given by [8, Theorem
6.5].

If B is a subalgebra of L we define the idealiser of B in L to be I (B) =
{z € L: [z, B] < B}. Next we show that a Lie algebra is an almost-algebraic
A-algebra if and only if it is elementary, thereby generalising the result of
Zhao and Lu proved in [13]. First we need the following result.

Proposition 2.3 Let L be an almost-algebraic Lie algebra over a field of
characteristic zero. If every almost-algebraic subalgebra of L is ¢-free, then
L is elementary.

Proof. Let B be a subalgebra of L. Then the idealiser of B in L, I (B),
is almost algebraic, by [1, Theorem 2.3]. By our hypothesis, we have
¢(I(B)) = 0. But now B is an ideal of I5(B), so ¢(B) < ¢(IL(B)),
by [8, Corollary 4.2]. Hence L is elementary.

Theorem 2.4 Let L be a Lie algebra over a field of characteristic zero.
Then L is an almost-algebraic A-algebra if and only if it is elementary.

Proof. (=) Let L be an almost-algebraic A-algebra and let B be an almost-
algebraic subalgebra of L. Then by Corollary 2.2 it follows that ¢(B) = N2,
where N is the nilradical of B. Therefore, ¢(B) = 0 since N is abelian.
Hence L is elementary by Proposition 2.3.

(«<=) This follows from [10, Corollary 4.7].

Corollary 2.5 Let L be a Lie A-algebra over a field of characteristic zero.
If R(L) is ¢-free, then L is elementary.

Proof. Assume that R(L) is ¢-free. By Proposition 2.1 we have that R(L)
is almost algebraic. Then, from [1, Corollary 3.1] it follows that L is also
almost algebraic. So, L is elementary by Theorem 2.4.

Corollary 2.6 Let L be an almost-algebraic Lie A-algebra over a field of
characteristic zero. Then L splits over each of its ideals.



Proof. This follows from Theorem 2.4 and [9, Lemma 2.3].

Finally we have that Lie A-algebras are necessarily E-algebras.

Proposition 2.7 Let L be a Lie A-algebra over a field of characteristic
zero. Then L is an E-algebra.

Proof. We have that L/¢(L) is an A-algebra, by [6, Lemma 1]. On the other
hand, we have that L/¢(L) is ¢-free and so almost algebraic by Proposition
2.1. Then L/¢(L) is elementary, by Theorem 2.4. So, L is an E-algebra, by
[11, Proposition 2].

Denote by A, G, £, L, ® the classes of A-algebras, almost algebraic
algebras, F-algebras, elementary algebras and ¢-free algebras respectively.
Then, to summarise, what we have shown is the following:

LCdCG, LCACE and GNA=L.

3 Parabolic subalgebras

Throughout this section L denotes a (non-zero) semisimple Lie algebra over
a field F of characteristic zero. We denote by F the algebraic closure of F,
and write S = S ®p F for each subspace S of L. For each subalgebra S of
L, let U(S) denote the set of ad-nilpotent elements in the solvable radical,
R(S), of S. Our main objective in this section is to show that in order to
check whether a Lie algebra is elementary it suffices to look at its minimal
parabolic subalgebras. First we have some properties of the nilradical of a
parabolic subalgebra.

Proposition 3.1 Let P be a parabolic subalgebra of L. Then
(i) N(P) is nil in L;
(ii) if P < @Q < L, then N(Q) < N(P); and

(iii) P =I(N(P)).



Proof. Since N (P) is the nilradical of P and I1,(N(P)) = Iz(N(P)) (see
[2, pages 42 and 36]) we may assume that F' is algebraically closed. Now P
is conjugate to a standard parabolic subalgebra and so we can assume it is
of the following form. Let H be a Cartan subalgebra of L and let A be the
set of roots corresponding to H. Then

P = H @ ZQEA+LQ @ EaeﬂlLOU
where 1 C A™. Let Q) ={a € AT | —a € Q1 }. Then we have that
N(P) = Yocq; La

It follows that N(P) is nil in L and (i) is proved.

To prove (ii), suppose that P < @ < L. Then @ is also parabolic and
so has the same form as P but with {2; replaced by €29 where 1 C 5. We
have that Q) C ] and hence N(Q) < N(P).

To prove (iii), put @ = I (N(P)) and suppose that P < Q. By (ii) we
have N(Q) < N(P). On the other hand, as N(P) is a nilpotent ideal of @
we have N(P) < N(Q), which is a contradiction. Now the proof is complete.

