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Modeling Delay and Noise in Arbitrarily
Coupled RC Trees

Dinesh Pamunuwa, Member, IEEE, Shauki Elassaad, and Hannu Tenhunen

Abstract—Closed-form equations for second-order transfer
functions of general arbitrarily coupled resistance–capacitance
(RC) trees with multiple drivers are reported. The models allow
precise delay and noise calculations for systems of coupled inter-
connects with guaranteed stability and represent the minimum
complexity associated with this class of circuits. Their accuracy is
extensively compared against other relevant models and is found
to be better or comparable to more expensive models. All results
are derived from a theoretical approach, and their physical basis
is examined. The simplicity, accuracy, and generality of the mod-
els make them suitable for use in early signal integrity analyses of
complex systems and incremental physical optimization.

Index Terms—Crosstalk, delay and noise modeling in VLSI
circuits, interconnect modeling, timing analysis, transfer function.

I. INTRODUCTION

IMPROVEMENTS in lithography have seen continuously
shrinking line widths and increasing die sizes, resulting in

unprecedented opportunities to implement entire systems on a
single chip. This trend of decreasing feature sizes can be ex-
pected to continue for the next 8–10 years [1]. With decreasing
gate delays and increasing wiring density, noise modeling and
its impact on performance and functionality has become very
important. The majority of signal wires are typically lossy, and
higher aspect ratios to control the resistance result in increased
capacitive coupling. This, together with smaller signal rise
times, results in heavy crosstalk, which couples a noise voltage
onto the victim net. A distinction is usually made between the
coupled noise amplitude and the effect of noise on delay. The
former can cause functional failures by causing the voltage
to swing above or below the logic threshold, while the latter
has an impact on the cycle time.

The ability to put billions of transistors on a single die has
also imposed severe restrictions on the computational com-
plexity of noise and delay models used in an iterative design
flow. While more accurate modeling is necessary, the sheer
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size of the systems prohibits expensive dynamic simulation.
Consequently, the subject of delay and noise modeling for
very large scale integration (VLSI) circuits has received a vast
amount of attention in the literature. The three attributes of
accuracy, computational simplicity, and generality are, how-
ever, difficult to encompass in a single integrated model. Most
reported models that consider the effect of crosstalk on noise
and delay either use heuristics that are tailored for specific
topologies or use multiple moments that make them expensive.

In particular, there is a huge need for an efficient model that
can be used in the inner loop of place-and-route algorithms
for global signal planning and incremental physical optimiza-
tion in circuits with heavy coupling. In addition to minimal
computational complexity, some other specific characteristics
are necessary in such a model; it should allow a one-to-one
correspondence between the physical structure being modeled,
and the electrical circuit being analyzed, so that changes can be
quickly and efficiently incorporated, and it should also exhibit
fidelity. In incremental physical optimization, the absolute ac-
curacy of the delay at any given node predicted by the metric
is of secondary importance to the generation of a solution that
is the same, or as close as possible, to the solution that would
be generated by using a much more accurate delay metric.
The Elmore delay [10] possesses this attribute of fidelity,
which, coupled with its peerless efficiency, is why it has been
and still is very popular in place-and-route algorithms. How-
ever, in the face of heavy coupling, its usefulness diminishes,
fundamentally because it can only address grounded capacitors.

The contribution of this paper is as follows. Closed-form
models for generating second-order transfer functions from
each driver to the receiver in arbitrarily coupled resistance–
capacitance (RC) trees (such as that shown in Fig. 1) repre-
senting the minimum complexity for this class of circuits were
recently reported [2], [3]. The summation of all waveforms
results in the complete response to all switching events at the
node of interest, with no restriction on arrival times, and allows
both delay and noise estimations. These models are intended for
global signal planning, and incremental physical optimization
in CAD algorithms. In this paper, the model and constituent
expressions are derived from first principles, and formal proofs
provided; also, statistical data of extensive comparisons against
other relevant models are included. It is also clearly shown
how this model saves at least two full tree traversals over the
second-order model that bears the closest resemblance to it,
while providing comparable accuracy.

This manuscript is organized as follows. The next section
presents a detailed overview of the current work that puts
the contribution of the reported model in context. Section III
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Fig. 1. Example of coupled RC tree.

Fig. 2. Example of simple RC tree.

explains the proposed modeling in detail, which is based on
the moments of the circuit, and follows a strict theoretical ap-
proach. The proposal for guaranteeing stability and its physical
ramifications, and the computational complexity of the models
are discussed. Next, the results of running the proposed models
on numerous test circuits are presented. The paper ends with a
discussion.

II. BACKGROUND

An accurate analysis of signal propagation in interconnects
requires solving Maxwell’s equations in three dimensions,
which is prohibitively expensive in terms of computation time.
However, it is possible to use simplified models in most
cases to capture the important effects in the regime of interest
[5], [6]. A particular concern with falling rise times is how
important inductive effects are, and when and how they should
be modeled. A growing body of literature that addresses this
issue now exists [7]–[9]. They propose metrics that relate the
physical dimensions of the wire to the signal rise time by
assuming transverse-electromagnetic (TEM) propagation to de-
termine when neglecting inductive effects results in significant
errors. The general consensus now is that modeling inductance
is necessary for special nets such as clock and power lines,
and that the majority of signal lines can be accurately modeled
by networks of resistors and capacitors, even with very small
rise times. It is important, however, to consider the effect of
capacitive crosstalk, which is exacerbated by sharper slew rates.
In this paper, interconnects that can be modeled by coupled RC
lines are considered.

A. Delay Modeling

Timing analysis in VLSI circuits has long been carried out
using the simplified model of an RC tree where all capacitors
are connected to ground, whose circuit model is called a simple
tree (Fig. 2). There is a large body of literature that deals with
delay modeling in simple trees. One of the most important and
widely used metrics, the first moment of the impulse response,
was proposed back in 1948 as an upper bound for the delay in
valve circuits [10] and is known as the Elmore delay. Its attrac-
tion is that it uses minimum information and has unmatched
algorithmic simplicity and elegance, explicitly matches the
circuit elements to the delay, and yet exhibits good fidelity,
giving results as good as more expensive models when used in
interconnect optimization algorithms. However, as mentioned,
it becomes less accurate as heavy coupling comes into play,
and noise waveforms cannot be modeled, as a minimum of two
time constants are required to model a voltage spike. Bounds
and metrics that give an indication of when the Elmore delay is
a poor approximation were developed in [11].

A stable approximation to the second-order transfer function
for simple trees based on the first and second moment of
the impulse response, and the sum of the open-circuit time
constants, was proposed in [4] and expanded in [12] to en-
compass charge sharing networks. Later, generic moment-
based techniques applicable to any circuit comprising linear
elements that allowed the calculation of an arbitrary number of
poles were developed in [13]. An implementation that is opti-
mized for the tree-like structures of interconnects was proposed
in [14]. These techniques depend on the Padé approximation,
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which typically requires 2q moments for a qth-order approx-
imation, and though very efficient, are too expensive for in-
cremental physical optimization. Other estimators based on the
Arnoldi algorithm [15] match a lesser number of moments to
a qth-order approximation. An example is [16], which gives
reduced order models for linear systems. However, at least
one LU decomposition of the admittance matrix (which has
a cubic complexity) is necessary, in addition to qN backward
and forward substitutions for q block moments (for a qth-order
approximation) of an N -port linear circuit. For a second-order
approximation, the complexity is much more than the model
proposed here, as shall be shown in Section III-D.

