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Abstract: Two novel approaches to the problem of brain signals (EEG) classification 

are introduced in the paper. The first method is based on a modular probabilistic network 

architecture that employs Multiple Dependant Hidden Markov Models (DM-HMM-D) on the   

input features (channels). The second method, eClass, is based on an on-line evolvable fuzzy 

rule base of EEG signal prototypes that represent each class and take into consideration the 

spatial proximity between input signals. Both approaches use supervised learning but differ 

in their mode of operation. eClass is designed recursively, on-line, and has an evolvable 

structure, while DM-HMM-D is trained off-line, in a block-based mode, and has a fixed 

architecture. Both methods have been extensively tested on real EEG data that is recorded 

during several experimental sessions involving a single female subject who is exposed to mild 

pain induced by a laser beam. Experimental results illustrate the viability of the proposed 

approaches and their potential in solving similar classification problems. © Elsevier 2006 

 

Keywords: EEG, HMM networks, on-line evolving clustering, evolving fuzzy rule-based 
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1. INTRODUCTION 

1.1 EEG in the context of brain-computer interaction 

The human brain is the most complex information processing system known to science. It is this 

complexity that has attracted the interest of many scientists over the past years in studying the 

physiological activity of the brain. Human brain activity can be recorded in the form of 

electroencephalogram (EEG) signals. These provide an important source of information which can be 

useful in the study of underlying brain processes as well as in a variety of medical applications i.e. the 

use of EEG signals for psychiatric/physiological diagnosis as well as for evaluation of sensory 

experiences [1]. A particularly interesting aspect of EEG signal analysis is that related to pain 

experiences. From a medical point of view, the pain sensation is important either because of its mere, 

unpleasant presence or because it inhibits physiological functions or because it can be related to 

certain pathological conditions. These are a major source of disability, poor health status and 

mortality. The ability to analyze EEG signals and to interpret accurately different aspects of the pain 

sensation can be a major advance in pain research and clinical pain management. Previous work has 

shown that analysis of pain can be possible with the help of powerful techniques based on coherence 

analysis and topographic mapping. Thus EEG coherence analysis provides a measure of functional 

correlations between EEG signals [1–5] whereas functional imaging techniques have identified the 

matrix of brain structures that are responsible for the elaboration of pain experience. The precise 

division of function within this matrix is unclear. 

The general thrust of the work presented in this paper is to develop practically feasible 

“intelligent” computer based systems for processing EEG brain activity information. Furthermore, the 

specific EEG signal analysis issue addressed here is that of pain detection, a capability that can find 

extensive use in the medical area, for example in real-time pain monitoring of patients under 

anesthesia, or in the safety/defense field, for example in real–time pain detection monitoring of 

human operators performing critical tasks. The following two subsections provide an introduction to 
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two and substantially different EEG signal classification methodologies (i.e. DM-HHM-D and e-

Class) which have been developed and employed within the context of real-time pain detection. These 

classification techniques employ supervised learning in their classification system design, with the 

DM-HHM-D technique relying on the a priori (off-line) provision of representative training data and 

has a fixed system architecture whereas the e-Class method is capable of formulating the 

classification system architecture and associated fuzzy rules/parameters on-line and “from scratch” 

while processing and classifying given input EEG signals. Furthermore, given the fuzzy rules 

designed from previous data, e-Class is capable of updating and generalizing its set of rules by further 

recursive on-line training using new data. 

1.2 HMM and DM-HMM-D 

The theory of Hidden Markov Models (HMMs) [7]-[9] is a rigorous probabilistic classification 

framework that has been successfully applied to several applications domains  [10]-[12]. Furthermore, 

their natural capability of dealing with time varying patterns of arbitrary lengths is attractive due to 

the expected variability in the time lengths of dynamic signal patterns. In most real-time classification 

applications (i.e. pain/no pain EEG signals classification) several different signals or features are 

observed (i.e. 64 EEG channels from the brain cap) in order to increase recognition/classification 

performance. 

