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Abstract. Simultaneous observations of the OI 5577 Ǻ and 6300 Ǻ emissions, the electron 

precipitation, the terrestrial magnetic field and the plasma parameters, and the corresponding solar 

wind, Interplanetary Magnetic Field and geomagnetic activity indices data have been used in order 

to study the Sun-Earth interactions under various conditions. Images of 5577 Å and 6300 Å 

emissions have been obtained from the All-Sky Imager (ASI), positioned at ARR, Andenes 

(69.3°N, 16.03°E). The Imaging Riometer for Ionospheric Studies (IRIS), at Kilpisjärvi, Finland 

(69.05°N, 20.79°E) gave information about the precipitating electrons with energies in the range 

10÷x100keV and deposition heights centered at about 90 km. The magnetic field components have 

been measured by the Andenes magnetometer (69.3°N, 16.03°E). The essential ionosphere 

parameters have been acquired from the measurements of the Digisonde, situated at Tromsø (69.6N, 

19.2E). A good correlation between the spatial and temporal evolutions of the optical emissions, the 

precipitating electron fluxes and the terrestrial magnetic field has been observed. The response of 

the ionosphere to the solar and geomagnetic activity changes has been studied. 

The study is performed under a project, part from the ALOMAR eARI Project, EU’s 6
th

 Framework 

Programme, Andenes, Norway. 

Introduction. The generation and dynamics of the auroral arcs are in close relation with all 

processes in the magnetosphere and ionosphere, the Solar influence on the Earth atmosphere and 

the chemistry and the energy balance in the lower atmosphere. For that reason the study of the 

optical events at high latitudes and their connection to other occurring phenomena is of great 

importance for the understanding of the complex and multiform interactions, describing the Sun-

Earth relations. The variety of the auroral forms and their behaviour, as a result of the complexity of 

the processes in the upper atmosphere at high latitudes and the connection between them as well as 

the large number of influencing factors give the researchers a lot of possibilities for new 

investigations. The improvement of the observational equipment and the opportunities for 

simultaneous multi-instrument observations by different instruments, as well by sets of instruments 

of the same kind, often including both ground-based and satellite or rocket measurements (for 



example [1, 2, 3, 4, 5, 6, 7, 8, 9]. Each instrument individually provides valuable information 

concerning certain aspects of the ionosphere, yet taken together, the data from several different 

instruments complement each other to give a comprehensive picture of the polar ionosphere.  

For a number of cases, several interpretations of the observations can be presented [1, 10, 11, 12, 

13] or suggestions can be made [12, 14, 15]. More multi-instrument observations and studies are 

needed to clarify and explain the high-latitude ionospheric phenomena and the complex relations 

between the optical auroral structures, and the geomagnetic conditions and the solar activity, solar 

wind and IMF parameters. 

The Norwegian island Andøya affords excellent opportunities for the Arctic atmosphere and 

ionosphere research not only thanks to its geographic position, but to the rich complex of 

instruments, installed and functioning in ALOMAR and Andøya Rocket Range. 

Examined periods. In this work, the emissions and the precipitating electron fluxes in the 

Northern polar oval areas under different space and geomagnetic conditions are studied and their 

relation to other ionospheric and magnetospheric processes is examined. During November 2005, 

measurements of the 5577 Å and 6300 Å emissions have been performed by the All Sky Imager 

(ASI), when the needed climatic conditions were present. Simultaneous All-sky camera data are 

used to watch the atmospheric conditions. 

Taken into account the measurement days, the observed intensities and the space and 

geomagnetic conditions, two periods were chosen: a quiet night (November 7, 2005, 15:30:00 UT – 

November 8, 2005, 5:50:00 UT) and one at highly disturbed geomagnetic conditions (November 3, 

2005, 15:50:00 UT – November 4, 2005, 5:40 UT). The first night is among the quietest ones (Nov. 

8 is Q4) and the second one – among the most disturbed ones (Nov. 3 and 4 are D1 and D2, the 

most disturbed days) for November 2005.  

Space and geomagnetic conditions in November 2005. Satellite data are used to trace out the 

course of the Interplanetary Magnetic Field (IMF), the solar wind parameters, the energy input in 

the Northern hemisphere and the geomagnetic indices. The values of the IMF are shown in Fig.1. 