Hence, numerous models that occupy some position in the
spectrum defined by the accurate though expensive solution
offered by generic moment matching techniques such as AWE
[13] (and similar methods) at one end, and the simplicity of-
fered by the Elmore delay at the other, have been proposed.
For simple trees, the models of [4] represent the minimum
computational complexity for a second-order model. Alternate
second-order models for the transfer function include those
reported in [17] and [18], which involve generating equivalent
circuits and are more suited for highly inductive lines, that
reported in [19], which yields a stable model from the first
three moments, and also the one reported in [20]. The latter
two models will be revisited as they are relevant in discussing
the performance of the proposed model.

Now, a two (or higher)-pole model cannot be solved ex-
plicitly for the delay at a given threshold. Hence, there are
quite a few works that attempt to garner more information
than the first moment (Elmore delay) from the circuit, and
match it explicitly to the delay via some heuristic, such as in
[17]–[20]. Alpert et al. [21] also present two heuristic delay
metrics, one based on the first two moments, and another based
on an effective capacitance model, which seeks to overcome
the effect of resistive shielding that makes the Elmore delay in-
accurate at near-end nodes. Explicit delay models for inductive
lines were proposed in [22]. Different approaches were sug-
gested in [23] and [24], where the moments of the circuit are
matched to parameters of probability density functions to yield
the delay, but are less accurate than moment matching of a sim-
ilar order. The issue of explicit expressions for calculating the
delay from a two-pole waveform is not addressed here, as the
activity that dominates runtime for any reasonably sized circuit
is the generation of the moments. Processing a two-pole wave-
form for the input of choice (whether step, ramp, or exponen-
tial) is independent of the circuit, and the complexity is hence
trivial in comparison to traversing the circuit and generating
the moments.

In today’s circuits, as mentioned, considering the effect of
noise is important. Finding the response of such systems in-
volves solving circuits with multiple drivers and coupling ca-
pacitors, consisting of simple trees coupled to each other via
series capacitors, whose circuit model is called a coupled tree
(Fig. 1). General moment-matching techniques can of course be
applied to solve coupled trees, but, again, simplified techniques
are necessary for use early in the design flow. Timing analyzers
often use the concept of worst, average, and best case delay,
using a switch factor that takes the value of 2, 1, or 0 to modify

the Elmore delay. The capacitance for a line is modeled as the
sum of two components, one of which represents the capaci-
tance to ground, and the other the capacitance to adjacent nets.
This second component is multiplied by a factor depending on
whether the coupled net is expected to be quiet or not, and if
not, on the direction of switching. This method of modeling
is not accurate except in certain very simple situations, such as
uniform structures or simultaneously switching nets, and indeed
it was recently shown to not even represent an upper bound on
the delay [25]. A lot of research has focused on certain sim-
plified configurations of interest. In [26], the authors use the
first moment of the impulse response to generate single-pole
responses for uniformly coupled RC lines, while [27] presents
a two-pole response for a single section of a coupled π circuit
with arbitrary ramp inputs. They extend it to accommodate mul-
tiple segmented aggressors in [28], but the allowed topology is
still very limited.

B. Noise Modeling

Now, as mentioned, it is often necessary to know the cou-
pled noise amplitude explicitly in order to check for spurious
errors caused by switching nets disturbing the logic state of
a quiescent net. A single-pole noise metric for coupled trees
was proposed in [29]. Although computationally efficient, some
simplifying assumptions in the formulation of the metric cause
the results to be mostly very pessimistic. Some of the works
mentioned above, which present models for estimating the ef-
fect of noise on delay, also report noise metrics [20], [26], [28].
In [30], the authors use circuit transformations to simplify a
general tree to a two-π model when analytic formulas can be
used, but intermediate steps require the calculation of admit-
tances at each branch point and the estimation of equivalent ca-
pacitances, which increase runtime and impact on the accuracy,
respectively.

When dealing with multiple-driver systems such as the one
depicted in Fig. 1, the concept of superposition is very useful,
as the coupled RC network is still a linear system. The effect
of multiple aggressors switching at different times can be
estimated by considering one input at a time with all other in-
puts grounded, and then adding up the individual waveforms as
is done in all moment-based methodologies. Tong and Marek-
Sadowska [31] also adopt superposition, where transfer func-
tions are generated from each driver to the receiver. However,
the only concession to different switching events (and hence
different charging paths) is calculating a unique zero; the poles
of the transfer function for all switching events are the same,
and they are the two lowest frequency poles of the system.
These poles are estimated from the methodology proposed in
[32], which gives closed-form expressions for the poles of
systems with storage elements, and is a technique that has
long been used in analog design to estimate the bandwidth of
amplifiers. However, using the same two lowest frequency poles
in all of the transfer functions can result in large errors, as the
significant poles, which determine the response for different
switching events, can be far apart on the frequency axis. The
reason is that though these poles are part of the natural response
of the system, and hence do appear in the transfer function
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from each driver to the receiver, there will always be partial
pole-zero cancellation in systems that have signal paths with
widely differing time constants. Since the transfer function is
limited to two poles, it is important that for each path, the two-
pole–one-zero model that best fits that particular charging path
is calculated. If the same poles are used, the results will be
skewed by the highest parasitics in the coupled tree, regardless
of their influence on the particular switching event. For this
same reason, [20], which uses the driving point moment to
calculate the poles and uses the same poles for all the responses,
is less accurate than [19].

The model that best merits comparison with the proposed
model for both delay and noise estimation is [19], being able to
handle coupled RC trees and being the closest in computational
complexity when the moments are generated by the algorithms
of [14], though still more expensive by virtue of the fact that it
uses one extra moment. An accuracy comparison against this
model (and others) are carried out in Section IV, while the
complexity is discussed in detail in Section III-D.

III. MODELING THE TRANSFER FUNCTION

Consider Fig. 1, which shows an arbitrary network compris-
ing a victim net and several aggressors coupled to the victim
net through banks of series capacitances. Such a network can be
represented by an m-input–one-output system as shown. Ee(t)
is defined as the voltage waveform at the node of interest e on
the victim. The total waveform at e can always be represented
by the nth-order linear differential (1), where n is the order of
the system and ui the inputs

an
dn

dtn
Ee(t) + an−1

dn−1

dtn−1
Ee(t) + · · · + a1

d
dt

Ee(t) + Ee(t)

= b1u1(t) + b2u2(t) + · · · + bmum(t). (1)

Setting the right-hand side to zero results in the homogeneous
equation, the solution to which gives the natural or transient
response of the circuit. For a second-order approximation, the
complementary equation becomes

λ2s
2 + λ1s + 1 = 0.