When dealing with multiple features having discrete observation densities, two HMM system 

design approaches can be used [8,10]: The first, HMM-VQ, employs Vector Quantization (VQ) to 

account for any dependencies that may exist between the input features whereas the second approach, 

IM-HMM-D, is based on the “separation” of input features and the assumption of no significant 

dependency between input features. The main drawback of the VQ based approach is that 

classification system performance can be reduced significantly if an inappropriate VQ method (in 

terms of quantization accuracy) is chosen [11]. Furthermore, due to system complexity limitations, 

codebooks are of relatively small size and are constructed by considering as few input features as 
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possible, which in turn leads to a feature selection search process. In addition when a new feature is 

added or an old feature is removed, codebooks must be re-designed and HMM networks 

retrained/redefined. 

The second method [10][13] is based on a “multi-HMM-D” system formulation (hereafter 

referred to as IM-HMM-D)  that employs in parallel separate HMM networks per input feature and 

combines their outputs in order to formulate an overall classification result. Furthermore a novel 

multiple HMM-D  system architecture is presented in this paper that computes dynamically with time 

“weights” associated to the observed values of different features and employs them in the formulation 

of the overall classification result, according to the varying-with-time importance of the input 

features. This proposed classification structure, named as DM-HMM-D, aims to fully and efficiently 

exploit any inter-dependencies that may exist between input features. 

1.3 Evolving Classifier (e-Class) 

An important aspect in the analysis of EEG signals is the relevance of the classification system results 

and the system’s generalization capability. Very often [6] EEG data are extracted from a small 

number of subjects or even a single subject, as in the case of the present study. Experimental 

configuration may vary, including the mental and physical condition of the subject (expectation, 

anxiety etc.). As a result, classifiers which are trained in a “batch” mode with a fixed set of training 

data may become irrelevant or imprecise when applied to scenarios characterized by new operating 

conditions. One possible solution to this problem is to design classifiers that can be recursively 

updated, or self-organizing classifiers. 

Recently proposed schemes concerning evolving un-supervised clustering [26] and evolving Self 

Organizing Maps (SOM) [15] can be extended to the case of supervised learning (labeled outputs). 

These self-organizing classifiers are also called evolving, because they develop their structure of 

prototypical samples starting “from scratch“, using the input EEG signals and their accumulated 

proximity measure. In this paper, a novel fuzzy classifier is build. The proposed design approach is 
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generic and can be applied to other classification problems, such as on-line classification of difficult 

targets [25]. 

 Paper Organization 

The remaining of this paper is organized as follows. Section 2 gives an insight on the procedure used 

for EEG data collection and includes some technical information on data acquisition and data 

preprocessing techniques. Section 3 discusses HMM systems in general and the novel DM-HMM-D 

scheme in particular, emphasizing its main characteristics and resulting advantages as compared to 

conventional HMM-D. Section 4 introduces a novel on-line recursive approach to the classification of 

EEG signals, called eClass, where the structure of the classifier evolves to take into account the 

changing characteristics of the processed EEG signals. This classification method is generic and is 

ideally suited for use in on-line type of applications where the architecture of the classification system 

is not predetermined [25]. Section 5 gives an account and analysis of the experimental results 

obtained from both methods operating on the same real data. Finally, section 6 concludes this paper 

with a summary of the comparative investigations presented in previous sections and identifies future 

work aimed at achieving further improvements in EEG pain classification results. 

2. EXPERIMENTAL CONFIGURATION 

Repeated heat stimuli in the form of laser pulses were delivered in a controlled manner by laser 

cannon (CO2 laser)  to the right forearm of the subject. The duration of each pulse is set to 150ms, and 

each such stimulus is repeated at regular intervals of 10s (epochs). Each EEG continuous recording 

included 61 stimuli. Note that EEG (channel) signal responses to the first stimulus were routinely 

discarded, as they were considerably higher in amplitude, due to an element of “surprise” that is often 

exhibited by the subject and associated artefacts in the EEGs. Thus, 60 stimuli were taken into 

account for each recording and nine continuous EEG data files were produced from a  healthy female 
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subject. These data files were recorded on three different days (i.e. 08.06.00, 15.06.00 and 02.08.00) 

with three EEG recording sessions taken on each of the above three days. 

