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We study the transition from ballistic to diffusive and localized transport in graphene nanoribbons in the
presence of binary disorder, which can be generated by chemical adsorbates or substitutional doping. We show
that the interplay between the induced average doping �arising from the nonzero average of the disorder� and
impurity scattering modifies the traditional picture of phase-coherent transport. Close to the Dirac point,
intrinsic evanescent modes produced by the impurities dominate transport at short lengths giving rise to a
regime analogous to pseudodiffusive transport in clean graphene, but without the requirement of heavily doped
contacts. This intrinsic pseudodiffusive regime precedes the traditional ballistic, diffusive, and localized re-
gimes. The last two regimes exhibit a strongly modified effective number of propagating modes and a mean
free path which becomes anomalously large close to the Dirac point.
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I. INTRODUCTION

Graphene continues to fascinate, due in particular to its
transport properties close to the Dirac point, where a finite
conductivity is observed experimentally1 in spite of the van-
ishing density of states. For clean graphene, simple Dirac
fermion models2 prove to be sufficient to describe this effect
based on a gapless spectrum of evanescent modes pinned at
the reservoir contacts that allow for quantum tunneling
through macroscopically large graphene samples.3,4 Surpris-
ingly, the full transport statistics becomes indistinguishable
from that of diffusive metals,4 for which reason the name
“pseudodiffusive” was coined to describe this transport re-
gime. Furthermore, these evanescent modes can give rise to
Hanbury Brown-Twiss-type cross correlations in a ballistic
multiprobe graphene structure5 similar to those observed in
conventional diffusive conductors.

Just as ballistic transport, the effects of disorder in
graphene display a surprising richness. For example, arm-
chair ribbons are found to be more sensitive to bulk disorder
as their zigzag counterparts, while edge disorder can open up
transport gaps in both of them.6 In general, different types of
disorder can be classified in terms of preserved symmetries,
including chirality which is preserved for disorder that is
smooth on the scale of interatomic distances7–10 and signifi-
cantly modifies the standard results for transport in disor-
dered metals. For example, carriers in graphene ribbons with
smooth disorder cannot be localized11 and their conductivity
is seen to increase with system size L as ���L / lm in one-
dimensional �1D�,12 and �ln L / lm in two dimensional �2D�,
where lm is the mean free path.13,14 Short-range disorder, on
the other hand, does not preserve chirality and is therefore
generally understood to induce a sequence of ballistic trans-
port, diffusion, and Anderson localization in quasi-1D wires
of increasing length.9,15,16

Until now, the influence of evanescent modes close to the
Dirac point has been studied in ballistic systems only, and it
is therefore unclear whether their peculiar spectrum could
manifest itself in some significant way in the conductivity of

disordered graphene nanoribbons. In this work we will show
that evanescent modes play a crucial role for the transport in
graphene nanoribbons with short-range disorder. In particu-
lar, intrinsic evanescent modes arising from the disorder it-
self �i.e., independently of the contacts� can reinstate an “in-
trinsic pseudodiffusive” regime which precedes the ballistic,
diffusive, and localized regimes. This regime arises if the
short-range disorder does not vanish on average and there-
fore induces systematic doping, as is the case, e.g., for
chemical adsorbates17 or substitutional doping.18 We describe
such systems using a binary disorder model �the random bi-
nary alloy19,20� and obtain our results by combining numeri-
cal computations with analytical considerations. For longer
ribbons, the intrinsic pseudodiffusive regime crosses over
into the traditional diffusive and localized regimes, but we
find that the mean free path becomes anomalously large at an
effective Dirac energy which takes the induced doping into
account.

II. BINARY DISORDER MODEL

We base our investigation of binary disorder in a graphene
nanoribbon on the following tight-binding Hamiltonian,

H = − t�
�i,j�

ci
†cj + �

i
vici

†ci. �1�

The first term describes clean graphene with hopping ampli-
tude t�2.9 eV between nearest neighbors on the hexagonal
lattice of carbon atoms �with interatomic distance a
=1.49 Å�. The second term describes binary disorder gener-
ated by onsite energies vi which are uncorrelated random
variables that take values vhigh=V0

with probability p and
vlow=0 with probability 1− p. We have dropped spin indices in
the model since spin is a passive degree of freedom in all our
discussion.

Physically, this model describes, for example, a graphene
nanoribbon with a fraction p of its sites coupled to identical
chemical species adsorbed on its surface. If these adsorbates
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are screened their presence is equivalent to a �real and energy
dependent� self-energy term acting on each of the carbon
sites coupled to an adsorbate.17 Typical values of V0 can be
estimated from density functional theory �DFT�
calculations,21 and for species such as Ag, Cu, or Au, one
finds values V0�0.5 eV�0.2t which are small as compared
to t.

