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We propose a non-magnetic, pseudospin-based version of a spin valve, in which the pseudospin
polarization in neighboring regions of a graphene bilayer is controlled by external gates. Numerical
calculations demonstrate a large on-off ratio of such a device. This finding holds promise for the
realization of pseudospintronics: a form of electronics based upon the manipulation of pseudospin
analogous to the control of physical spin in spintronics applications.

PACS numbers: 75.70.Ak, 75.47.Pq, 85.75.-d

Soon after its discovery [1], it was realized that
graphene supports an additional quantum number called
pseudospin [2, 3, 4] that arises because the honeycomb
lattice is composed of two triangular sublattices. Wave-
function amplitudes can be written like the two compo-
nents of a spin-1/2 elementary particle, and electrons in
graphene display characteristics analogous to relativistic
fermions [2, 3]. In particular, this includes the celebrated
effect of chirality, whose profound consequences include
an unusual sequencing of plateaus in measurements of the
quantum Hall effect [2, 3, 5], suppression of backscatter-
ing [6, 7] and Klein tunneling at interfaces [8, 9].

So far, it has not been possible to exploit the pseu-
dospin degree of freedom in graphene in a similar way
as physical spin in spintronics [10] and quantum com-
puting [11] applications. In a monolayer of graphene,
chirality means that the orientation of an electron’s pseu-
dospin is inextricably linked to the direction of its mo-
mentum, thus constraining the pseudospin to lie in the
plane of the graphene sheet and preventing its use as an
independently-tunable degree of freedom. In bilayers of
graphene [5, 12, 13], the pseudospin degree of freedom is
associated with the electronic density on the two layers.
The constraint of chirality entails that electronic den-
sity is equally divided between the two layers so that the
pseudospin again lies in the plane of the layers but now
turning twice as quickly as the direction of momentum
[5, 12]. Min et al [14] were the first to realize that bilayers
still offer a promising platform for pseudospintronics. In
particular, they predicted that a pseudomagnetic state
can form spontaneously due to strong Coulomb interac-
tions at vanishing charge-carrier density; this effect is
intimately tied to the fact that the density of states re-
mains finite because the dispersion relation is parabolic,
in contrast to the situation in a monolayer.

In this Letter we propose a variant of graphene-based
pseudospintronics which exploits another direct advan-
tage of a bilayer over a monolayer, namely the facil-
ity to induce a difference between the on-site energies
on the two layers via a perpendicularly applied electric
field, which can be realized by pairs of gate electrodes
(see Fig. 1). The resulting asymmetry of the layers in-
duces an energy gap between the conduction and valence
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FIG. 1: Pseudospin-valve effect in bilayer graphene.
Schematic diagram of a pseudospin valve in bilayer graphene
in its antiparallel (AP) configuration.

bands [12, 15, 16, 17], as observed in photoemission [13]
and transport [18, 19] measurements. For states above
or below the gap, interlayer asymmetry has the effect
of creating an “up” or “down” component of pseudospin
perpendicular to the electronic momentum and the plane
of the sheet [12, 14]. The electric field hence acts on the
pseudospin in the same way as a magnetic field acts on
the physical spin of electrons in spintronic applications.
In particular, the preferred pseudospin direction can be
switched by inverting the sign of the applied potential
difference. In analogy to the giant magnetoresistance
(GMR) induced by a domain wall boundary in magnetic
materials [20, 21], one would therefore expect that in-
terfaces between regions of different gate polarity inhibit
the flow of electrons. We will demonstrate that this ef-
fect can indeed be utilized to realize an all-electronic,
pseudospin-based analogue of a spin valve with a large
on-off ratio.