More specifically, this EEG data collection experimental procedure can be described as follows: 

 

1) The subject was seated comfortably in a chair, placed his/her arm on a table and the laser 

cannon was positioned at a fixed distance from the subject’s hand. 

2) Electrodes were placed around the scalp, the eyes (to test whether the subject blinks) and on 

each ear (which are used as “ground” for EEG), see Figure 2.1. 

  Figure 2.1 here 

3) A computer is placed in front of the subject, showing a table with the pain intensity scale. The 

subject was asked to rate the pain intensity of each stimulus using a scale from 0 to 10, where 0 

represents no sensation and 10 represents unbearable pain. In these experiments the rating of 4 

(“just painful”) was used as a pain threshold (i.e. 1–3: non–painful and 4–10: painful). Subjective 

pain ratings were also recorded so that they could be used as “target” classification data during the 

training and testing procedures of the proposed classification algorithms. 

4) EEG readings taken from the electrodes were then stored automatically in a file using a control 

program that also operated the laser cannon. 

Thus recordings were made using a 64–electrode cap (see Figure 2.1) with 62 head electrodes while 

two face electrodes (vEOG and hEOG) were used to monitor artifacts from eye movement. It must be 

mentioned here that EEG artifacts associated with signal activity in electrodes vEOG and hEOG were 

appropriately removed prior to the pain classification experiments. 

 Figure 2.2 here 

EEG signals were band–pass filtered at 0.15–30Hz and sampled at a frequency of 500Hz, with a gain 

of 500 (150 for the EOG channels). Following the above described acquisition process of Pain/No 

Pain EEG signal files, signal segments of 1s duration were extracted from the original EEG files, 
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corresponding to (a) “Pain” signal states, represented by 1s intervals starting from the time of the pain 

stimulus, and (b) “No Pain” signal states represented by 1s intervals centred at 1s before the 

application of each pain stimulus. 

3. DM-HMM-D 

The general structure of a one-feature discrete observation HMM network is shown diagrammatically 

in Figure 3.1. 

  Figure 3.1 here 

There are N hidden states (nodes) {S1,S2,…,SN} in the model and M possible observations can be 

generated by the model. At every time step one of the states, say Sj, is entered based on the state 

transition probability {aij} that depends on the previous state Si. After each transition is made, an 

observation, say the m-th observation om, is produced from Sj with corresponding observation 

probabilities {bj(om)}, note that the initial state probabilities are defined as {πi}. A compact notation 

λ={{aij},{bj(om)},{πi}} is set to indicate the complete model parameters. Therefore, the probability of 

an given observation sequence O={o1,o2,…,oT} in the period of time T can be calculated by tracing the 

paths Q={q1,q2,…,qT} (Viterbi paths) which offer the maximum likelihood probability P(O|λ). 

Equation 3.1 shows the result of multiplying all the probabilities that the Viterbi path passes through. 

Note that f(π,a) is a function of initial probabilities and state transition probabilities. 
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A novel multiple HMMs system architecture (named DM-HMM-D, Figure 3.2) is introduced that 

computes the weights attached to different sequences of observations prior to the operation of HMM 

models. Figure 3.2 (a) shows the conventional IM-HMM-D model framework and the final 

probability likelihood in the IM-HMM-D is computed as shown in Equation 3.2 which assumes that 

the i-th observation sequence O(i) and the remaining observation sequences {O(1),O(2),…,O(c),…,O(C)}, 
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c≠i are independent.  

Figure 3.2 here  

In this case C features {o(k)
(1),o(k)

(2),…o(k)
(C)} are available, at a given time k, the system employs C 

HMM parameter sets {λ1,λ2,…, λC} and the total likelihood probability P(O|λ) is given as: 

∏
1

)|)(()|(
C

i i
iOPOP

=
= λλ  (3.2) 

This conditional independence is stated as 
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i
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i λOPYλOP  (3.3(a)) 

where O(i)={o1
(i),…,oT

(i)} is the observation sequence of the i-th feature and 

Y={O(1),O(2),…,O(c),…,O(C)}, c≠i are the observation sequences of the remaining features. 