The centre of L is the set Z(L) = {x € L : [z, L] = 0}. A subalgebra T of
L is said to be a toral subalgebra of L if T" is abelian and adt is semisimple
for every t € T. Next we need that if P is an algebraic subalgebra of L then
U(P) behaves well under field extension.

Lemma 3.2 Let U be a nil subalgebra of L. Then U is also a nil subalgebra
of L

Proof. We have that U is a nilpotent algebraic subalgebra of L, since
these properties are inherited from U (see [4, p.181]). So, U=U0)aT,
where T is a toral subalgebra of L and [T,U(U)] = 0, by [3, Theorem 4]. We

have T < Z(U) = Z(U) (see [2, page 36]). As Z(U) consists of commuting
ad-nilpotent elements, we have that Z(U) is a nil subalgebra of L. This
yields that T" is both nil and toral in L and so T' < Z(L) = 0. This yields

that U = U(U) and so U is nil in L.

Proposition 3.3 Let P be an algebraic subalgebra of L. Then U(P) =
U(P)

(=}



Proof. Since P is algebraic, we have that P = U(P) & M, where M =
S @& Z(M) and S is semisimple (M is a Levi factor of P), by [3, Theorem
4]. Tt follows that P = U(P)® M and M = S® Z(M). On the other hand,
from Lemma 3.2, it follows that U(P) is a nil ideal of L. So, U(P) < U(P).
This yields that U(P) = U(P).

The following results are concerned with relationships between parabolic
subalgebras and certain nil subalgebras.

Lemma 3.4 Let U be a nil subalgebra of L and put P = I (U). IfU =
U(P), then P is parabolic.

Proof. This follows from Proposition 3.3 and [7, Theorem 29.8.1]

Proposition 3.5 Let U be a nil subalgebra of L and put P = I1,(U). Then
there is a parabolic subalgebra Q of L satisfying:

(i) U <U(Q);
(ii) P <Q; and
(iii) U(P) < U(Q).

Proof. Put Uy = U and Q1 = I,(Up). Define inductively the two sequences
{Ui}io0, {Qi}i>1 by Qi = IL(Ui—1) U; = U(Q;). Then Q; = I(Ui—1) =
IL(U(Qi-1)) > Qi-1, so these sequences are increasing. This yields that
there is an integer j such that Q; = Qj;41; that is Q; = I, (U;). It follows
from Lemma 3.4 that () = @); is a parabolic subalgebra of L. We have that
U <U; =U(Q), giving (i), and P = I (U) = Q1 < Q, giving (ii).

Finally, Q; = I5(U;j—1) so U;—1 is a nil ideal of Q; and U;—1 < U(Q;),
whence Uy = U(P) < U(Q), giving (iii).

Proposition 3.6 (i) If U is a mazimal nil subalgebra of L, then Ir,(U)
is a minimal parabolic subalgebra of L.

(ii) If P is a minimal parabolic subalgebra of L, then U(P) is a maximal
nil subalgebra of L



Proof. (i): Let U be a maximal nil subalgebra of L. We have that U is a nil
ideal of I1,(U) and so U < U(IL(U). By the maximality of U, we must have
that U = U(IL(U)). From Lemma 3.4 it follows that I (U) is parabolic.
Now let @ be a parabolic subalgebra with Q < I (U). By Proposition 3.1
we have that U = N(I(U)) < N(Q) = U(Q). By the maximality of U
it follows that U = N(Q). This yields that I,(U) = @ by Proposition 3.1
again, and so I (U) is a minimal parabolic subalgebra of L.

(ii): Let P be a minimal parabolic subalgebra of L. Suppose that there
is a nil subalgebra V of L such that U(P) < V. By Engel’s Theorem we
have that U(P) < V N IL(U(P)). As P is parabolic, I,(U(P)) = P. Put
W =V NnP. Let M be a Levi factor of P; so that P = U(P) & M,
M =Z(M)® S where Z(M) is toral in L and S is a semisimple subalgebra
of L.

We see that W = U(P) @ (M NV). Since Z(M) is toral it follows that
MNV =5NV. So, SNV is a non-trivial nil subalgebra of the semisimple
Lie algebra S. From Proposition 3.5 there is a parabolic subalgebra @) of
S, Q # S, containing S NV. Let B a Borel subalgebra of S contained in
Q. Then, we have that R(P) + B is a maximal solvable subalgebra of P.
Since P is parabolic in L, it follows that R(P) + B is a Borel subalgebra of
L. We have R(P) + Q = R(P) + Q > R(P) + B. Therefore, R(P) + Q is a
parabolic subalgebra of L contained in P, which contradicts the minimality
of P. Hence U(P) is a maximal nil subalgebra of L.

