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Abstract 

Evolving Takagi Sugeno (eTS) models are optimised for use in applications with high 

sampling rates.  This mode of use produces excellent prediction results very quickly 

and with low memory requirements, even with large numbers of input attributes.  In 

this paper eTS modelling is adapted for optimality in situations where memory usage 

and processing time are not specific requirements.  The new method, eTS with 

memory, is demonstrated on two financial time series, both the fullband signals and 

after decomposition by the discrete wavelet transform.  It is shown that the use of 

previous inputs and multiple iterations in eTS can produce better predictions for 

signals which are not dominated by the characteristics of noise. 
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1. Introduction 

Consider the time series of daily foreign exchange closing prices between the British 

Pound Sterling (GBP) and the European Currency Unit (EUR).  An application that 

predicts the next value based on current knowledge is not subject to processing time 

restrictions because there is a full day between each new value in the series.  

Furthermore, such an application may not be required to run on a resource-restricted 

device such as a microprocessor or field-programmable gate array (FPGA).  In this 

situation it makes sense to utilise the available time and resources to generate a better 

prediction. 

Traditional eTS [1] is a fuzzy rule-based modelling method that occurs in two basic 

stages: evolution of the rule base and an adapted recursive least squares (RLS) 

estimation technique.  The rule base antecedents for the fuzzy rule-based modelling 

are produced by online evolving clustering [2] in a recursive and non-iterative way.  

This method is based on the position of the data vector in the data space relative to 

any existing cluster centres and the other data vectors.  The adapted RLS estimation 

method in eTS traditionally only uses the most recent data point in order to minimise 

the memory requirements and to improve the processing time.  For certain time series 

data there will be improvements in prediction when previous data vectors are also 

used during RLS estimation.  This should certainly be the case for slowly changing 

time series as opposed to bursty, noise-like series.  Finally, classical eTS schemes 

only perform one iteration of the recursive least squares algorithm in order to 

minimise the processing time. Since RLS is known to converge with the target on 

iteration [3, 4] given certain conditions on the input data, it seems prudent to iterate 

further if there is time available to do so and the predictions are improving. 
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These modifications are implemented in eTS and are demonstrated by the modelling 

and prediction of GBP v EUR closing price data using the original time series and 

subbands of scale produced by the discrete wavelet transform [5, 6].  As a second 

example the experiment is repeated for quarterly US Gross Domestic Product Data.   

The mean square prediction errors for each time series are compared for different 

combinations of previous inputs and numbers of iterations in the new eTS with 

memory model. 

2. Methods 

The classical eTS method that is modified in this paper is outlined in [1] as a seven 

stage scheme: 

1. Initialization of the rule base with the first input (generation of the rule 

antecedents) 

2. Arrival of the new data point 

3. Recursive calculation of the informative potential of the new data point 

4. Recursive recalculation of the informative potentials of the previous data 

points given the arrival of a new data point in the data space 

5. Possible adjustment or update of the rule base dependent on the potential of 

the new point relative to the potentials of the existing points 

6. Recursive calculation of the consequent parameters 

7. eTS prediction of the value at the next time step 

This method assumes that each data point is a possible cluster centre and then 

mathematically quantifies this possibility as the potential, based on the Euclidean 

distances, dij, from all other points. 

∑
=

−
=

n

j

d

i

ijeP
1

α

 



 4 

Pi is the potential of point i to be a cluster centre and n is the number of data points.  

The constant α defines the radius value which specifies what fraction of the 

normalised data space represents a cluster centre’s range of influence in each 

dimension.  Effectively this limits the maximum size of the cluster from the cluster 

centre.  The value dij is the distance between points i and j defined by: 

2||||),( jijiij xxxxd −=  

The double bar ( || ) operator indicates the distance between the two data points in 

each dimension of the data space. 

The eTS rule-base takes the form: 

if(x1 is Νi1) and … and (xn is Νin) then (yi = ai0 + ai1x1 + … + ainxn);     i={1,2,…,R} 

where x is the input data vector of size n (and also the number of antecedents for each 

rule), yi is the output of the i
th

 rule, derived from the antecedents (cluster centres) and 

the model parameters ail, l={1,2,…,n}, and R is the number of rules.  Each rule has a 

firing level which is determined by the product of the membership functions, µ, in this 

case Gaussians, and the values in the input vector:  
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µ , i={1,2,…,R}, and j={1,2,…,n}. 