In Figure 3.2 (b), different sequences of observations are considered to be “linked” in a vertical 

manner by assuming that a weighting function is introduced to each model. The output probability of 

the i-th model is rewritten as )()ˆ|( )( OwOP ii
i λ , where iλ̂  is the new HMM parameter set for the i-th feature. 

Equation (3.2) can be rewritten as: 

∏
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C

i
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=′ λλ  (3.3(b)) 

where wi(O) is designed to be the conditional probability of O(i) given Y, i.e. the probability of the 

observation sequence of the i-th feature given the observation sequences of the remaining features. 

)|(=)( )( YOpOw i
i

 (3.3(c)) 

The system shown in Figure 3.2(b) now takes the form shown in Figure 3.2(c) that can be also 

depicted as in Figure 3.2 (d). This new Multi HMM model structure is named as DM-HMM-D, to 

distinguish it from the conventional IM-HMM-D scheme. Since the weight function wi(O) and the 

conventional HMM structure are now effectively combined, the HMM training and testing procedures 

must be adjusted appropriately. 

Considering Equations (3.3(b)), (3.3(c)) and (3.2), the conditional probability )′ˆ|( )(
i

i λOp  can be rewritten 

as: 
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where the product terms represent the transitional probabilities of the new model, i.e. 
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It can be seen that the conditional independent probability P(O(i)|Y) will only affect observation 

transition probability {bj
(i)(o(k)

(i))}. Therefore DM-HMM-D can be implemented by replacing 

{bj
(i)(o(k)

(i))} with the probability {bj
(i)(o(k)

(i))’} at each time step (k). 

{bj
(i)(o(k)

(i))’} is calculated using Equation (3.5) with the help of a pre-defined (during the training 

procedure) “dependency” codebook that contains p(o(k)
(i)|y(k)) estimates. In particular, p(o(k)

(i)|y(k)) 

estimates are obtained using: 
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where Uk,(k)’(i)={ok,(k)’
(1),ok,(k)’

(2),…,ok,(k)’
(c),…,ok,(k)’

(C)} and V(k)(i)={o(k)
(1),o(k)

(2),…,o(k)
(c) ,…,o(k)

(C)} with    

c≠ i are calculated as the expected number of times in observing V(k)(i) for all Uk,(k)’(i) in K training 

data sets, k={1,2,…,K}. The counting function h(a,b) is equal to one if and only if {a=b}, otherwise its 

value is zero. 

The model evaluation and estimation procedures used in DM-HMM-D are effectively those 

developed for conventional HMM-D structures with the simple replacement of {bj
(i)(o(k)

(i))} with 

{bj
(i)(o(k)

(i))p(o(k)
(i)|y(k))}. 

3.1 Model Evaluation 

This involves an efficient forward-backward procedure, which takes only O(TN2) operations with 



Published by Journal: Computers in Biology and Medicine  (ISSN: 0010-4825)  Volume 
36, Issue 10, Pages 1064-1083 Publisher: Elsevier Science B.V., Amsterdam. 
 

 11

sequence length T and state number N.  

The forward algorithm incorporates the following steps: 

• Initialization: 

Niyopobi ii ≤≤1),|()()( 1111 πα =  (3.7) 

• Induction: 

NjTkyopobaij kkkj

N

i
ijkk ≤≤1,≤)(≤1),|()(])([)( 1)(1)(1)(

1
)(1)( ∑ +++

=
+ = αα  (3.8) 

• Termination: 

∑
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i
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where the forward variable α(k)(i) is defined as α(k)(i)=P(o1 o2… o(k) , q(k)=Si/,λ)p(o(i)/y(k)). This 

formulation of the forward probability calculation is based on a lattice structure and is efficient since 

the calculation of the forward variable α(k)(i) involves only N previous values of α(k)-1(i) [4]. 