III. RESULTS AND DISCUSSION

To probe the intrinsic transport properties in the presence
of binary disorder we present results of numerical computa-
tions on nanoribbons of width W and a disordered region of
length L with the reservoir contacts placed at x= �� �see
Fig. 1�. These computations are based on the recursive
Green’s-function technique.22–24 We obtain qualitatively
similar results for metallic and semiconducting armchair rib-
bons as well as for zigzag ribbons; we therefore only show
results for metallic armchair ribbons.

Figure 2 shows the averaged conductance of a ribbon of
width W=103�3a /2 as a function of the length of the disor-
dered region; different curves correspond to different values
of the chemical potential. The disorder parameters used, p
=0.4 and V0=0.25t, correspond to a substantial concentration
of adsorbates that are weakly hybridized with their carbon
hosts; a sample size of 50 impurity configurations is used in
the average.

Two distinct transport regimes immediately catch the
eyes. The conductance first decreases sharply over a length
scale comparable to the ribbon width W and then abruptly
crosses over to a much slower decay. The conductivity �
= �G�L /W in the pseudodiffusive regime, shown in Fig. 3,
develops a clear plateau at the value �=2G0 /� �the minimal
conductivity in clean graphene3,4� when the chemical poten-

tial � coincides with the average value V̄= pV0 of the disor-
der. We now argue that this transport regime indeed consti-
tutes an intrinsic pseudodiffusive regime arising from
disorder-induced evanescent modes, while the crossover to
the truly diffusive regime is characterized by a mean free

path which becomes anomalously large at �= V̄.

A. Intrinsic pseudodiffusive regime

To understand the numerical results for short lengths it is
useful to compare the average conductance of Fig. 2 to the

conductance of the same nanoribbon in which the disordered
region is replaced by a potential barrier of height equal to the

average disorder doping V̄= pV0. We compute the conduc-
tance through the barrier, Gb, by wave matching within the
Dirac equation description of low-energy transport, which
yields

L

W

�

�

V
0

V

FIG. 1. �Color online� Schematic view of an armchair ribbon
with width W. Disorder is introduced in a region of length L by
adding a potential V0 to a percentage p of lattice sites. Disorder sites
are depicted by dots. The induced local doping, due to the nonzero
average of the disorder, is effectively described by a barrier of

height V̄= pV0.
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FIG. 2. �Color online� Averaged conductance �G� �in units G0

= 2e2

h � of an armchair ribbon of width W=103�3a /2 as a function of
the length of the disordered region for different chemical potentials.
The parameters of the binary disorder are p=0.4, V0=0.25t, so that
the effective Dirac point in the disordered region is shifted from

zero to V̄= pV0=0.1t. Dashed curves are fits to Eq. �3�, with lm as a
fit parameter. Inset: pseudodiffusive regime zoom in. Thin gray
curves correspond to different disorder realizations. Good agree-
ment is obtained with the ballistic conductance through a square

potential barrier of height V̄, shown in dashed black, see Eq. �2�.
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FIG. 3. �Color online� Conductivity �= �G�L /W versus length
for an armchair ribbon of width W=103�3a /2 at the effective Dirac

point �= V̄ and fixed impurity fraction p=0.4. Different curves cor-

respond to different strength V0= V̄ / p of the disorder. As the chemi-
cal potential of the effective Dirac point increases, the number N of
incoming modes grows, and a plateau develops at the universal
conductivity minimum 2G0 /� �dashed black line�.
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Gb = G0�
n
	 �1 − znk�2�1 − znk��

2

eik�L�znk − znk��
2 + e−ik�L�1 − znkznk��

2	2

.

�2�

Here the conductance quantum is defined by G0=2e2 /h, the
sum runs from n=−�N−1� /2 to �N−1� /2, the number of
incoming propagating modes is N=1+2 Int
�W / ���v��, �
is the reservoir chemical potential, the Fermi velocity is
given by v= 3

2 ta /�, znk= �k+ iqn� /�k2+qn
2, k=��� /�v�2−qn

2,

k�=�
��− V̄� /�v�2−qn
2, and qn=n� /W.

The comparison between G and Gb over the range of the
abrupt decay is shown in the inset of Fig. 2, where each gray
curve corresponds to an individual disorder configuration
and the dashed black curve corresponds to Eq. �2�. We obtain
a remarkably good agreement of both curves even down to
hallmark features such as Fabry-Pérot oscillations. This good
agreement only begins to break down at lengths for which
the disorder starts to mix modes, i.e., the mean free path lm,
which will be discussed below.