The final output from the model is then a combination of each rule’s input values, xe
T
, 

and consequent parameters, πi=[ai0 ai1 …ain]
T
, weighted by that rule’s normalized 

firing level [1], λi = (τi / Σ
R

j=1τj): 
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The locally optimal scheme for finding the parameters in traditional eTS is 

implemented as the minimisation of each rule’s cost function [1]: 
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where Λi is a diagonal matrix holding the πi(xk) values in the main diagonal.  The 

minimisation is achieved by the recursive weighted (wRLS) method derived in [1]: 
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note that the subscript e denotes the input vector has been extended with a unitary 

value at the start.  The (yk- xek
T
πik-1) term is the expression of the error of prediction 

using the parameters from the previous stage.  The covariance matrix is also updated 

recursively [1]: 
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Note that, for traditional eTS, equation {2} is only evaluated once, ie. undergoes one 

iteration, and then only using the most recent data vector, xek, and the πik-1 consequent 

parameters and cik-1 covariance matrix from the previous step. 

The modifications presented here affect stage six of this scheme.  The recursive 

clustering of the data space and adjustment of the rule base antecedents (steps two to 

five) and the eTS prediction (step seven) proceed exactly as before.  The new 

developments involve storing previous data points up to a certain number (ie. the 

memory) which could be a fixed value or, indeed, all of the previous data vectors, ie. 

growing window eTS.  Let the number of previous inputs be Q.  Equations {2} and {3} 

above are carried out at stage six using the most recent rule base antecedents, the most 

recent consequent parameters, and the most recent covariance matrix, but using data 

vectors starting at (k-Q) through to k successively.  Furthermore, equation {2} is 
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iterated for each of the Q data points, based on some previously supplied limit, say G.  

Pseudocode for the new weighted RLS is presented to clarify this method: 

For each of the Q previous data points from the oldest to the most recent 

Update the normalised firing levels, λi 

 For each rule 

  Update the covariance matrix, see equation {3} 

  For G iterations 

   Update the consequent parameters, see equation {2} 

  End loop 

 End loop 

End loop 

Finally, at stage seven, the prediction of time step k+1 is produced from equation {1} 

above, and the process begins from stage two at the next time step. 

3. Application 

Recall that eTS represents the data space by its rules which are the centres of clusters 

and best represent the data in each cluster in terms of informative potential.  Given the 

new developments explained in this paper, old input data can be reassessed in terms 

of new rules, or rules that may have changed after the data vector was first presented 

to the model.  Essentially the previous data is being assessed in terms of a newer, and 

hopefully more representative, rule base.  The logical extreme of such eTS with 

memory would be to form a rule base on all the previous data and then use all those 

rules to arrive at better consequent parameters for every vector in the data space in 

order of time steps.  This makes sense because a more complete rule base should lead 

to better consequent parameters and the parameters for any given data point are 

calculated from the parameters at the previous stage.  Thus the final prediction for the 
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next, as yet unknown, value should be improved.  This will, of course, depend on the 

nature of the signal being modelled.  Stationary ergodic processes are better modelled 

by minimum mean square error methods, as used in the Wiener filter.  In fact, for a 

sufficiently large stationary data set, the RLS method, as used in the Kalman filter, 

converges with the Wiener solution.  Thus eTS should be chosen for modelling non-

stationary processes.  However, research has suggested [7] that RLS convergence 

depends on the input signal to noise ratio (SNR) and the value of the forgetting factor 

for previous inputs.  Thus, signals with a high SNR or with a broadband frequency 

spectrum may not benefit, and may even suffer, from further iteration of RLS.  The 

expected improvements in prediction accuracy for low frequency signals (trends and 

low noise data) are shown in figure one where increasing the number of iterations 

reduces the prediction errors, ie. the model converges with the process, to some 

limiting value which is signal dependent. 

Signals which are not dominated by low or high frequency should be improved by 

iteration but not to the same extent as trend data.  Noisy signals could benefit from 

RLS iteration.  When high frequency energy dominates the signal then all outcomes 

are possible: better prediction, worse prediction, no change, or a combination of all 

three at different time steps. 

It has already been suggested that a more representative rule base should lead to better 

parameter estimation for previous data vectors, but this should only hold true for as 

long as the rules are relevant to the current ‘state’ of the signal for a non-stationary 

process.  In fact, in standard time-based RLS a forgetting factor is used to handle the 

non-stationarity.  However, because of the firing levels of rules in the eTS system any 

rules which were not previously relevant will not affect the predictions significantly.  

Thus the use of previous data points in wRLS gives the model the chance to produce 
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better results depending on the dynamics and statistics of the data.  It is expected that 

lower frequency signals will benefit most from the use of previous data points in eTS 

with memory.  This is because there is a clear relationship between consecutive data 

points in such signals.  Adjacent points in high frequency signals are often 

independent of each other, so eTS with memory may not improve the prediction of 

such signals. 

As with many fuzzy systems the choice of membership function can drastically affect 

the rate of convergence to the underlying process function and the quality of 

prediction [8].  Also, the data space of some processes may be better represented by 

clusters formed with some partition criterion other than the informative potential. 