A Lie algebra L is said to be ad-semisimple if adx is semisimple for every
x € L. Then we have the following criterion for a parabolic subalgebra to
be minimal.

Corollary 3.7 A parabolic subalgebra P of L is minimal if and only if
P/U(P) is ad-semisimple.

Proof. Let M be a Levi factor of P. Let us first suppose that P is minimal.
Then, by Proposition 3.6 it follows that U(P) is a maximal nil subalgebra of
L and so M is ad-semisimple. Now assume that P/U(P) is ad-semisimple,
so that M is ad-semisimple. As Z(L) = 0, we see that U(P) is a maximal
nil subalgebra of P. Since P = I, (P), it follows from Engel’s Theorem that
U(P) is maximal nil subalgebra of L.

We now have the results that we need to show the role played by the min-
imal parabolic subalgebras in determining whether or not L is elementary.



Lemma 3.8 Let P be a minimal parabolic subalgebra of L. Then the fol-
lowing are equivalent

(i) P is ¢-free;
(ii) N(P) is abelian; and

(iii) P is elementary.

Proof. (i)=-(ii): Since P is algebraic, it follows from Corollary 2.2 that
N(P)? = ¢(P) = 0.

(ii)=-(iii): Since N(R(P)) = N(P) and R(P) is algebraic, it follows
from Proposition 2.1 that R(P) is ¢-free. By [10, Theorem 2.5] we have
that R(P) is elementary. On the other hand, since U(P) < R(P), it follows
from Corollary 3.7 that P/R(P) is ad-semisimple. But [10, Proposition 4.4]
now implies that P is elementary.

(iii)=>(i): This is trivial.

Theorem 3.9 Let L be a semisimple Lie algebra over a field of characteris-
tic zero, and suppose that all minimal parabolic subalgebras of L are ¢-free.
Then L is an A-algebra, and hence elementary.

Proof. First we show that L is an A-algebra. Let U be a nilpotent subalgebra
of L. Then U is contained in a maximal solvable subalgebra I of L. As T is
algebraic we can write I' = U(I')+T where T is a toral subalgebra. Let N
be a maximal nil subalgebra of L containing U(T"), and let P be the idealiser
in L of N. By Proposition 3.6, P is minimal parabolic and hence ¢-free. It
follows from Lemma 3.8 that P is elementary, and hence an A-algebra by
Proposition 2.4. This yields that U(I") is abelian. But then I is ¢-free and
hence elementary, by [10, Theorem 2.5]. It follows that U is abelian and
that L is an A-algebra.
By 2.4 it follows that L is elementary.

4 FE-algebras

First we have an easy strengthening of Corollary 2.2 of [10].



Proposition 4.1 Let L be a solvable Lie algebra over a perfect field. Then
L is an E-algebra if and only if L is strongly solvable.

Proof. This follows from [10, Corollary 2.2] and [11].

Next we have the following versions of Theorem 4.3 and Corollaries 4.4
and 4.5 of [9] with the assumption that the underlying field be algebraically
closed removed.

Theorem 4.2 Let L be a Lie algebra over a field of characteristic zero.
Then L is an E-algebra if and only if one of the following holds:

(i) L is solvable;
(ii) L is elementary and semisimple; or

(iii)) L = R® S, where R = R(L) is the radical of L, S = S1 ® Sa, S1 is an
ad-semisimple ideal of S, Sy is an elementary and semisimple ideal of

S, and SaR < ¢(L).

Proof. (=): Let L be an E-algebra and suppose that L is not solvable
or semisimple. By Levi’s Theorem we can write L = R @& S where S is a
semisimple subalgebra of L. If U is a subalgebra of L then write U for its
image in L/¢(L) under the natural homomorphism. We have L = R @ S
and S = S is elementary and semisimple. Put S = S; @ Sy where S is the
largest semisimple ideal of L. If S; # 0, then S; = S; is ad-semisimple, as
in [10, Theorem 4.6]. Clearly SoR < ¢(L), so (iii) holds.

(«<): If (i) holds then L is strongly solvable (since the ground field has
characteristic 0) and the result follows from Proposition 4.1 above. If (ii)
holds the result is clear. So suppose that (iii) holds. Then L = L;® S, where
Li=R&S,. Now fl/ﬁ =~ G, = S is ad-semisimple and R is elementary,
so L is elementary, by [10, Proposition 4.4]. It follows that L is elementary,
and hence that L is an E-algebra.