Concepts.—The proposed pseudospin valve can be re-
alized in a 2D sheet of bilayer graphene with sets of gates
which produce a spatial variation of interlayer asymme-
try in the direction of current flow (see Fig. 1). Top and
bottom gates are used to independently control the Fermi
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FIG. 2: Schematical illustration of a pseudospin-valve tran-
sistor. This device is operated by switching the polarity of a
central gate of length l (shown is the antiparallel configura-
tion).

level and the interlayer asymmetry, the latter creating an
out-of-plane component of pseudospin. When the polar-
ity of the two pairs of gates is identical, the device is
in its “parallel” configuration, and offers only a small
resistance to the flow of electrons with energies above
the gap. The illustration in Fig. 1 shows the device in
its “anti-parallel” configuration, which is realized when
the polarity of the gates changes sign across the device.
This produces a corresponding rotation of the pseudospin
polarization with a switching of the out-of-plane compo-
nent. Similarly to spin scattering at domain walls [21],
the pseudospin of an incoming electron will precess about
the changing local polarization as it attempts to follow it.
If the change in the polarization rotation is sharp enough,
the re-alignment of the electron’s pseudospin should only
be partially successful, leading to reflection and a drop
in the flow of current through the device.

We characterize the fidelity of the pseudospin valve in
terms of the pseudo-magnetoresistance (PMR) ratio

PMR =
RAP −RP

RAP
, (1)

which is defined by the resistances RP (parallel config-
uration) and RAP (antiparallel configuration) determin-
ing the current I = V/R flowing through the device in
response to an applied bias voltage difference V . The
PMR resistance ratio is the analogue of the conservative
definition of magnetoresistance in spintronic applications
[10, 21], and takes the value 100% for a perfect spin valve.

As in conventional spintronic applications, we also con-
sider how the pseudospin-valve effect can be extended to
a broader range of energies via serial connection of re-
gions of different polarity. This leads to the design of
a pseudospin-valve transistor operated by switching the
polarity of a central gate of length l (shown in Fig. 2).

Numerical results.—We start with numerical results,
which are based on the microscopic tight-binding model
of bilayer graphene. This model offers an accurate de-
scription of electronic transport in terms of a small num-
ber of characteristic energies and length scales. Trans-
port between carbon atoms in a single layer (arranged
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FIG. 3: Pseudo-magnetoresistance ratio PMR = (RAP −
RP)/RAP of the pseudospin valve (where P refers to the paral-
lel configuration) versus the Fermi level of incoming electrons
for d = 50a (solid curve). Here, U0 = 0.07eV is the mag-
nitude of the gate potential at large distances. The dashed
curve refers to the pseudospin-valve transistor shown in Fig. 2,
with l = 50a. Inset: Conductance versus Fermi energy in the
antiparallel (solid and dashed curves) and parallel (dotted
curve) configurations from which the PMR is derived. The
normalization factor is GP(EF = U0) = 4U0W/(3πaγ0).

on a honeycomb lattice with bond length a = 1.42 Å) is
described by kinetic hopping energy γ0 ≈ 2.9 eV, which
also determines the Fermi velocity v0 = (3/2) aγ0/h̄ of an
isolated monolayer. In a bilayer, the two sheets of carbon
are arranged according to Bernal stacking, whereby half
of the atoms are strongly coupled to an atom in the other
layer, with a strength determined by the interlayer cou-
pling parameter γ1 ≈ 0.39 eV. Additional next-nearest
neighbor couplings are non-essential for the problem at
hand, and are therefore neglected for simplicity.

In the parallel configuration, the spatially constant on-
site potential takes the value Utop = U0 in the top layer
and Ubottom = −U0 in the bottom layer. In the anti-
parallel configuration of the device we model the on-site
potential by

Utop(x) = −Ubottom(x) = U(x) ≡ −U0 erf(x/d), (2)

where erf is the error function and x is the coordi-
nate in the direction of transport. The main design pa-
rameters of the pseudospin valve are the typical length
scale d of variation of the gate potential and the mag-
nitude U0 of the potential value at large distance, as
well as the Fermi energy EF which determines the en-
ergy at which the electrons are injected from the elec-
trodes (EF = 0 for a charge-neutral gapless bilayer). In
the parallel configuration, the presence of a homogeneous
symmetry-breaking onsite potential opens an energy gap
2|U0|/

√
1 + (2U0/γ1)2 around the Fermi energy of the

charge-neutral bilayer (see again Fig. 1). For the an-
tiparallel configuration with the inhomogeneous poten-
tial U(x) of Eq. (2), the solution of the tight-binding
model requires, in general, a numerical approach.
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Since U is y−independent, the problem of an infinitely
wide ribbon is separable, and electronic modes with fixed
transverse wavenumber ky decouple. For each transverse
mode, the problem can be reduced to a one-dimensional
chain of coupled bilayer unit cells, where each unit cell is
composed of four carbon atoms. The Green function of
each chain can be computed efficiently using the recursive
Green function technique [22], which delivers the trans-
mission amplitude t(ky) via the Fisher-Lee formula [23].
In the linear response regime, the total phase-coherent
conductance of the nanoribbon is then obtained from the
Landauer formula. For a ribbon of finite width W , the
following considerations remain valid as long as W � d
and kFW � 1, so that the contribution of edges can be
neglected (see the discussion at the end of the paper).