The backward part of the process is similar to the Forward procedure with, 

• Initialization: 

NiiT ≤≤1,1)( =β  (3.10) 

• Induction: 
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• Termination: 
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j
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where the backward variable β(k)(i) is defined as β(k)(i)=P(o(k)+1.. oT+2… oT| q(k)=Si,, λ) p(o(i)/y(k)). 

3.2 Model Estimation 

The probability of P(O|Y, λ)  is maximized via an iterative estimation process. Thus HMM parameter 

sets (models) are calculated using the EM algorithm [7] with E and M steps operating over an initial 
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model, noted as },,{= πBAλ  and a re-estimated model },,{= πBAλ . The expectation step E 

involves the calculation of Baum’s auxiliary function ),( λλQ ) whereas the M (modification) step is 

the maximization over λ . Re-estimation of a parameter set using K training data streams involves: 
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In DM-HMM-D parameter sets iλ̂={π(i),a(i),b(i)}, i=1,…,C, are determined during training while using 

{bj
(i)(ot

(i))p(ot
(i)|yt)} instead of {bj

(i)(ot
(i))} [14,15]. Following training, and during testing (i.e. when 

using the derived system to perform classification of input signals) the required probability P(O(i)|Y) 

for each input testing data stream is obtained from a pre-designed dependency codebook. 

4. E-CLASS 

As mentioned earlier, the relevance of the results produced by an off-line classification technique will 

be limited to the degree of representativeness of the training data. The applicability of such an off-line 

trained classifier to new data sets is limited and therefore, the design of incrementally evolvable 

classifiers is an attractive alternative. Evolvable fuzzy-rule-bases have been recently developed and 

successfully applied to clustering [26], time-series prediction [14,15], and neuro-fuzzy systems [24]. 

In this paper this concept [19] is extended to the on-line signal classification. The resulting novel 

approach called eClass is based on an evolvable rule base, which is composed of fuzzy rules of the 

following form: 
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Rulej: IF (EEG 1 is EEG *
1
j ) AND …AND (EEG n  is EEG *j

n ) THEN (Class is Pain/No Pain)     (4.1) 

where EEG i  denotes the electroencephalogram signal produced by the ith channel, i=1,2,…,n; in this 

particular application n=2, i.e. only the two most informative channels are employed (see 

diagram representing the importance of all 64 channels in Figure 5.2). These channels have 

been identified according to the wi(O) weight values of input features (indicating the relative 

importance of corresponding channels) as estimated by the system described in section 3; 

EEG *j
i denotes the jth prototypical EEG signal of the ith input (channel), i=1,2,…n; j=1,2,…, 

Rk rules, k=1,2,… ,m 

R is the number of fuzzy rules; 

m is the number of classes (in this particular application m=2, namely: “Pain” and “No Pain”) 

Class is the output of the classifier (in this particular application it is a binary variable with 

values Pain/No Pain. 

This overall rule base comprises of m sets of fuzzy rules – one per class, see Figure 4.1 where two sets 

of prototypical EEG signals are depicted – one for the class “Pain” (Figure 4.1 (a)) and another for the 

class “No Pain” (Figure 4.2 (b)).  

Figure 4.1 (a) and (b) here. 

The fuzzy rule base is designed in on-line mode via supervised learning starting “from scratch”. It 

selects the first measured EEG signal as a prototype. Then, starting from the next measured EEG 

signal, an accumulated proximity measure (called potential, [14, 19]) is calculated recursively and the 

rule-base is incrementally updated. The potential, P is inversely proportional to the sum of Euclidean 

distances between a particular EEG signal and all other EEG signals. The value of the potential will 

be higher for these EEG signals that are similar to a large number of other EEG signals. It should be 

noted that in contrast to evolving clustering [26], evolving time series prediction [14], and evolving 
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modeling [15,22] techniques, in eClass the potential is calculated with respect to the inputs (discrete 

EEG signals) only. Class labels (classifier outputs) are not included in the calculation of P. 