The solar wind speed, the proton density and the ion temperature are presented in Fig.2. These data 

are from the magnetometer (MAG) and the Solar Wind Electron Proton Alpha Monitor (SWEPAM) 

on board the Advanced Composition Explorer (ACE) satellite. The auroral particles power input in 

the Northern hemisphere in November 2005 is given in Fig.3. Data of the power flux carried by 

protons and electrons that produce aurora in the atmosphere are recorded by the instruments on 

board the NOAA Polar-orbiting Operational Environmental Satellite (POES). In Fig.4, the course of 

the planetary indices kp and Ap in November 2005 is given. These indices are estimated on the basis 

of the measurements of a set of stations. The examined periods are marked in all figures with 

rectangles. For these periods, noticeable difference in the total value of the IMF is observed (Fig.1). 



The Bz component of the IMF is negative during the disturbed period and positive during the quiet 

one. In the solar wind speed and ion temperature, an abrupt increase is registered some 24 hours 

before the most disturbed period. A peak in the proton density at the same time is seen (Fig.2). A 

sharp increase in the auroral particles power input occurred about 24 hours before the disturbed 

period, as well (Fig.3). The values of the power input during the disturbed and the quiet period 

differ by one order. The values of kp and Ap are maximal during the disturbed period and much 

lower during the quiet one (Fig.4). 

Observations. Images of 5577 Å and 6300 Å emissions during the examined periods are 

obtained from the All-Sky Imager (ASI). The distribution of the energetic particles precipitation is 

given by the Imaging Riometer for Ionospheric Studies (IRIS) measurements. The changes in 

the magnetic field components are recorded by the Andenes Magnetometer. The Tromso 

Digisonde provides information about the plasma parameters. 

All-Sky Imager (ASI). ASI is positioned at ARR, Andenes (69.3°N, 16.03°E). It records 

automatically the 5577 Å and 6300 Å emissions with 10 s time resolution, from a 180° field of view 

in a 512x512 matrix. The row data are processed in the Oslo University.  

Imaging Riometer for ionospheric Studies (IRIS). IRIS, at Kilpisjärvi, Finland (69.05°N, 

20.79°E), measures the absorption of cosmic noise at 38.2 MHz by 49 beams (7x7 area) every 

second. This absorption corresponds mostly to ionisation by electrons with energies in the range 

10÷x100keV and deposition heights centered at about 90 km. The database is organized by the 

Lancaster University. 

Andenes Magnetometer. The Andenes magnetometer (69.3°N, 16.03°E) measures the magnetic 

field components every second. The vertical component (Z), the horizontal one (H) (along the 

magnetic meridian) and the declination (D) (perpendicular to H) are accumulated and processed at 

the Tromsø Geophysical Observatory, University of Tromsø, Norway.  

Tromsø Digisonde. Ionograms, describing the essential ionosphere parameters are acquired at 

15 minutes’ intervals after processing the data, registered by the Digisonde, situated at Tromsø 

(69.6N, 19.2E). 

Projected fields of view in geographic coordinates of ASI and IRIS. ASI and IRIS are 

situated in the same area, not far each to other, and their fields of view overlap. The positions of the 

projected fields of view of the instruments are shown in Fig.5 in geographic coordinates for both 

cases: 5577 Å and 6300 Å measurements by ASI. The ASI field of view (fenced in the circles) is 

taken 70° from zenith (the way the images are obtained), with assumed height of 120 km for the 

5577Å emitting features and 250 km for the 6300 Å ones (the left and right pictures, respectively). 

The IRIS field of view is 18°÷23.5°E and 65.2°÷66.8°N, with energy deposition height, considered 



90 km (the black rectangles). It is seen that the IRIS field of view falls within the ASI field of view 

in both cases.  

Spatial distributions. The obtained ASI and IRIS images with 1 min. resolution for the quiet 

and disturbed periods are examined. The images present the spatial distribution of the auroral forms. 

The temporal evolution is given by the consecutive images. In Fig.6, typical examples of 1-hour 

plots of the 5577 Å (up), 6300 Å (further down) images and IRIS absorption ones (bottom), are 

shown. The left column presents the images of 18:00÷19:00h on 3 Nov., 2005 (the most intensive 

glow on 3-4 Nov.), the middle column is for 22:00÷23:00h on 3 Nov. 2005, and the right one is for 

22:00÷23:00h on 7 Nov.2005 (when the most intensive glow for this day occurred). In all images, 

North direction is up.  