The calculated conductance versus Fermi energy is
shown in the inset of Fig. 3 for the parallel configura-
tion, as well as the antiparallel configuration with one
or two interfaces. In these calculations, the interface pa-
rameters are d = 50 a and d = l = 50 a, respectively, and
the asymptotic gap is U0 = 0.07 eV, corresponding to pa-
rameters which can be realized in present bilayer exper-
iments [13, 19]. We find that close to the band edge the
conductance in the antiparallel configuration is strongly
reduced below its value in the parallel configuration. The
resulting PMR ratio is plotted in the main panel of Fig.
3. For energies just above the gap, the PMR peaks at
100%. For increasing Fermi energy the resistance ratio
drops, which can be attributed to the decreasing out-of-
plane component of the pseudospin of incoming electrons
as they become less sensitive to the asymmetry of the lay-
ers when their kinetic energy increases. As expected from
the GMR analogy, the presence of a second interface in
the pseudospin-valve transistor (dashed line) significantly
extends the energy range over which the PMR is ≈ 100%.

Analytical considerations.—A qualitative analysis of
the pseudospin-valve effect can be achieved by consid-
ering the low-energy physics of gapped graphene bilay-
ers. The microscopic tight-binding Hamiltonian delivers
a band structure with four bands. For realistic values
of the charge carrier density, the Fermi surface of bi-
layer graphene lies in the vicinity of two valleys, indexed
by ξ = ±1, situated at the K and K’ point at the cor-
ners of the hexagonal Brillouin zone. Owing to the in-
terlayer coupling, two of the bands are split away by an
energy ≈ ±γ1. For the interlayer asymmetries and Fermi
energies |U0|, |EF | � γ1 assumed in this work, these
split bands do not contribute to the electronic transport.
In the absence of layer asymmetry, the two remaining
bands touch at zero energy and have an approximately
parabolic dispersion relation E ≈ ±p2/2m, with effec-
tive mass m = γ1/2v2

0 and corresponding Fermi velocity
vF ≈ 2v0

√
|E|/|γ1|.

To explain the influence of interlayer asymmetry, we
employ a two-component Hamiltonian [12] that approx-
imately describes the electronic behavior in these two

low-energy bands,

H2 ≈ −
1

2m

(
0 (ξpx − ipy)2

(ξpx + ipy)2 0

)
+
(
U 0
0 −U

)
.

The effective Hamiltonian H2 operates in a space of two-
component wave functions Ψ describing electronic am-
plitudes on the top and bottom layers. The first term in
the Hamiltonian corresponds to a pseudospin-orbit cou-
pling and ensures chirality of the electronic states in the
absence of a symmetry-breaking on-site potential. The
second term in H2 takes into account the influence of ex-
ternal gates that produce different on-site energies ±U
on the two layers. This term is analogous to the Zeeman
energy of a physical spin in a magnetic field parallel to
the z direction and leads to a gap 2|U | in the electronic

spectrum E± ≈ ±
[
U2 +

(
p2/2m

)2]1/2. The pseudospin
part of the corresponding wave functions takes the form

Ψ± =
1√
2

( √
1 + U/E e−iξφ

∓
√

1− U/E eiξφ

)
,

where φ is the angle of the momentum in the plane p =
(p cosφ, p sinφ). The pseudospin of such a state is

〈σ〉 = ∓

√
1−

(
U

E

)2

(̂ı cos 2φ+ ̂ ξ sin 2φ) + k̂
U

E
.

For energy near the vicinity of the gap |E| ≈ |U |, the out-
of-plane component takes its maximum value 〈σz〉 ≈ 1,
whereas it is reduced away from the gapped region.