4. Experimentation 

The test data used in the first experiment is a series of 981 closing prices of GBP 

against EUR as quoted on the London Stock Exchange between 20
th

 October 2004 

and 16
th

 July 2007.  This data is used with the eTS with memory system where values 

one to 980 are inputs and values two to 981 are the prediction targets.  This is the 

fullband data set.  The same data is also decomposed by the discrete wavelet 

transform, using the Symlet number eight mother wavelet, into one approximation 

subband and ten detail subbands, each of which is handled by a different eTS with 

memory model.  This is the subband data set.  In every case the data is standardised to 

a zero mean and unitary standard deviation before modelling.  There is no pre-training 

of the models.  Again the current value is used to predict the closing value at the next 

day.  The tests are run for one, ten, and one hundred iterations of the RLS algorithm 

using one to ten previous data vectors.  The results for a single iteration and one 

previous input are exactly the results that traditional eTS would have produced.  All 

the other results derive from the new developments presented here.  All errors are 
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expressed as mean square errors (MSE).  Table one shows the basic statistics of the 

financial fullband data and one large-, medium-, and small-scale subband 

(approximation, subband five, and subband one respectively) before standardisation. 

It is immediately clear from table one that the majority of the energy is in the 

approximation subband.  Note also that the detail subbands have means very close to 

zero.  It is also clear that variability relative to the mean is higher in the lower level 

detail subbands.  This is illustrated in figure two where the standardised financial 

approximation subband is shown alongside the standardised detail subbands five and 

one, where the latter exhibit much more variation and are also non-linear.  The 

prediction MSEs for the fullband data set are presented in figure three.  These results 

are very interesting.  The smallest prediction MSE is produced by traditional eTS (ie. 

one previous data point and one RLS iteration).  The use of previous data does not 

improve predictions at all when one or 100 iterations are performed.  When ten 

iterations are used the MSE is higher using one to five previous inputs but the 

minimum occurs when ten previous data vectors are used.   

The results are quite different for the wavelet-decomposed data, see a subset of these 

results in figures four, five, and six.  For the approximation subband, figure four, and 

detail subbands ten to seven, not shown, the smallest MSEs are produced by eTS with 

memory using 100 iterations, as expected with lower frequency signals.  The use of 

ten iterations performs only marginally worse and minimum MSEs are reached using 

three (for ten iterations) and four (for 100 iterations) previous data points in the RLS 

scheme.  Using one RLS iteration, the smallest MSE occurs using ten previous data 

points for the approximation and subbands ten and nine, as expected, and with two 

previous data points for detail subband eight.  For subband seven a minimum MSE 

occurs using one previous input.  For detail subbands six and five the best results are 
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still achieved using more RLS iterations, also as expected, although the MSEs 

generally increase as more previous inputs are used.  The use of one iteration 

produces the smallest prediction errors when more than one previous input is used in 

the RLS scheme.  There is also a noticeable difference between the MSEs achieved 

using ten and 100 iterations.  The results for subband five are shown in figure five. 

The results are different again for the smallest scale (equivalent to highest frequency) 

subbands, ie. subbands four to one.  eTS with one RLS iteration produces smaller 

prediction errors regardless of how many previous data points are considered.  

Furthermore the MSEs from one iteration generally decrease as more previous data 

points are used.  The smallest errors for subband one occur when one previous data 

vector is used, ie. using traditional eTS.  The results for subband one are shown in 

figure six. 

The second experiment uses annualised and seasonally adjusted US GDP data from 

January 1
st
 1947 to April 1

st
 2005.  The data represents billions of U.S. dollars for a 

total of 234 quarterly observations.  The fullband and subband (eleven subbands using 

the Symlet number eight mother wavelet) data are modelled and predicted exactly as 

in experiment one.  The statistics of some of the data before standardisation are 

presented in table two.  Again, the majority of the energy is found in the 

approximation subband and the variability about the mean increases for the smaller 

scale subbands (ie. those with lower indices).  The prediction MSEs for the fullband 

data are very interesting, see figure seven.  In this experiment fullband predictions are 

improved using eTS with memory.  In fact, eTS with ten iterations produces markedly 

lower errors for every case and the minimum occurs using two previous data points.  

When using one to five previous points the predictions are better with one RLS 

iteration but from six to ten the results are better with one hundred RLS iterations. 
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The subband results for the GDP data set are very similar to those from experiment 

one.  For the largest scale subbands (approximation and details ten and nine) the use 

of one hundred iterations always produces the best results with ten iterations only 

slightly worse.  One iteration produces much larger MSEs.  The improvement using 

previous data vectors is less marked than in experiment one.  For detail subbands 

eight to six, one hundred iterations again produces the best results with ten iterations 

producing larger MSEs and one iteration worst in every case.  The use of previous 

data points degrades the predictions.  This was not expected for these signals.  