Fast glow changes (with the time scale of seconds) are observed during the disturbed period. 

Immense variety of forms generate, move through the field of view, changing in form and intensity. 

The observed arcs usually have sharp edges, and in most cases their direction is almost East-West, 

sometimes turning into NE-SW or NW-SE. On the common background of increased intensity, 

considerable glow enhancement occurred several times and persevered for more than half an hour 

(like the one presented in the figure). During the quiet period the glow is much weaker. Even in the 

time of higher glow values, the increase is slow and gradual. No separated arcs are observed. The 

enhanced glow represents just slightly brighter patches with smooth edges. A close connection 

between the distribution and development of the intensity of 5577Å and 6300 Å and the absorption 

images, presenting the electron flux distribution, is visible.  

The course of the emissions intensity and the particles flux is the same. This is clearly seen 

especially in the disturbed period. The maximum glow and particle flux coincide with the maximal 

kp and Ap indices.  

Temporal development. To see better the changes with the time, the so called “keograms” are 

constructed. They present the data along a geomagnetic meridian in dependence of the time. ASI 

and IRIS keograms are constructed for one and the same geomagnetic meridian, passing through the 

center of the field of view of IRIS (1030.62°E). The magnetic field components course, measured in 

Andenes, is examined, too. The auroral particles power input in the Nortern hemisphere, the ASI 

and IRIS keograms for the examined disturbed and quiet period are presented in Fig.7. The times of 

the highest values of the power input are pointed out. The bulk of emission is not symmetric 

towards midnight in the disturbed period. Highly enhanced glow is observed from about 16 h. till 3 

h in the morning, but the most intensive part is up to midnight. During the quiet period, the glow 

intensity is more symmetric (20 h. to 4 h.), and again higher up to midnight. A good correlation 

between the auroral particles power input, the optical emissions, the precipitating electron fluxes 

and the terrestrial magnetic field during the examined periods is observed.  



Conclusions. Close connection between the space and geomagnetic conditions and the auroral 

emissions activity is observed. Noticeable differences are registered during disturbed and quiet 

periods in the total value of the IMF, and in the auroral particles power input, as well. An 

enhancement of the sunspot number occurred 2 days before the disturbed period. An abrupt increase 

in the solar wind speed, the ion temperature and the power input, as well as a peak in the proton 

density are  registered some 24 hours before the most disturbed period. The maximum glow and 

particles flux coincide with the maxima in the kp and Ap indices course. 

Fast glow intensity changes (with the time scale of seconds) are observed during the disturbed 

period. The observed in the disturbed period arcs usually have sharp edges, and in most cases their 

direction is almost E-W, sometimes turning into NE-SW or NW-SE. Considerable glow 

enhancement occurred several times and persevered for more than half an hour.  

During the quiet period the glow is much weaker, the increase is slow and gradual. No separated 

arcs are observed. 

A close connection between the distribution and development of the intensity of 5577Å and 6300 

Å and the absorption images, presenting the electron flux distribution, is seen. A good correlation 

between the optical emissions and the precipitating electron fluxes, and the terrestrial magnetic field 

during the examined periods is observed. 
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Fig.1. Total value of the IMF in November 2005 after ACE 

Satellite data. 
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Fig.3. Auroral particles power input in the Northern 

hemisphere during November 2005 (NOAA POES 

measurements 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Some Solar wind parameters in November 2005 

(ACE data). 

Fig.4. kp and Ap geomagnetic indices in November 2005. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. Projected fields of view in geographic coordinates 

of ASI and IRIS. 

 

Fig.6. Typical examples of 1-hour plots of the 5577 Å (up) images, 6300 Å ones (further 

down) and IRIS absorption ones (bottom). The left column presents the images of 

18:00÷19:00h on 3 Nov. 2005 (when the most intensive glow for this day was observed), 

the central one is for 22:00÷23:00h on 3 Nov. 2005, and the right one is for 

22:00÷23:00h on 7 Nov.2005 (when the most intensive glow for this day occurred). 

North direction is up. 

 

 
 



 

 

 

 

 

 

 

 

 

Fig.7. Auroral particles power input (up), ASI (further down -6300 Å up, 5577 Å down) 

and IRIS (bottom) keograms for the examined periods. The keograms of 3-4 Nov. 2005 

are on the left side and the ones of 7-8 Nov. 2005 are on the right side. 

 