Assuming that the roots (which are always real and negative
for an RC tree) are s = −1/τ1 and s = −1/τ2, the complete
response of the circuit is given by the following two time con-
stant model, where f(t) is the particular solution corresponding
to the forcing functions

Ee(t) = Ae
−t
τ1 + Be

−t
τ2 + f(t).

For the purpose of analysis, it is possible to assume that f(t)
or the steady-state value is always zero or one (for normalized
supply rails). The coefficients A and B will depend on the
inputs. In the proposed methodology, linear superposition is
used where the response for each input is considered with all
other inputs grounded, and all those responses are summed
up to generate the complete solution (as in all moment-based
approaches).

A coupled RC tree is characterized by a resistive path from
the output node e to the forcing (victim—denoted by v) driver,
and series capacitive elements to other (aggressor—denoted by
a) drivers. Hence, the output for the victim driver switching will
always change rails, while it will start and end at the same rail
for an aggressor switching. Consequently, the transfer function
characterizing the response in the former case will have a zero
on the negative part of the real axis

Hv(s) =
1 + sτv

z

(1 + sτv
1 ) (1 + sτv

2 )
(2)

while that for the latter will have a zero at the origin

Hai(s) =
sτ ai

z

(1 + sτ ai
1 ) (1 + sτ ai

2 )
. (3)

A. Calculation of Moments

Fig. 1 can be referred to in the following descriptions. First,
the notation used is described in some detail below.
CSp

k Capacitance to ground at node k on pth tree.
CCpq

kj Capacitance between node k on pth tree and node j
on qth tree where first sub(super)script refers to ref-
erence tree.

Ep
k Voltage at kth node on pth tree.

Epq
kj Voltage between node k on pth tree and node j on

qth tree.
Epq

k Voltage between node k on pth tree and correspond-
ing coupled node on qth tree; i.e., second subscript
is omitted as it is a more convenient notation when
permissible.

Rp
ko Shared resistance from source to nodes o and k on

pth tree.
Υn

k nth moment of the impulse response at the kth node.
It should be noted that superscripts always refer to trees,

while subscripts always refer to nodes, except in the definition
for moments, where the superscript refers to the order of
the moment, and in the time constants, where the subscripts
refer to an identifier. This distinction is always obvious in
the context. Additionally, rail voltages are normalized to zero
and one, and the expressions are always derived for a positive
step without loss of generality. For negative transitions, the
waveforms are simply mirrored. The usage of the notation is
illustrated in Fig. 3. Where it is possible to do so without
introducing ambiguity, the second subscript will be dropped
for convenience. For example, if tree 1 is the reference tree in
Fig. 3, CdE12

k /dt refers to i(t), and node j is implicit in the
expression.

Finally, the following quantity is defined

τ trti

De
=

∑
k∈tr

Rtr

keC
trti

k . (4)

This is the summation over the reference tree tr, of resistance-
capacitance products at each node k, where Rke is the shared
resistance between node k and sink e, on the path from source
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Fig. 3. Illustration of usage of notation.

to sink. The capacitance term Ctrti

k is the capacitance between
trees tr and ti at node k on tr. For example with reference
to Fig. 1, Cvb

1 is CC1. If the second tree ti is omitted,
the capacitance refers to the total capacitance at node k; for
example, Cv

1 is (CS1 + CC1 + CC2). In that case, the second
tree would also be omitted in the name, i.e., Ctr

k would be
with respect to τ tr

De
. This notation is used because it makes

for a compact description, and also to make it consistent with
that adopted in the famous Penfield–Rubinstein metrics [11],
and in [4], which describes second-order models for simple
trees. The lowercase subscript in τDe

, which is e in this case,
always refers to the output. If the output node is omitted, the
only quantity, which is with respect to the output Rke, be-
comes Rkk.

The derivation of the following expressions is given in
Appendix I. The first moment of the impulse response at the
output node e for the victim driver switching, while all other
inputs are grounded, is given by the following expression,
where a1, a2, . . . are the aggressors

Υ1
e,v =

∑
k∈v

Rv
ke [CSv

k + CCva1
k + CCva2

k + · · ·] = τv
De

say.

(5)

The second moment is given by

Υ2
e,v

= 2
∑
k∈v

Rv
ke

{
CSv

kτv
Dk

+ CCva1
k

[
τv
Dk

+
∑

K∈a1

Ra1
KjCCa1v

K

]

+ CCva2
k

[
τv
Dk

+
∑

K∈a2

Ra2
KjCCa2v

K

]
+ · · ·

}

= 2
(
τv
Ge

)2
say. (6)

The first moment of the impulse response at node e on the
victim tree for aggressor ai switching can be shown to be

Υ1
e,ai

= −
∑
k∈v

Rv
keCCvai

k = −τai

De
say. (7)

The second moment is

Υ2
e,ai

= −2
∑
k∈v

Rv
ke

×
{

(CSv
k + CCva1

k + CCva2
k + · · ·) τai

Dk
+ CCvai

k

×
[ ∑

K∈ai

Rai

Kj

(
CSai

K + CCaiv
K + CCaib1

K + · · ·
)] }

= −2
(
τai

Ge

)2
say. (8)

The expressions in (5)–(8) form the basis of the proposed
models, along with the sum of the open-circuit time constants,
introduced later in (21).

B. Matching Moments to the Characteristic
Time Constants in the Circuit

Now, generating the best two-pole–one-zero transfer func-
tion for the response at the output node for any given switch-
ing event is of interest here. The moments can be matched
to the characteristic time constants in the circuit by consid-
ering the power series expansion of ex in the definition of
the Laplace transform. The Laplace transform of the impulse
response is

H(s) =

∞∫
0

h(t)e−stdt

=

∞∫
0

h(t)
[
1 − st +

s2

2!
t2 − · · ·

]
dt

=

∞∫
0

h(t)dt − s

∞∫
0

th(t)dt +
s2

2

∞∫
0

t2h(t)dt − · · · .

From this equality, the following identity can be observed

Υn = (−1)n dn

dsn
H(s)

∣∣∣∣
s=0

. (9)

This equation can be used to match the moments to the poles
and zeroes of the circuit directly. Using (2), (5), (6), and (9), it
can be seen that

τv
1 + τv

2 − τv
z = τv

De
(10)

(τv
1 + τv

2 − τv
z ) (τv

1 + τv
2 ) − τv

1 τv
2 =

(
τv
Ge

)2
. (11)

Now, additional information is necessary to solve for the
three unknowns in (10) and (11). If a third equation is assumed
for the reciprocal pole sum

τv
1 + τv

2 = τsum. (12)
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These three equations can be combined to form the following
quadratic, which yields two time constants

τ2 − τsumτ + τv
De

τsum −
(
τv
Ge

)2 = 0. (13)

Other than τsum, the other metrics in (13), the first and second
moment, are with reference to the victim. At this point, it is
helpful to look at the physical interpretation of the first and
second moments of the impulse response. The first moment
always considers resistances of the switching line, and either
all capacitances connected to the switching line (in the case of
the victim driver switching) or capacitances connecting it to a
particular line (for the switching of an aggressor driver). The
second moment propagates outwards another level and consid-
ers the resistances and capacitances of immediately adjacent
lines as well. This intuition is valuable in generating a solution
with minimum computational complexity; namely, (13) can be
used to generate the pole time constants for all switching events
by using the appropriate reciprocal pole sum.