The overall classification is performed based on the so called ‘winners take all’ principle [27], 

which corresponds to the MAX t-norm used to produce a defuzzification (note that the same is also 

used in Mamdani type fuzzy models) [18].  
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where yk represents the kth class, k=1,2,…m 
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τ is the firing rule of the jth fuzzy rule; j=1,2,…,R; 

l
jx is the jth sampled EEG signal; 

*
jx is the jth prototypical EEG signal based on which the jth fuzzy rule antecedent is formed; 

α=4/r 2 is a positive constant which defines the spread of the membership function of the 

fuzzy sets which are of Gaussian type; 

r is the radius that defines the zone of influence of the fuzzy rules; 

L denotes the length of the discrete EEG signal. 

In Figure 4.2 a snap-shot, at given time instant k, of a 2-feature space is presented and two classes 

(Pain and No Pain) are shown with different types of lines. It is important to mention that the 

classification of EEG signals is performed based on similarity using the whole length of the EEG 

signal (l=1,2,…,L), whereas this Figure represents information related to a certain time instant.  
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Figure 4.2 here 

The input data space in eClass is clustered on a per class basis. For each class the algorithm 

forms a partial rule-base, which consists of Rk rules (k=1,2,… ,m). These class-related partial rule-

bases are then combined to form the overall rule-base R of the eClass process. In this way, the total 

number of fuzzy rules that form the evolvable classifier R is equal to the sum of fuzzy rules that form 

the partial rule-sets associated with each class, see Figure 4.3: 

R= R1+R2+…+Rm         (4.3) 

Figure 4.3 here 

It should be mentioned that the system learning and the testing procedures are performed in on-line 

mode. EEG signals are first presented to eClass for classification and then (given the ground 

truth/label) the same EEG signals are used to update or upgrade the partial rule-base, Rk of the (kth) 

class. 

In eClass training, EEG signals are collected continuously. Some signals reinforce and confirm 

the information contained in the classifier. Other input signals provide new information, which may 

be important enough to form a new fuzzy rule or to modify an existing one. The value of the 

information they contain can be measured by their potential, P. Two main potentials are calculated 

recursively: 

a) the potential of a EEG signal that is to be used as a new prototype; 

b) the potential of the existing prototype EEG signals. 

Thus the potential of a new EEG signal to be a prototype of class j can be calculated recursively by 

[26]: 

[ ]
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where ))(( kxPk denotes the potential of the EEG signal x(k) calculated at the moment k;  
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Parameters b(k) and h(k) are calculated from the current EEG signal x(k), while l
jp (k) and 

g(k) are recursively updated by 
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A new input EEG signal is influencing the potentials of the established prototypes ( *
jx , 

j=1,2,…,R), because by definition potentials depend on the distance to all of the input signals, 

including the new one. The potential of a prototype ( *
jx ) at the moment k can be calculated as 

[26]: 
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where ( ))(* kxP j  is the potential of the at the moment k of the cluster, which is a prototype of 

the jth rule; 

),( pjd i
l .is the distance calculated at the lth sample between the pth EEG signal and the 

jth prototype (cluster centre) for the ith channel. 

Similarly, for the time instant k-1 we have: 
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Thus the potential of an existing prototype EEG signal can be expressed recursively from its   

potential value at the previous time instant (i.e. before the new data sample is available) as: 
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The on-line classification procedure can be summarised as follows: 

1. Accept the first EEG signal as the first prototype. This is used to form the antecedent part 

of the fuzzy rule and its potential is set to 1. 

2. Starting from the next EEG signal for all subsequent EEG signals the potential of each 

new signal is calculated recursively using equation (4.4).  

3. The potentials of existing prototypes are recursively updated using equation (4.7). 

4. The potential of the new EEG input signal is compared to the updated potentials of the 

existing prototypes. Then 

(a)  If the potential of the new EEG signal is higher than the potential of the existing 

prototypes then the new EEG signal is added as a new prototype and a new rule is 

formed ( )(* kxx R = and the number of rules in the rule-base gradually increases 

(R:= R+1). The condition used in this case i.e. of having a “higher” potential, limits 

the generation of excessively large rule base; 

(b) If in addition to the previous condition the new EEG signal is close to an old 

prototype then the new EEG signal, x(k) replaces this prototype ( )(:* kxx j = ). 