The pseudospin-valve effect proposed in the present pa-
per originates in the large resistance at interfaces between
regions of opposite preferred pseudospin direction. This
resistance arises because the pseudospin degree of free-
dom can adjust itself to such a spatial variation only over
a distance ls = hv0/

√
|Eγ1|, as follows from the scaling

of the different terms in the two-component model. This
pseudospin precession length scale is comparable to the
Fermi wavelength, which is the scale on which chirality
is established in the symmetric bilayer.

In both devices studied, the amount of reflection of
incoming electrons in the anti-parallel configuration will
therefore depend on the sharpness of the interface d as
compared to the pseudospin precession length ls. Figure
4 shows the computed dependence of the resistance ratio
on d for fixed values of EF = U0 = 0.07 eV. For these pa-
rameters, the pseudospin precession length ls ≈ 165 a. In
the regime d/ls < 1 of an abrupt interface, the electron’s
pseudospin is not able to rotate quickly enough to accom-
modate the change, which causes reflection and a large
spin-valve effect. The series connection of two interfaces
in the transistor further increases the resistance ratio to
almost 100%, except for very small values of d where the
resistance in the antiparallel arrangement drops due to
tunneling through the central region. In the opposite
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FIG. 4: Pseudo-magnetoresistance ratio of the pseu-
dospin valve (solid curve) and the pseudospin-valve transistor
(dashed curve) as a function of the sharpness d of the inter-
face between regions of different polarity. The Fermi energy
is set to EF = U0 = 0.07 eV.

limit d/ls � 1, the pseudospin of incoming electrons is
able to adiabatically adapt itself to the change of local
polarization. In this limit the pseudospin-valve effect be-
comes negligible both for the single interface as well as
for the series connection of two interfaces. The numerical
results confirm that the transition between both regimes
occurs at d ≈ ls. The pseudospin-valve effect can there-
fore be realized in devices with gate separation d of the
order of a few tens of nanometers.

Discussion and Conclusions.—The large mobility of
charge carriers in graphene has stimulated intense re-
search efforts that aim at the realization of graphene-
based electronic devices. In particular, manipulation
of the differential population of valley states in mo-
mentum space has been proposed [24], leading to a
“valleytronic” analogy of spintronics. Our proposal of
bilayer-based pseudospintronics relies on differential pop-
ulation of atomic orbitals in real space. This offers a ro-
bust mechanism to exploit spintronic analogies without
the necessity of carefully fabricated nanoribbon edges,
which limit the scalability of valleytronics [25] and in-
duce harmful intervalley scattering [26].

In particular, pseudospintronics relies on bulk effects
which do not depend on the crystallographic orientation
of the interface. For the wide samples considered here
(W � λF ' ls >∼ d), effects from the sample edges can
be neglected since (i) edge states are localized at real-
istic rough edges, (ii) hypothetical clean edges at most
contribute an additional transport channel per spin, and
(iii) intervalley scattering off the edges can contribute
to pseudospin relaxation across the interface, but this
effect is negligible for d � W . Pseudospintronics is
also remarkably robust against bulk disorder. Chirality
guarantees that the bulk pseudospin-flip rate for major-
ity carriers in a clean ballistic bilayer is zero (the out-of
plane polarization of the pseudospin in the leads is valley-
independent). The predominant scattering mechanism

in graphene, Coulomb scattering off charged impurities,
does not break chirality [27, 28]. Inter-valley scattering
contributes to pseudospin-flip scattering in the interface
region, but the scattering lengths lKK′ ' 500nm reported
in recent experiments [29] indicates that this does not add
an additional constraint on d.

Additional advantages of the proposed bilayer pseu-
dospintronics concept arise from the fact that the charge
carrier densities are finite. In devices that involve po-
sitioning the Fermi level within the bandgap, includ-
ing field-effect transistors [18] or valley filters based on
topologically-confined channels between insulating re-
gions [30], the effective gap size is reduced by screening
[16, 17]. Under these conditions, the largest gaps ob-
served so far in experiment are of the order of 2U0 ≈
10 meV ≈ 100 K [18]. A finite charge density ad-
mits far larger gaps with experimental values reaching
2U0 ≈ 200 meV≈ 2000 K [13, 19] at high density.
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