Now, since (13) can in general yield complex poles or a posi-
tive pole, some care is necessary to ensure stability. Potential
instability can take one of two forms: If the sign under the
radical in the solution for the roots of (13) is negative, complex
poles can result; if the magnitude of the square root is greater
than the reciprocal pole sum, a negative time constant results.
Using these as limiting conditions, a methodology that always
yields stable and accurate results can be formulated. The time
constants are

τ1,2 = τsum ±
√

τ2
sum − 4

[
τsumτv

De
−

(
τv
Ge

)2
]
. (14)

One limiting condition is that the sign under the radical should
be positive. This leads to

τ2
sum + 4

[(
τv
Ge

)2 − τsumτv
De

]
> 0. (15)

This inequality is satisfied if

(
τv
Ge

)2
> τsumτv

De
. (16)

However, this would violate the second condition, which is that
the magnitude of the square root should be greater than the
reciprocal pole sum

τsum >

√
τsum − 4

[
τsumτv

De
−

(
τv
Ge

)2
]
. (17)

If (16) is true, (17) will never be true. Hence, the stability
condition has to be more stringent. It can be guaranteed that
(17) is true if the following holds

(
τv
Ge

)2
< τsumτv

De

or

τsum >

(
τv
Ge

)2

τv
De

. (A)

Fig. 4. Variation of quadratic which determines stability with τsum.

That is to say, the reciprocal pole sum must be large enough.
However, when (A) is fulfilled, the second term in (15) is neg-
ative. Rewriting the left-hand side of it gives

LHS = τ2
sum − 4τv

De
τsum + 4

(
τv
Ge

)2
. (18)

The function designated LHS is called the stability function,
and is a quadratic in τsum. By considering the first and second
derivatives, this parabola can be shown to have a minimum at
2τv

De
. The zero-crossing points are given by

τsum = 2
[
τv
De

±
√(

τv
De

)2 −
(
τv
Ge

)2
]

. (19)

Obviously, both of these points are on the right-hand side of
the vertical axis, hence the shape of the parabola (Fig. 4). Now,
if the sign under the radical in (19) is negative, its roots are
complex, or in other words LHS will never become negative
and (15) is always true. Hence, for potential instability to occur,
the following must always be true(

τv
De

)2
>

(
τv
Ge

)2
. (20)

As proven in Appendix II, the line corresponding to the equality
of (A) should appear to the left of the first zero-crossing as
shown. Then for stability, τsum has to appear in the lightly
hatched area, or to the right of the second zero-crossing point.
If τsum is too small, the sign under the radical is positive, but
a negative time constant results. If τsum is situated between
the zero-crossing points, complex poles are derived. Finally,
if τsum is to the right of the second zero-crossing point, rep-
resented by the darkly hatched area, again, a stable solution
results. Hence, from the zero-crossing points, the next condition
is derived

τsum < 2
[
τv
De

−
√(

τv
De

)2 −
(
τv
Ge

)2
]

or

τsum > 2
[
τv
De

+
√(

τv
De

)2 −
(
τv
Ge

)2
]

. (B)
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Now, the stability conditions have been identified, the values
for τsum that give the best response for different switching
events can be derived. Firstly, for the case of the victim driver
switching, since all aggressors are grounded, the metric that
gives the best solution is the sum of the open circuit time
constants with reference to the victim driver, which is called τ ∗

p .
This is simply the summation of the products of all capacitors
connected to the victim line with the driving point resistance to
each of those capacitors

τ ∗
p = −

∑
k∈v

[
Rv

kkCSv
k +

(
Rv

kk + Ra1
jj

)
CCva1

k

+
(
Rv

kk + Ra2
jj

)
CCva2

k + · · ·
]
. (21)

This is a good approximation for the sum of the pole time
constants [32], giving

τv
1 + τv

2 = τ ∗
p . (22)

Substituting (22) for τsum in (10) and (13) results in the zero
time constant and pole time constants respectively, for the
victim switching. Now, an inspection of (5) and (21) shows that
τ ∗
p > τv

De
. Since (20) has to be true for instability to occur, this

means that

τ ∗
p >

(
τv
Ge

)2

τv
De

. (23)

Therefore, (A) is always true, and the only possible stability
violation in this case is (B); i.e., very occasionally, using τ ∗

p can
result in complex poles. The physical interpretation of such an
occurrence is that the sum of the open circuit time constants
underestimates the reciprocal pole sum, which has been unusu-
ally escalated by an aggressor or aggressors with exception-
ally high parasitics. Because both exponential waveforms are
either additive or subtractive unlike when an aggressor switches
(where one is additive and the other is subtractive), the higher
frequency pole does not have a significant impact. In fact,
this form of instability is usually an indication of a very-low-
frequency pole, which makes the prediction of the waveform
straightforward. The simplest remedy therefore is to consider
a single pole response, with the pole time constant being
given by τv

De
. This results in good accuracy as shall be shown

in the Section IV.
Secondly, to solve for the poles and zeros associated with

an aggressor switching, (3), (7), (8), and (9) are combined
to give

τ ai

De
= τ ai

z (24)(
τ ai

Ge

)2 = τ ai
z (τ ai

1 + τ ai
2 ) . (25)

Now, the zero time constant is available immediately from
(24), and dividing (25) by (24) results in the reciprocal
pole sum

(
τai

Ge

)2

τai

De

= τai
1 + τai

2 . (26)

The pole time constants can be obtained by substituting (26) as
τsum in (13). It can be seen from an inspection of the relevant
expressions that potentially either of (A) or (B) can be violated.
The solution without generating extra information about the
circuit is to accept the next best approximation. That is to say,
if τsum is so small that it violates inequality (A), the simplest
and most logical remedy is to increase τsum so that it is in the
lightly hatched area. When inequality (B) is violated, if τsum

is less than the minima, it should be decreased so that it falls
into the lightly hatched region; if it is greater than the minima,
it should be increased so that it falls into the darkly hatched
region. Since the equality will generate coincident poles that
are not acceptable, the exact value should be chosen so that
it is slightly greater than or less than the equality, which can
be achieved with a percentage factor. From empirical evidence
over a range of testbeds, it was seen that 1% provides the best
accuracy. This is the only constant that cannot be predicted by
the theory, and is unfortunately unavoidable, as any approach
to preserve stability without resorting to higher order moments
has to be approximate in nature.