This on-line clustering approach results in an evolving rule-base, by recursively upgrading and 

modifying the rule-base at every instant of time while inheriting the bulk of the rules from the 

previous time instant (R- of the rules are preserved even when a modification or an upgrade take 

place). 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

As mentioned in section 2, EEG data were recorded on three different occasions from a healthy 

female subject and on each of these days; three EEG recordings were taken by directing a laser beam 

on the right arm of the subject. In total, nine EEG data files were obtained. The first eight files were 

used to obtain the required “training” data whereas the last file provided data for “testing” the 

classification performance of the proposed systems.. 
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 The overall HMM based experimental procedure is shown in Figure 5.1 and involves the 

network training/design and system classification performance evaluation processes for the 

conventional IM-HMM-D structure and the new DM-HMM-D system. A useful by-product of the 

second technique is the instantaneous “weight” information that is attached by DM-HMM-D to each 

input signal. This information reflects the importance of each EEG channel/signal for achieving 

maximum classification performance. Note that the number of hidden states of each HMM network in 

both the IM-HMM-D and DM-HMM-D systems is N. This was experimentally fixed to N=10 whereas 

the resolution of the input scalar quantization process used assumed values M=100, 50, 20 and 10 

possible values. Notice that M is also equal to the number of different discrete observation values that 

can be produced from a network state. 

Table 5.1 provides a comparative list of the classification performance results obtained from 

the IM-HMM-D and DM-HMM-D schemes. When performance is calculated as an average value 

using both classes, the IM-HMM-D system delivers 69.11765% with M=20; and a maximum 

72.0588% with M=10. The relatively low performance of IM-HMM-D in classifying pain can be 

explained in terms of the substantial inter-dependencies which exist between certain channels and 

which this system fails to take into consideration. Considerably higher classification accuracy rates 

are obtained by applying the DM-HMM-D system, see Table 5.1. This improved performance is 

obtained for all values of M and the system operates best (with a performance in excess of 95%) with 

M values in the region of 20 to 50. Note that when several different models provide similar 

classification performance, structure with lower values of M and N are  preferred due to lower system 

complexity. Thus the model with M=20 and N=10 is used below to obtain the “usage rate” for each 

EEG channel and hence an indication of the significance of each channel. 

 Note that, some sequences can be completely blocked out, if necessary, from the resulting 

likelihood probability P by setting a minimum threshold Wthreshold that operates during classification on 

P(O(i)|Y) values stored in the predefined “dependency” codebook. In the reported experiments, 
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Wthreshold =10-5. Figure 5.2 shows the usage rate of each input channel (feature) as calculated from a 

classification experiment with DM-HMM-D. In this figure certain channels (for example, Channels 4, 

6, 15, 16, 39, 48, 49, 51, and 58) are heavily involved in the classification of both Pain and No Pain 

conditions. In general, this input channel categorization methodology can be particularly useful to 

researchers interested in the reduction of the number of input channels (features) presented at the 

input of a classifier with a carefully controlled effect on classification performance.  

Experimentation with the novel eClass system involved a data-set of 355 Pain and 355 No-Pain 

epochs, in order to produce the fuzzy rule-base of the classifier. As before, these epochs came from 

the first 8 out of the available 9 EEG data-sets (experiments). Thus 710 signal epochs were introduced 

to the system together with their respective Pain/No Pain labels, (ground-truth). It should be noted that 

the eClass approach does not need to be pre-trained, but in order to compare the performance of the 

two methods; the same experimental conditions were used here. In this way the system produced a 

“rule-set” for each of the Pain and No-Pain conditions, by comparing spatial proximities between 

signals of the same class. Following the merging of these two individual “rule-sets”, the system was 

ready to classify unknown signals based on the “global rule-set” that contained a total of 168 

prototypical EEG signals (rules). 