Subband five of the GDP data is best modelled by one hundred iterations for all 

number of previous points except two, where ten iterations are better.  From subbands 

four to one the use of one iteration yields the best predictions, as was the case in 

experiment one.  Furthermore, one hundred iterations produce the worst results.  

Interestingly, for subbands two and one in experiment two the use of more previous 

data vectors improves the prediction MSEs in every case.  

5. Results Summary 

The modelling of subbands in both experiments clearly demonstrates that multiple 

RLS iterations in eTS with memory improves the prediction of the large scale 

subbands where there is a significant amount of energy but relatively little variation of 

the signal around the mean.  The power spectra of this type of signal have the 

majority of the energy in the low frequency range.  For the smaller scale subbands, 

where there is more high frequency energy, extra RLS iterations lead to poorer 

predictions.  Furthermore, the use of previous data points also improves the modelling 

of the large scale subbands.  The relationship between the small scale subbands and 

the use of previous data vectors is less clear.  In experiment one MSE reductions were 

seen for each subband when more previous data points were used from the 
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approximation to detail subband nine.  From there the smaller scale subband 

predictions generally became worse with more previous data vectors.  In experiment 

two the use of previous data points improved the modelling of the approximation 

subband and detail subbands ten, nine, two, and one.  This is particularly interesting 

because subbands one and two from experiment two have a greater deviation about 

the mean than the same subbands in experiment one.   

Modelling of the fullband signals produced different results in the two experiments.  

For the GBP v EUR data set traditional eTS performed best with MSEs generally 

increasing with more eTS iterations and more previous data points.  For the GDP data 

the best results were achieved by ten RLS iterations.  The best MSEs for one and ten 

iterations occurred with two previous data vectors whereas the poorly-performing 100 

iteration models actually improved with more previous data points.  As with the small 

scale subbands discussed above, it seems that a broader range of energy, as with the 

experiment one fullband data set, leads to no improvement from the use of extra 

iterations in the new eTS method.  It seems that there is a complex relationship 

between the use of previous data points and the dynamics of the signal being 

modelled in terms of improving the prediction accuracy of eTS models with memory. 

The optimal number of RLS iterations can be found using the standard techniques in 

machine learning: a target MSE performance, a minimum MSE performance gradient 

improvement between successive iterations, or a maximum number of iterations. 

6. Conclusions 

Applications which are not restricted by high sampling frequencies or reduced 

resources can benefit from the use of the new eTS with memory model presented here.  

If the signal being modelled is not dominated by high frequency energy then 

prediction accuracy should increase with more iterations of the RLS algorithm.  Using 
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previous data points in the weighted RLS scheme can further improve prediction, 

particularly for lower frequency signals.  It seems, however, that there are other 

factors affecting the use of previous inputs such that these improvements depend on 

the dynamics of the signal and the time-ordered distribution of the data in the data 

space.  Applications with low sampling rates should certainly be tested with eTS with 

memory to see if these benefits can be exploited. 

With the development of eTS with memory it can be seen that applications with very 

different requirements and/or restrictions can take advantage of the predictive power 

of eTS modelling.  Time and resources can, in effect, be balanced against the required 

prediction accuracy. 

Future work should try to identify how the optimum number of previous data points 

can be calculated rather than using trial and error.  In fact, this optimum may change 

over time and require some degree of adaptivity. 
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Data Mean Standard Deviation 

Fullband 1.4654 0.0202 

Approximation 1.4628 0.0092 

Detail 5 -0.000009 0.0068 

Detail 1 0.00000056 0.0015 

 

Table 1: Basic Statistics of the GBP v EUR Data Set before Standardisation 
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Data Mean Standard Deviation 

Fullband 5090.0556 2697.8189 

Approximation 5519.564 477.8162 

Detail 5 3.7045 69.8597 

Detail 1 0.0205 13.337 

 

Table 2: Basic Statistics of the GDP Data Set before Standardisation 
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Figure 1: Expected MSE Improvements for Low Noise and Trend Signals 

Figure 2: Standardised Data: Approximation and Detail Subbands 4, and 1 

Figure 3: Fullband GBP v EUR prediction MSEs 

Figure 4: Prediction MSEs for the Approximation Subband 

Figure 5: Prediction MSEs for Subband 5 

Figure 6: Prediction MSEs for Subband 1 

Figure 7: Fullband Prediction MSEs for the GDP Data Set 
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Figure 1: Expected MSE Improvements for Low Noise and Trend Signals 
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Figure 2: Standardised Data: Approximation and Detail Subbands 5 and 1 
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Figure 3: Fullband GBP v EUR prediction MSEs 
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Figure 4: Prediction MSEs for the Approximation Subband 
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Figure 5: Prediction MSEs for Subband 5 
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Figure 6: Prediction MSEs for Subband 1 
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Figure 7: Fullband Prediction MSEs for the GDP Data Set 
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