Using this approach, the values that τsum should take in the
different cases are summarized in Table I. Of the two, (A)
being violated is by far the more common form of instability.
This occurs when the dominant poles for the victim and the
particular aggressor are very far apart on the frequency axis.
Physically, this translates to a situation where the receiver node
is charged extremely rapidly by a very strong aggressor (i.e.,
through a relatively very small time constant), and decays with
a very long tail, dictated by the much larger time constant of
the victim. Such behavior is common for far end coupling. The
instability in the solution predicted by (13) occurs because the
pole sum given by (26) accurately reflects the high-frequency
nature of the poles in the aggressor’s charging path, but τv

De
and

(τv
Ge

)2 reflect the much lower frequency content of the victim’s
dominant poles, and the gap is too much to bridge. The remedy
proposed to this situation is to increase the reciprocal pole
sum just beyond the threshold of the equality. Now, this yields
accurate results, because the intention is to generate the best
two-pole–one-zero model; in other words, the poles and zeros
need not equate to the actual poles and zeros of the system, and
indeed should differ for a second-order approximation. Using
the factor of 1% beyond the threshold, which yields coincident
poles, ensures that both the high- and low-frequency behavior is
matched. It must be emphasized that conditions (A) and (B) are
violated infrequently, and when they do, the values proposed
above result in a simple yet accurate solution, which requires
no extra information. The expressions for the reciprocal pole
sum in body rows three to five of Table I represent the best
approximations that guarantee stability when the first-choice
approximations in rows one and two prove to be incompatible
with the quadratic (13).

C. Physical Basis of the Model

Computing the first and second moments of the impulse
response of the circuit, and using them to generate a transfer
function with two poles and one zero, results in the matching of
the boundary conditions at time zero and infinity, and geometric
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TABLE I
VALUES THAT τsum SHOULD TAKE

properties—namely the area and first moment—of the actual
waveform (step response) with the estimated waveform. The
boundary conditions are already considered in the particular
formulation of the transfer function (i.e., that the waveform
starts and ends on a specific rail). Hence, matching the first
and second moment of the impulse response does not define
a unique solution, as a two-pole–one-zero transfer function
has three unknowns. The necessary third equation is obtained
by matching circuit components to the reciprocal pole sum.

For the switching of the victim driver with the other inputs
grounded, the sum of the open circuit time constants provides a
good approximation to the reciprocal pole sum, and combin-
ing it with the moments of the circuit for the victim driver
switching has a straightforward intuitive motivation. For the
switching of an aggressor driver, the geometric properties of
the actual waveform (via the first and second moments of the
impulse response for an aggressor driver switching) are used
to obtain the precise reciprocal pole sum. Since the quadratic
(13) obtained from the moments of the impulse response for
the victim driver switching contains relevant information about
the victim net, combining it with the reciprocal pole sum for
an aggressor switching gives a good approximation to the best
two-pole–one-zero model. This is a procedure that works for
the vast majority of circuits; however, some adjustments are
necessary to the reciprocal pole sum for certain pathological
cases, which was analyzed in a systematic manner, resulting
in Table I.

D. Computational Complexity

1) Background—Incremental Computation of the Elmore
Delay: The Elmore delay, as mentioned before, has been and
is used extensively as a delay metric in VLSI interconnection
circuits modeled by a tree where all capacitors are grounded,
which is termed a simple tree. Simple trees are characterized
by nodes that may have multiple children but only one parent.
The Elmore delay is defined as

τDe
=

∑
k∈ tree

RkeCk.

Consider the simple tree given in Fig. 2, where the output
node is designated as e. According to the definition, the Elmore
delay is

τDe
= R1C1 + (R1 + R2)C2 + (R1 + R2 + R3)C3

+ (R1 + R2)C4 + (R1 + R2)C5. (27)

This can be rearranged so that the expression is in terms of the
product of the downstream capacitance and resistance at each
node on the path from the source to the sink

τDe
= R1(C1 + C2 + C3 + C4 + C5)

+R2(C2 + C3 + C4 + C5) + R3(C3). (28)
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All downstream capacitances can be stored at each node
by traversing the tree once. Hence, after one traversal of the
complete tree, the computation of the Elmore delay at any
node requires only that the path from source to sink for that
particular instance be traversed, with the product of the resis-
tance and downstream capacitance at each node being summed
up. Because of this property, any changes to the capacitance
values at any node in the tree require only that those changes
be propagated upstream of those nodes where the changes took
place. This is known as incremental computation, as only those
cached values that are stale need to be updated. Any change
to a resistance need only be considered when the metric with
respect to a particular node is required, and the path from the
root to that node is traversed. Incremental computation bestows
considerable savings, and it is one of the principal reasons for
the popularity of the Elmore delay.
2) Computational Complexity of Proposed Metrics: Alto-

gether, five metrics that depend on the circuit topology are
required for the proposed models. The first-order metrics are
(5), (7), and (21), and the second-order metrics are (6) and (8).

First-order metrics: An inspection of the first-order met-
rics (5) and (7) clearly shows their similarity to the Elmore
delay. These can be rearranged so that the expressions are
formulated as the sum of the products of resistance and down-
stream capacitance at each node on the path from source to sink.
Because of the extra complexity introduced by the coupling
capacitances, it is necessary to keep track of individual coupling
capacitances at each node. This can be achieved by caching
the sum of the downstream self (or total) capacitances, and
the sum of the individual downstream coupling capacitances
with associated root information at each node. Hence, similar
to the Elmore delay, all downstream capacitances are cached
from a full tree traversal, and then the output with respect to a
particular node e only requires a traversal from the source to e.
Also similar to the Elmore delay, any changes to the tree require
only that the capacitance changes be propagated to the upstream
nodes, resulting in incremental computation being possible.

The final first-order metric (21), the sum of the open circuit
time constants, requires that at each node in the summation, that
node should be treated as the output. Since the output node is
therefore always defined for a given victim net (unlike in the
previous metrics where the output can be any node in the tree),
the incremental components of the summation in τ ∗

p can be
cached along with the downstream capacitance. For example, in
Fig. 1, node 4 should have CS5 as downstream self capacitance,
and R5 · CS5 as downstream τ ∗

p information. Therefore, this
metric requires no extra traversals at all, but instead, it can
be computed along with the downstream capacitances. Again,
changes to the tree require only that the changes be propagated
to upstream nodes.

Second-order metrics: The second-order metrics require
the capacitances at each node be weighted individually by a
first-order time constant, which is basically expression (4) (in
one of the three forms used) for the path defined from the root
of the relevant simple tree to the current node, or its coupled
counterpart. There are now three issues related to complexity:

1) How much work is needed to calculate the weights for the
original tree?

2) When the weights are known, how much work needs to
be done to calculate the second-order metrics with respect
to a particular node?

3) Finally, how much work needs to be done to recalculate
all the weights once a change or changes have been made
to the tree?

Calculation of the weights is demonstrated on the victim net
of Fig. 1. The weights required are different for the two ex-
pressions, and also for the types of capacitances (i.e., coupling
capacitance between two trees, or the total capacitance, at a
particular node), but are always characterized in a generic sense
by the expression (4). Hence, any technique that works for
one will always work for all the weights. For the sake of
explanation, assume that the weight consists of τv

Dk
, where only

self capacitances are considered, and that the weights at nodes
1 and 2 are τ1 and τ2, etc. Then

τ1 = R1(CS1 + CS2 + CS3 + CS4 + CS5) (29)

and

τ2 = R1(CS1 + CS2 + CS3 + CS4 + CS5)

+R2(CS2 + CS3 + CS4 + CS5). (30)

The rest of the metrics are calculated in a similar manner.
Now, since the weight is always with respect to the root, it
is necessary to visit all the nodes once after the downstream
capacitance information has been stored on the initial pass. (It
is useful also to store the upstream resistance at each node on
this pass, so that in future visits to the node, the τ information
can be updated instantly, as will be shown later.) All weights
can be calculated in one pass by using the property that

τv
Dn

= τv
Dm

+ τv
Dm→n

(31)

where node m is situated on the path between the root and node
n. At branch points, a depth first traversal of all child branches
preserves the linearity of the traversal. Hence, the weights for
all nodes can be calculated by one full tree traversal once the
downstream capacitance information has been stored.