In order to test the classification efficiency of the resulting system, 34 epochs from each class 

taken from the 9th data-set that was used for testing the system, were presented to eClass. 

Classification was thus performed by comparing the distances formed between the input test EEG 

signals and the prototypes stored in the “rule-set”. 

Two different approaches were then used in order to arrive at the required classification decision: 

1. A “winner takes all” classification approach (see equation 4.2a). 

2. A weighted average approach (see equation 4.2b). 

Using the first approach, eClass yielded a respectable 79.45% average classification accuracy rate.  

Overall classification accuracy is significantly lower (64%) when using the second approach. Thus 
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experimental results illustrated that employing the “aggressive” winner-takes-all type of decision 

outperforms the version that is based on the weighted type of classification. It should be noted that a 

classification accuracy of 88.24% is achieved for the No-Pain class whereas the corresponding result 

for the Pain condition is 69.21%. This can be associated to the observation that the number of rules 

formed by the system when modelling No-Pain EEG signals is significantly larger than that of the 

Pain case. Note that the eClass approach does not require the number of prototypes to be pre-

specified; instead prototypes are formed according to the characteristics of the input signals and as a 

result of an evolving design procedure. The reason why more clusters and hence prototypes are 

obtained in the No-Pain case can be traced to the higher variance of the EEG signals recorded under 

the Pain condition, as compared to those recorded under No-Pain. Higher variance (Figure 4.1b) leads 

to lower potentials (equation (4.4)) which in turn restricts the process of generating new prototypes.  

6. CONCLUSIONS 

Two novel and substantially different approaches to the problem of automatically deciding on the 

Pain/No Pain condition of a subject using EEG signals are introduced in the paper. The first approach, 

DM-HMM-D, is based on a new formulation of a bank of HMM with discrete density classifiers 

where each HMM operates on a different channel. Furthermore DM-HMM-D exploits any inter-

dependencies that may exist between the EEG signals of different channels via the introduction per 

HHM model of a varying with time weighting function that represents the instantaneous importance 

of each channel. This system performs substantially better than the conventional IM-HMM-D 

approach and with a Pain/No Pain classification accuracy of 94% and 97% respectively. Whereas this 

HMM based approach to EEG Pain/No Pain condition classification requires off-line supervised 

training of the system, in order to specify the model parameters whose architecture is fixed (and 

should be therefore determined via experimentation), the second classification approach, i.e. eClass, is 

far more flexible and defines its fuzzy rule-based structure on line and in response to the input EEG 

signals presented to the system during its training process. This evolving rule based characteristic  is a 
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major asset of eClass and an important differentiator, with respect to other off-line, fixed structure 

classification systems, since it opens up significantly the way that the classifier can be used in 

practical real-time applications. Furthermore experimental results clearly demonstrated the potential 

of the eClass system whose underlining methodology bears the promise of further significant research 

developments on supervised on line classification systems. 
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Figure 2.1: EEG cap in its physical form mounted on the scalp of a subject  

 

 

 

 

Figure 2.2: The 64-electrode cap and its relevant positions together with the channel names 
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Figure 3.1: A general HMM structure with N hidden states and M possible observations per 

state. 
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Figure 3.2: (a) a conventional IM-HMM-D, (b) (c) and (d) DM-HMM-D equivalent 

structures. 
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Figure 4.1 (a)  Prototype EEG signals for the class No Pain for one of the channels 
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Figure 4.1 (b)  Prototype EEG signals for the class Pain for the same channel 

 

Figure 4.2 A snap-shot of the clustering for certain moment of time l after discretization 

of EEG signals for the two channels 

 

Figure 4.3: General Model of the  eClass scheme.  
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Figure 5.1: Design and evaluation procedures in EEG classification experiments using 

HMMs 

 

 

 

 

 

 

Table 5.1: Classification results for the IM-HMM-D and DM-HMM-D systems. 

Classification performance is expressed as the percentage of correctly classified EEG 

segments 
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Figure 5.2: Channel usage rates in DM-HMM-D Pain/No-Pain classification 

 

 