Corollary 4.3 Let L be a Lie algebra over a field of characteristic zero,
and suppose that the radical of L is nilpotent. Then Lis an E-algebra if and
only if one of the following holds:

(i) L is nilpotent;
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(ii) L is elementary and semisimple; or

(i) L = (R® S1) ® S2, where R = R(L) is the radical of L, S is an ad-
semisimple subalgebra of L, and S is an elementary and semisimple

ideal of L.

Proof. This follows as in [9, Corollary 4.4].

Corollary 4.4 Let L be a perfect Lie algebra (i.e., L = L?) over a field of
characteristic zero. Then L is an E-algebra if and only if L is elementary
and semisimple.

Finally we consider non-elementary Lie algebras all of whose proper sub-
algebras are elementary. We call such algebras minimal non-elementary Lie
algebras. The following extends Theorem 4.7 of [9].

Theorem 4.5 Let L be a Lie algebra over a field of characteristic zero.
Then L is a minimal non-elementary Lie algebra if and only if

(i) L = L?x Fx, where L? is abelian and 0 # ¢(L) = AsocL is the biggest
ideal of L properly contained in L?, or

(ii) L is the three-dimensional Heisenberg algebra.

Proof. (=) First note that L must be an E-algebra. Suppose that L is
not solvable. Then R = R(L) is elementary and so almost algebraic by
[10, Proposition 4.1]. Hence L is almost algebraic, by [1, Corollary 3.1].
Moreover, the nilradical is elementary and so abelian. It follows that L is
¢-free, by Proposition 2.1, and so elementary - a contradiction. This yields
that L is solvable.

Suppose that L is not nilpotent. Then ¢(L) # L? (see, for example, |8,
section 5)), so there is a maximal subalgebra M of L such that L = L?+ M.
Choosing B to be a subalgebra minimal with respect to the property that
L = L?+ B we have L?NB < ¢(B) = 0 (see [8, Lemma 7.1]),s0 L = L?® B
and B is abelian. Moreover, L? is nilpotent and elementary, and so abelian.

Suppose that dimB > 1. Let K be a maximal subalgebra of B. Then
M = L? + K is a maximal subalgebra of L, so M is elementary and hence
¢-free. Tt follows from [8, Theorem 7.4] that L? is completely reducible as

11



a K- module, and hence that each element of K acts semisimply on L? ([5,
Theorem 10, page 81]). But every element of B is contained in a maximal
subalgebra of B and so acts semisimply on L?. This yields that L? is a
completely reducible B-module, whence L? < Asoc L and L splits over
Asoc L. But then ¢(L) = 0, by [8, Theorem 7.3], and L is elementary, a
contradiction. Thus dimB =1, so put B = F'z.

So we now have L = L? x Fx where L? is abelian. Let C be an ideal of
L with Asoc L < C < L? and put D = C + Fx. Then D # L so ¢(D) = 0,
giving Asoc D = N(D) > C. But every minimal ideal of D is inside L? and
invariant under adz and so is an ideal of L. It follows that C' = Asoc D <
Asoc L, a contradiction. Hence Asoc L is the biggest ideal of L properly
contained in L2. We must have Asoc L < ¢(L), since otherwise L splits over
Asoc L, as in paragraph two above. As ¢(L) # L? this means that ¢(L) =
Asoc L and we have case (i).

Suppose now that L is nilpotent. Then L is not abelian, so dim L > 3
and L has a chain of ideals

O=Lg<Ih1<..<L,=1L,

wheredim L; =dand LL; < L;_1for1 <i<n. Let Ly = Fz, Ly = Fy+Fz,
and let x be any element of L. If F'x + Fy + Fz is abelian for every x € L
then L is abelian, a contradiction. Hence L has a subalgebra isomorphic
to the three-dimensional Heisenberg algebra. Such a subalgebra cannot be
proper as it is not elementary.

(«<=) It is clear that the three-dimensional Heisenberg algebra is minimal
non-elementary, so assume that L is as described in (i). It suffices to show
that the maximal subalgebras of L are elementary. Let M be a maximal
subalgebra of L. Since Asoc L < M either M = L2 or M = Asoc L + Fx
for some x € L\ L2 In the former case M is abelian and so elementary.
So assume that M = Asoc L + Fx and L = L? + Fz. Let A be a minimal
ideal of M. Then A < Asoc L and [A, L] < [A,z] < A so A is an ideal of L.
It follows that Asoc M = Asoc L and M splits over Asoc M. Hence M is
¢-free. Since M is clearly an F-algebra, it is elementary.

Note: The algebras L described in Theorem 4.5 (i) are A-algebras (as
every nilpotent subalgebra of L is inside L?) that are not elementary. They
are therefore not almost algebraic.
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