The answer to the second question is straightforward; an
inspection of (6) and (8) shows that the form that the outer
(second order) summation takes is exactly similar to the inner
(first order) summation, which is characterized in a generic
way by the expression (4). Therefore, it is possible to cache
the downstream τ · C information (just as the downstream C
information was cached for the first-order metrics) and obtain
the metrics from the root to a particular node by visiting only
the nodes along the path from the root to that node.

So far, two complete traversals have been necessary, one
bottom-up pass to store the downstream capacitance informa-
tion, and one top-down pass, beginning at the root to store the
τ information (and the upstream resistance information, which
is necessary, later, to minimize computation when changes are
made). Now, to calculate the second-order metric to any node,
rearranging the terms in the summation exactly as in the first-
order calculation allows the downstream τ · C to be cached in
one full traversal. Subsequently, the second-order metric to any
node can be calculated simply by visiting all the nodes on the
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path from the root to that node. Again, if an imaginary second-
order metric is defined to consist only of the self capacitances
for simplicity of explanation, the value that would be cached at
node 5 on the third (bottom-up) traversal would be T5 = T5 ·
CS5, that at node 4 would be T4 = T5 + τ4 · CS4, and so on.

Hence, three full traversals are necessary, one bottom-up
traversal to store the downstream capacitance information, one
top-down traversal to store the weights, and a final bottom-up
traversal to store the downstream τ · C information. None of
these passes can be combined as the necessary order is bottom-
up, top-down, and bottom-up.

The only remaining question is also the most important;
if it is necessary to traverse the entire tree three times each
time a change is made, the incremental computation property
is lost. However, after a modification to a component, since
only the resulting changes in the stored values need to be
accounted for, the calculations that required three traversals for
the original tree can be accomplished in one traversal. Consider,
for example, that the component value CS2 is changed to CS ′

2.
This immediately causes:

1) the downstream capacitance values cached at node 2 and
all nodes upstream of node 2 to be stale;

2) the cached weight (τ) information at all nodes to be stale;
3) the cached downstream τ · C information at all nodes to

be stale.

In node 5, for example, the stored downstream capacitance
is current (since the changed capacitor is upstream of it), but
the weight and downstream τ · C information is stale. The old
weight is

τ5 = R1(CS1 + CS2 + CS3 + CS4 + CS5)

+ R2(CS2 + CS3 + CS4 + CS5)

+ R4(CS4 + CS5) + R5(CS5). (32)

The new weight is

τ ′
5 =R1 (CS1 + CS ′

2 + CS3 + CS4 + CS5)

+ R2 (CS ′
2 + CS3 + CS4 + CS5)

+ R4(CS4 + CS5) + R5(CS5). (33)

The change is

τ ′
5 − τ5 = (R1 + R2) (CS ′

2 − CS2) . (34)

Therefore

τ ′
5 = τ5 + (R1 + R2) (CS ′

2 − CS2) . (35)

This is simply the change in the capacitance multiplied by
the resistance that is upstream of the changed capacitance.
This is true of all nodes downstream of node 2. At the nodes
upstream of node 2, the capacitance change is multiplied by the
upstream resistance from that node. Similarly, the downstream
τ · C information can also be calculated and stored. Hence, all
stale information can be updated by doing a single bottom-
up traversal by considering the difference introduced by the
change to the component. First, the changed component is

located, and its upstream resistance (R1 + R2), which has
been stored earlier, is noted. Now, starting from a leaf node,
say node 5, for example, a bottom-up traversal is initiated,
where both the weight information and the downstream τ · C
information are updated at once. From node 2 upwards, the
downstream capacitance also needs to be updated. Hence, the
original requirement of three passes for the unprocessed tree
has been reduced to a single pass. This principal also applies
for resistor changes, and also multiple component changes.
That is, the effect of multiple changes can be considered
in one pass.

Summary: It was shown that all the metrics have a very
simple and small core, which exactly resembles the Elmore de-
lay. The second-order expressions can be described as a weight-
ed Elmore delay; each term in the summation is weighted by
either (5) or (7) for that particular node. These are similar to
the second moment of the impulse response proposed for sim-
ple trees in [4]. Just as the models of [4] represent the minimum
computational complexity for second-order models for the class
of circuits that were called simple trees, these models represent
the minimum complexity for coupled trees. In fact, if the cou-
pling capacitance terms are put to zero (the entire capacitance
is lumped into a ground component), the model for the victim
tree reverts to the model proposed in [4].

One of the major attractions of the Elmore delay is its in-
cremental computational property. This is a very useful feature,
and is the mainstay of several interconnect optimization algo-
rithms. It should be noted that this is independent of the output
node. Whatever node is chosen as e in the tree, this hierarchical
property holds true. Now, since the constituent summations in
the proposed metrics have exactly the same form as the Elmore
delay, whose format is basically that of (4), incremental com-
putation is possible for the proposed metrics.
3) Comparison With Other Metrics: As shown in Section II,

there are an enormous number of models both of a general
nature that are not restricted to second-order estimations, and
ones that are explicitly second-order. In this section, it is shown
that the proposed model has the least complexity of all two-
pole–one-zero models in both categories. It is useful to start the
discussion with a look at the general techniques AWE [13] and
RICE [14].

The latter is basically an efficient implementation of the
former, and both require 2q moments to generate a qth-order
approximation. The computation of the moments in [14] is
not less efficient than the computation outlined above. The so-
called path-tracing algorithm (with recursive solutions of a dc
circuit) presented there can be used to compute the first and
second moment with exactly the same efficiency, including
caching of values at nodes, though not explicitly articulated
in the same manner. The point is, [14] requires four moments
to generate a second-order response, and each higher order
moment requires a computation that involves a backward and
forward substitution of the system matrix, which is equivalent
to two tree traversals. Hence, the proposed model saves at
least four tree traversals in the processing of the initial tree,
by not requiring the third and fourth moment of the impulse
response. Each time the circuit is changed, as would be done
innumerable times in incremental physical optimization, the
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computation of the higher order moments that require four
extra traversals is avoided. For component value changes, the
general property of incremental computation would hold, but
it would necessarily be more expensive for four moments. The
first moment (Elmore delay) requires component values to be
propagated upstream only; the second moment requires one full
tree traversal as has been shown; similarly, the third and fourth
moments would require two and three traversals. Therefore, the
proposed model saves two full tree traversals for component
value modifications.