The implications are clear: the sharp decline of conduc-
tance observed at lengths L�W is due to the decay of eva-
nescent modes induced by the sudden change in local aver-

age potential V̄. This average potential shift is well defined
because the effect of the disorder is self-averaging at the
considered impurity concentrations. Although these evanes-
cent waves are produced by the impurities, their combined
effect is equivalent to evanescent modes pinned at the
boundary of the disorder region, x=0 and x=L, which allow

tunneling through an effective potential barrier V̄= pV0. Fur-

thermore, their contribution to transport at energies �� V̄
and very wide ribbons produces the universal statistics of
diffusive metals. Therefore, the observed fast decay in aver-
age conductance is the signature of a disorder-induced
pseudodiffusive regime. As we will show in Sec. III B, the
self-averaging of the disorder arises since the mean free path
becomes anomalously large around the effective Dirac point

�= V̄. Contrary to the ballistic regime, the intrinsic pseudod-
iffusive regime is therefore universal in the limit of wide and
short ribbons, which is verified by the negligible spread of
the curves in the inset of Fig. 2 over the range of the abrupt
decay.

B. Ballistic to diffusive crossover

At lengths L�W evanescent modes through the disor-
dered region have decayed and give way to ballistic propa-

gation of the remaining Np���=1+2 Int
��− V̄�W / ���v��
modes up to lengths L comparable to the mean free path lm,
where the traditional diffusive regime sets in. In the range
W�L�Nplm, therefore, the large-Np form of the average
conductance in the ballistic to diffusive crossover becomes
approximately valid,25

�G� = G0
Np

1 + L/lm
. �3�

This is followed by a transition into a localized regime for
nanoribbon lengths greater that the localization length 	
=Nplm for which �G��G0. From that point on, �G� decays
exponentially as exp�−2L /	�.

The mean free path in the bulk graphene sample is known
to be inversely proportional to the electron energy and the
disorder strength, see, e.g., Refs. 26 and 27. Adapting the
results of these references to our binary disorder model we
arrive at the following expression for the mean free path:

lm =
3�3

4

at3

p�1 − p�V0
2�� − V̄�

. �4�

The 1 / ��− V̄� divergence can be traced back to the vanishing

bulk density of states of graphene at �� V̄ in the presence of

average doping V̄= pV0. This dependence is consistent with
the behavior observed in Fig. 2 for lengths greater than W.
However, a detailed analysis shows that Eq. �4� provides
only a qualitative description of our data. In order to improve
the agreement one has to account for the finite-size effects in
the density of states. In the simplest weak disorder approxi-
mation the mean free path acquires the form15

lm =
��3

4

t3W

p�1 − p�V0
2

Np


2�� − V̄�
, �5�

where the effective density of states 
��� is defined as fol-
lows:


��� = 1 + 2����
n=1

���2 − En
2�

��2 − En
2

. �6�

Here En=�vn� /W are threshold energies at which new
channels open up. According to Eq. �5� the mean free path is

no longer divergent at �= V̄, rather it saturates at a finite
value lmax�W. In Fig. 4 we show the comparison of the
mean free path Eq. �5� to the one resulting from fitting our
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FIG. 4. �Color online� Mean free path as a function of chemical
potential for a metallic armchair nanoribbon of width W
=103�3a /2, impurity strength V0=0.25t, and impurity fraction p
=0.4. Black curve: bulk value, Eq. �4�. Light �red� curve: finite
width result, Eq. �5�. Dots: values obtained by fitting numerical
results to Eq. �3�.
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data in Fig. 2 with Eq. �3�; we find that Eq. �5� reproduces
our numerical data very accurately.

C. Dependence of conductance on disorder parameters

In order to give a comprehensive overview of the inter-
play between the various disorder parameters, we have cal-
culated the conductance of a long metallic graphene ribbon
�L=3000a� for different parameters p and V0 at a fixed
chemical potential �=0.1t. The results are summarized in
Fig. 5. Parameters p and V0 that lead to a large mean free
path show up as regions with a relatively high conductance.
For example, in the region around pV0=� depicted with a
solid black curve in Fig. 5, the conductance is close to G
=2e2 /h, even for this rather long ribbon. The conductance is
also large around p=0 and p=1, which correspond to the

regimes where the effective disorder strength p�1− p�V0
2 is

small. This factor thus accounts for the semilunar shape of
the phase diagram. Nevertheless, the physical picture leading
to a high conductance is somewhat different for small and
high disorder percentages. For small p �and V0�, we are in
the strict ballistic regime, where the electrons do not feel the
impurities at all, not even their average doping effect. On the
other hand, for high p we have effectively a disorder-induced
potential barrier in the system.