As mentioned earlier, the model that best merits comparison
with the proposed model is [19], the other second-order models
either being restricted in topology (such as [4]—simple trees;
[17], [18], and [22]—inductive trees with no series capacitors;
[26], [27]—parallel lines), restricted in accuracy (such as
[20] and [31], which use the same poles for all responses), or
lacking a clear physical basis (such as [23] and [24]), which do
not translate to a two-pole–one-zero model, and hence cannot
be used to generated the responses for aggressors switching,
and are less accurate than direct moment matching for the vic-
tim switching. When the moments are computed with the algo-
rithms of [14], the explicit two-pole–one-zero model of [19] is
the least expensive second-order model that can handle arbi-
trarily coupled RC trees reported in the literature. Because the
proposed model does not require the third moment of the
impulse response, it is cheaper than this model by the equivalent
of at least two full tree traversals for the unprocessed tree, and
at least one full tree traversal for component value changes. Be-
cause incremental physical optimization requires many changes
to the interconnection tree, the proposed model will often save
two complete tree traversals, a huge saving for any reasonably
sized circuit. The comparison carried out in Section IV shows
that this saving is not at the expense of loss in accuracy.

Finally, it is worth looking at the complexity of circuit
collapsing techniques such as passive PRIMA [16], as they
only require q moments to generate a qth-order response. In
PRIMA, the most critical steps in terms of runtime are an
LU decomposition and qN backward and forward substitu-
tions for an N -port circuit, which corresponds to a qth-order
response, both of which must be performed on the modified
nodal analysis (MNA) matrix of the original network. The
LU factorization already makes the complexity at least as
much as the three complete traversals required for the un-
processed tree in the proposed methodology. The most ef-
ficient manner in which the second can be accomplished is
by recursively solving an equivalent DC circuit as in [13].
Hence, the computation of each block moment requires at
the minimum one backward and forward substitution, which
is equivalent to two tree traversals. Furthermore, there is an
overhead introduced by the orthogonalization and orthonormal-
ization procedures, which makes the complexity of a block
moment computation more than the equivalent of two tree
traversals. This is neglecting the overhead of setting up the
MNA matrix, which has to follow the setting up of the spanning
tree (unless the netlist is already appropriately ordered, which
is not the general case). Hence, the complexity of a second-
order Krylov space projection-based approximation does not
really bear comparison to the proposed methodology. Such

network collapsing methods are suitable for macromodeling
linear blocks by higher order approximations, not for incremen-
tal physical optimization.

E. Peak Noise and Delay to Peak Noise

In this paper, the generation of the transfer function, which is
the most important aspect of the modeling, is the main concern.
Choice of input waveform, driver modeling, and subsequent
processing of the waveform depend on the application, and are
not covered for the most part. Knowing the transfer function
allows the output to be generated for the appropriate input by
a number of approaches, including table look-up and heuristic
expressions. Explicit expressions are, however, derived for step
inputs, which are sufficiently accurate for quite a number of
applications. First, the step response at node e when the victim
driver switches is given by

Ev
e (t) = 1 − τv

1 − τv
z

τv
1 − τv

2

e
− t

τv
1 − τv

z − τv
2

τv
1 − τv

2

e
− t

τv
2 . (36)

The step response when an aggressor driver switches is

Eai
e (t) =

τai
z

τai
1 − τai

2

(
e
− t

τ
ai
1 − e

− t

τ
ai
2

)
. (37)

It is not possible to solve a two-pole (or higher order) wave-
form explicitly for the delay at a given threshold. Closed-form
heuristics for a two-pole waveform can be derived—such as in
[19]—but since the complete response for an m driver system
will consist of 2m exponential waveforms, some iterative pro-
cedure needs to be adopted in the general case.

However, (37) can be solved explicitly for the peak noise, and
the time at which it occurs. Equating the first time derivative to
zero and doing some trivial algebra results in

tpk =
τai
1 τai

2

(τai
1 − τai

2 )
ln

τai
1

τai
2

. (38)

Substituting (38) for t in (37) results in the peak noise from the
switching of the driver of aggressor ai. Knowing the times at
which the individual peaks occur is extremely useful in algo-
rithms to process the waveform for delays at a given threshold,
when multiple drivers switch at different times. A temporal
window can be defined, which is bounded by the first peak and
last peak; these peak values can be used as initial guesses for
fast and true convergence with the Newton–Raphson algorithm,
even for multiple-time constant waveforms.

IV. RESULTS

The proposed metrics were implement in a tool called
DeANo (for Delay And Noise Modeler), and tested on many
test beds that cover a wide range of topologies, by comparing
the step response against a circuit simulator, Spice, and other
moment-based models. Some plots for instructive testbeds
are shown in [3] including networks consisting of primary
and secondary aggressors where inequalities (A) and (B) are
violated. Comparisons are carried out against moment-based
techniques such as the two-pole–one-zero model from three
moments described in [19], the gamma and hgamma probability
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TABLE II
AVERAGE PERCENTAGE ERRORS IN DELAYS AT DIFFERENT

THRESHOLDS FOR VICTIM SWITCHING

distribution models from three moments described in [33] and
[24], and the gamma probability distribution model from two
moments, also described in [33]. It should be noted that the
probability distribution models are valid only for the victim
switching. Here, the model is extensively tested against the
Elmore delay, the closest less expensive model, and the two-
pole–one-zero model from three moments, the closest more
expensive model, in thousands of comparisons with the re-
sponse from a Spice3 simulation serving as the yardstick of
the actual waveform. Since the actual and predicted delay
at a single threshold can agree very well, and still result in
significant deviations along the full waveform, the accuracy
was tested at three points along the waveform. For the victim
switching, the thresholds are 10%, 50%, and 90%, while for the
aggressors they are 25%, 100%, and 25% of the peak amplitude.
This is to ensure that three points, with two being on either
side of the peak, are tested. The average results are shown in
Tables II and III. The numbers shown in each case is the error
calculated as a percentage against the actual value as given by
Spice; a negative number means that the predicted value was
greater than the actual and vice versa. Hence, the smaller the
magnitude of the number, the better; a value of zero means
zero error. These numbers do not have much significance as
indicators of absolute error, but are very useful for comparisons
between models.

Different kinds of circuits were grouped into the four cluster
categories. The test nodes comprise all nodes in each circuit
in each case, covering all possible circumstances such as near-
end and far-end coupling and stiff nodes. It can be seen that the
proposed model performs very well against the more expensive
model computed from three moments, and is in fact often better
in the delay predictions. The only area in which it is consistently
outperformed by the three moment model is in peak noise

TABLE III
AVERAGE PERCENTAGE ERRORS IN DELAYS AT DIFFERENT THRESHOLDS

AND AVERAGE ERROR IN PEAK NOISE FOR AGGRESSOR SWITCHING

prediction, to varying degrees. However, as the point of the
proposed model is to use as a metric of comparison between
different topologies, this need not be any kind of limitation in
its intended applications of incremental physical optimization
and global signal planning.

V. SUMMARY AND CONCLUSION

Closed-form expressions for the first two moments of the
impulse response for general arbitrarily coupled RC trees with
multiple drivers were presented and used to generate stable and
accurate second-order approximations to the transfer function
for any switching event. For the victim driver switching, the
sum of the open-circuit time constants with regard to the victim
net is used to avoid using higher order moments. For the case
of an aggressor driver switching, the moments for the victim
and aggressor switching are combined, which can be described
as an averaging of the dominant poles along the victim and
that aggressor. This procedure provides the best opportunity
to match the waveform along the charging and discharging
paths while saving on higher order moments. The summation
of all waveforms result in the complete response at the node
of interest. This model represents the minimum complexity for
a general second-order model for this class of circuits, and is
hence proposed as being useful for initial estimates of delay
and noise in complex systems early in the design flow, and
particularly for incremental physical optimization.

The point of doing early signal integrity analyses is that
where problems are identified, some change in the circuit graph
is required. As has been shown in Section III-D-3, the model
proposed here saves at a minimum, the equivalent of two com-
plete traversals for the unprocessed (i.e., structurally changed)
tree, and one full traversal at the minimum for component value
changes in the tree. Since tree changes will occur very often
in physical optimization, this is a big saving in computational
complexity over other published models. By running extensive
tests, it was shown that this saving in computational com-
plexity was achieved without compromising on accuracy, the
proposed model having comparable or better accuracy than
more expensive models.
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APPENDIX I
COMPUTATION OF MOMENTS

When the victim driver switches while all other inputs are
grounded, the first moment of the impulse response at the
output node e is given by

Υ1
e =

∞∫
0

thv
e(t)dt. (39)

Now, the following expression describes the voltage drop
from the source to e where Ev

e (t) is the step response at e,
and a1, a2, . . . are the aggressors. This is obtained by sum-
ming up the capacitor currents and adding the drops across
each resistor, or in other words, using Kirchoff’s voltage and
current laws

1 − Ev
e (t) =

∑
k∈v

Rv
ke

[
CSv

k

dEv
k

dt
+ CCva1

k

dEva1
k

dt

+CCva2
k

dEva2
k

dt
+ · · ·

]
. (40)

The impulse response hv
e(t) is the first time derivative of the

step response. Hence, (39) can be integrated by parts, and (40)
substituted in it to yield the following expression

Υ1
e =

∑
k∈v

Rv
ke [CSv

k + CCva1
k + CCva2

k + · · ·] = τv
De

say.

(41)

The second moment of the impulse response at the output
node e is given by

Υ2
e =

∞∫
0

t2hv
e(t)dt.

Integrating by parts, it can be shown that this is equivalent to

Υ2
e = 2

∞∫
0

t (1 − Ev
e (t)) dt.

Using the above expression for the step response and again
integrating by parts, this can be shown to be

Υ2
e = 2

∑
k∈v

Rv
ke


CSv

k

1∫
0

tdEv
k + CCva1

k

1∫
0

tdEva1
k

+CCva2
k

1∫
0

tdEva2
k + · · ·


. (42)

The constituent integrals can be evaluated by integrating
by parts and using Kirchoff’s laws to obtain expressions for
the voltages. The first integral is basically the first moment at

node k, for which an expression can be obtained by simply
substituting k for e in (41). The other integrals are of the form

Iai
=

1∫
0

tdEvai

k .

Integrating by parts, this simplifies to

Iai
=

∞∫
0

[1 − Evai

k (t)] dt.

The voltage can be decomposed into two components thus

Evai

k = Ev
k − Eai

j .

Now, circuit laws can be used to obtain expressions for the
individual voltages. This first is

1 − Ev
k(t) =

∑
K∈v

Rv
Kk

[
CSv

K

dEv
K

dt
+ CCva1

K

dEva1
K

dt

+CCva2
K

dEva2
K

dt
+ · · ·

]

and the second

Eai
j =

∑
K∈ai

Rai

Kj

[
CSai

K

dEai

K

dt
+ CCaiv

K

dEaiv
K

dt

+CCaib1
K

dEaib1
K

dt
+ CCaib2

K

dEaib2
K

dt
+ · · ·

]
.

The superscripts aib1, aib2 . . . in the CC terms indicate the
coupling capacitances to tree ai’s own aggressors. Considering
the fact that all nodes not on the victim tree start and end at the
same voltage, this simplifies to

Υ2
e = 2

∑
k∈v

Rv
ke

×
{

CSv
k

∑
K∈ vic

Rv
Kk (CSv

K + CCva1
K + CCva2

K + · · ·)

+ CCva1
k

[ ∑
K∈a1

Ra1
KjCCa1v

K +
∑
K∈v

Rv
Kk

× (CSv
K + CCva1

K + CCva2
K + · · ·)

]

+ CCva2
k

[ ∑
K∈a2

Ra2
KjCCa2v

K +
∑
K∈v

Rv
Kk

× (CSv
K + CCva1

K

+ CCva2
K + · · ·)

]
+ · · ·

}
.
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This can be expressed in more succinct form by using the first
moment of the impulse response

Υ2
e

= 2
∑
k∈v

Rv
ke

{
CSv

kτv
Dk

+ CCva1
k

[
τv
Dk

+
∑

K∈a1

Ra1
KjCCa1v

K

]

+ CCva2
k

[
τv
Dk

+
∑

K∈a2

Ra2
KjCCa2v

K

]
+ · · ·

}

= 2
(
τv
Ge

)2
say.

Following an approach identical to that in the former case,
the first moment of the impulse response at node e on the victim
tree for aggressor ai switching can be shown to be

Υ1
e = −

∑
k∈v

Rv
keCCvai

k = −τai

De
say.

The second moment can also be calculated from an approach
similar to the former case, resulting in

Υ2
e

= −2
∑
k∈v

Rv
ke

×
{

(CSv
k + CCva1

k + CCva2
k + · · ·) τai

Dk
+ CCvai

k

×
[ ∑

K∈ai

Rai

Kj

(
CSai

K + CCaiv
K + CCaib1

K + · · ·
)]}

= −2
(
τai

Ge

)2 say.

APPENDIX II
BEHAVIOR OF STABILITY FUNCTION

In this section, it is proven that the equality of (A) is always
to the left of the first zero-crossing point of LHS, which is
important in analyzing the physical basis of potential instability.
Since the following is true [where the last condition is necessary
for potential instability to occur—see the explanation for (20)
in the main text]

τv
De

> 0
(
τv
Ge

)2
> 0

(
τv
De

)2
>

(
τv
Ge

)2

the following holds true

4
((

τv
De

)2 −
(
τv
Ge

)2
)

+

(
τv
Ge

)4(
τv
De

)2 > 4
((

τv
De

)2 −
(
τv
Ge

)2
)

i.e.,

((
2τv

De

)2 −
(
τv
Ge

)2

τv
De

)2

>

(
2
√(

τv
De

)2 −
(
τv
Ge

)2
)2

when

2τv
De

−
(
τv
Ge

)2

τv
De

> 2
√(

τv
De

)2 −
(
τv
Ge

)2
.

Rearranging the terms results in

(
τv
Ge

)2

τv
De

< 2
[
τv
De

−
√(

τv
De

)2 −
(
τv
Ge

)2
]

.

Hence, the equality of (A) is always to the left of the first
zero-crossing point of LHS.
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