IV. CONCLUSION

In conclusion, we considered the conductance of graphene
nanoribbons containing binary disorder �typical for chemical

doping� which induces a shift V̄ of the effective Dirac point
along with scattering on single discrete impurities. For short
ribbons we identified a transport regime dominated by eva-
nescent modes which give rise to an intrinsic form of
pseudodiffusive transport. At a longer length scale, a ballis-
tic, and then a diffusive regime is entered where the mean
free path is determined both by scattering on the individual
impurities as well as by the shifted potential. Close to the
effective Dirac point, the mean free path becomes anoma-
lously large, which ensures the universality of the intrinsic
pseudodiffusive regime. Compared to ordinary disordered
conductors, the presence of nonzero-average short-range dis-
order typical for chemically doped graphene therefore adds a
stage to the conventional path toward localization. The pre-
dicted intrinsic pseudodiffusion should be directly measur-
able in chemically functionalized graphene nanoribbons.

ACKNOWLEDGMENT

This research was supported by the European Commis-
sion via Marie Curie Excellence under Grant No. MEXT-CT-
2005-02377.

1 K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I.
Grigorieva, S. Dubonos, and A. Firsov, Nature �London� 438,
197 �2005�.

2 J. González, F. Guinea, and M. Vozmediano, Nucl. Phys. B 406,
771 �1993�.

3 M. Katsnelson, Eur. Phys. J. B 51, 157 �2006�.
4 J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J.

Beenakker, Phys. Rev. Lett. 96, 246802 �2006�.
5 M. A. Laakso and T. T. Heikkilä, Phys. Rev. B 78, 205420

�2008�.
6 E. R. Mucciolo, A. H. Castro Neto, and C. H. Lewenkopf, Phys.

Rev. B 79, 075407 �2009�.
7 E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando,

and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 �2006�.
8 I. L. Aleiner and K. B. Efetov, Phys. Rev. Lett. 97, 236801

�2006�.
9 P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B

74, 235443 �2006�.
10 A. Schuessler, P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin,

Phys. Rev. B 79, 075405 �2009�.
11 K. Nomura, M. Koshino, and S. Ryu, Phys. Rev. Lett. 99,

146806 �2007�.
12 M. Titov, EPL 79, 17004 �2007�.
13 P. San-Jose, E. Prada, and D. S. Golubev, Phys. Rev. B 76,

195445 �2007�.
14 J. H. Bardarson, J. Tworzydlo, P. W. Brouwer, and C. W. J.

Beenakker, Phys. Rev. Lett. 99, 106801 �2007�.
15 A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon, G. Cunib-

erti, and S. Roche, Nano Res. 1, 361 �2008�.
16 D. A. Areshkin, D. Gunlycke, and C. T. White, Nano Lett. 7, 204

�2007�.
17 J. P. Robinson, H. Schomerus, L. Oroszlany, and V. I. Fal’ko,

Phys. Rev. Lett. 101, 196803 �2008�.
18 A. Lherbier, X. Blase, Y.-M. Niquet, F. Triozon, and S. Roche,

Phys. Rev. Lett. 101, 036808 �2008�.
19 M. M. Pant and B. Y. Tong, J. Phys. C 13, 1237 �1980�.
20 D. H. Dunlap, H.-L. Wu, and P. W. Phillips, Phys. Rev. Lett. 65,

88 �1990�.

FIG. 5. �Color online� Conductance of a graphene armchair rib-
bon of length L=3000a and width W=103�3a /2 for different val-
ues of the impurity fraction p and scattering potential V0. The
chemical potential is fixed to �=0.1t. The solid line corresponds to

the condition �= V̄= pV0. The dotted lines are guides for the eyes,
bounding the region of increased conductance around the effective
Dirac energy.

DIETL et al. PHYSICAL REVIEW B 79, 195413 �2009�

195413-4



21 G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J.
van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803
�2008�.

22 G. Metalidis and P. Bruno, Phys. Rev. B 72, 235304 �2005�.
23 S. Sanvito, C. J. Lambert, J. H. Jefferson, and A. M. Bratkovsky,

Phys. Rev. B 59, 11936 �1999�.

24 J. P. Robinson and H. Schomerus, Phys. Rev. B 76, 115430
�2007�.

25 C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 �1997�.
26 N. Shon and T. Ando, J. Phys. Soc. Jpn. 67, 2421 �1998�.
27 H. Suzuura and T. Ando, Phys. Rev. Lett. 89, 266603 �2002�.

DISORDER-INDUCED PSEUDODIFFUSIVE TRANSPORT IN… PHYSICAL REVIEW B 79, 195413 �2009�

195413-5


