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Abstract: Indirubins known to target mammalian cyclin-dependent kinases (CDKs) and glycogen 

synthase kinase (GSK-3) were tested for their antileishmanial activity. 6-Br-indirubin-3'-oxime (6-

BIO), 6-Br-indirubin-3'acetoxime and 6-Br-5methylindirubin-3'oxime (5-Me-6-BIO) were the most 

potent inhibitors of L. donovani promastigote and amastigote growth (IC50 values ≤ 1.2 μM). Since 

the 6-Br substitution on the indirubin backbone greatly enhances the selectivity for mammalian 

GSK-3 over CDKs, we identified the leishmanial GSK-3 homologues, a short (LdGSK-3s) and a 

long one, focusing on LdGSK-3s which is closer to human GSK-3β for further studies.  Kinase 



assays showed that 5-Me-6-BIO inhibited LdGSK-3s more potently than CRK3 (the CDK1 

homologue in Leishmania), while 6-BIO was more selective for CRK3. Promastigotes treated with 

5-Me-6-BIO accumulated in the S and G2/M cell-cycle phases and underwent apoptosis-like death.  

Interestingly, these phenotypes were completely reversed in parasites over-expressing LdGSK-3s. 

This finding strongly supports that LdGSK-3s is a) the intracellular target of 5-Me-6-BIO and b) 

involved in cell-cycle control and in pathways leading to apoptosis-like death. 6-BIO treatment 

induced a G2/M arrest, consistent with inhibition of CRK3, and apoptosis-like death. These effects 

were partially reversed in parasites over-expressing LdGSK-3s suggesting that in vivo 6-BIO may 

also target LdGSK-3s.  Molecular docking of 5-Me-6-BIO in CRK3 and 6-BIO in human GSK-3β 

and LdGSK-3s active sites predict the existence of functional/structural differences that are 

sufficient to explain the observed difference in their affinity.  In conclusion, LdGSK-3s is validated 

as a potential drug target in Leishmania and could be exploited for the development of selective 

indirubin-based leishmanicidals.
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Ms. Ref. No.:  IJPara09_064
Title: 5-Me-6-BIO targeting the leishmanial GSK-3<beta> affects cell-cycle progression 
and induces apoptosis-like death: exploitation of GSK-3<beta> for treating leishmaniasis 

Dear Editor,

First, I would like to thank you for giving us the opportunity to reconsider your decision 
on our submitted manuscript. Please note that in the title we have changed GSK-3β to 
GSK-3 short form. We have addressed most if not all of the comments raised by the 
reviewers and explained how we dealt with point by point in the "Response to Reviews".

We hope that the revised version of our MS covers the reviewers concerns.

Yours sincerely,

Ketty Soteriadou, PhD
Research Director
Laboratory of Molecular Parasitology
Hellenic Pasteur Institute, Bas. Sofias 127, 11521
tel: +30-2106478841
email: ksoteriadou@pasteur.gr
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"Response to Reviews"

Ms. Ref. No.:  IJPara09_064
Title: 5-Me-6-BIO targeting the leishmanial GSK-3<beta> affects cell-cycle progression 
and induces apoptosis-like death: exploitation of GSK-3<beta> for treating leishmaniasis 

Reviewer #1: General Remarks:

In this study, the authors evaluated the antileishmanial activity of sixteen indirubin 
compounds known to target mammalian cyclin-dependent kinases and glycogen synthase 
kinase (GSK-3). Both developmental forms of Leishmania donovani life cycle were 
tested and three 6-bromo substituted indirubins (e.g. 5-Me-6-BIO, 6-BIO and 6-BIA) 
were found to be more potent inhibitors of L. donovani promastigotes but interestingly 
also of intracellular amastigotes. Experimental evidence provided here strongly supports 
that the L. donovani LdGSK-3beta homolog is the main intracellular target of 5-Me-6-
BIO and suggests a potential role of GSK-3beta in cell cycle progression and in 
apoptotic-like death. The data also indicate that 6-BIO targets less efficiently LdGSK-
3beta but binds with much higher affinity to the Leishmania CRK3 kinase inducing also 
G2/M arrest and apoptosis-like death. Removal of the inhibitor or overexpression of 
LdGSK-3beta, but not of a kinase dead mutant, by Leishmania completely reverts the 
inhibitory cellular effects induced by 5-Me-6-BIO but only a partial reversion was seen 
with 6-BIO treatment, further supporting the targeting specificity of 5-Me-6-BIO for 
LdGSK-3beta. Although, the validity of GSK-3 as a potential drug target has been 
recently evaluated in T. brucei and few indirubin compounds have been used previously 
to target cyclin-dependent kinases in L. mexicana, this study extends beyond these 
previous investigations by evaluating more indirubin compounds on different cell-cycle 
forms of L. donovani and by providing sufficient insight on the cellular targets and their 
binding specificity as well as on their potential biological function. The conclusions here 
are well supported by a large set of experiments and the work is interesting and generally 
well conducted.
More efforts toward the development of novel antileishmanial drugs should generally be 
devoted, and this study is relevant and in line with such initiatives.

Specific remarks:

1- Although the effect of 5-Me-6-BIO on LdGSK-3beta is clearly specific and implies 
that the LdGSK-3beta is the main target of 5-Me-6-BIO, it is surprising however, that 
only a 2-fold increase in the expression of LdGSK-3beta kinase in the Leishmania 
overexpressor was able to revert completely the inhibitory cellular effects (e.g. of growth 
inhibition, cell-cycle progression and apoptosis-like death) induced by 5-Me-6-BIO. Is 
that possible that the HA-tagged version of GSK-3beta has a higher affinity for 5-Me-6-
BIO than the WT enzyme or that may be this tagged protein undergoes a different 
phosphorylation or autophosphorylation pattern resulting in changes of its binding 
affinity to the inhibitors? Determining the inhibition (IC50) of this tagged protein kinase 

* Response to Reviewers



activity by 5-Me-6-BIO will probably answers part of this question. The authors should 
discuss this interesting but intriguing result. 

May be it was not clearly stated but as described in the Material and Methods as well as 
in the Results Sections kinase assays were performed with the (His)6-tagged LdGSK-3s 
purified from LdGSK-3s over-expressing transfectants. Therefore the calculated IC50
is that of the His-tagged LdGSK-3s (0.09 μM). We cannot measure the IC50 of the wild 
type kinase since we have not purified the wild type kinase. However, the finding that 
wild type promastigotes as well as sat-transfectants after 72h of treatment were 
inhibited by 5-Me-6-BIO with an IC50 of 1.2±0.2 μΜ and 1.2±0.1 μM respectively 
while the respective IC50 for the LdGSK-3s over-expressing transfectants, where there 
is a 2-fold increase in LdGSK-3s, was  approximately 2-fold higher IC50  2.8±0.2 μM
(Fig. 5Α,B) suggest that the wild-type kinase should be inhibited by 5-Me-6-BIO with 
an IC50 value comparable with that of the His-tagged LdGSK-3s. We have commented 
on this in the Discussion Section, as suggested by the reviewer (lines 688-689).

2- Given that LdGSK-3beta expression and subcellular localization are different between 
L. donovani promastigotes and amastigotes, it is somewhat surprising that the IC50, 
especially for 5-Me-6-BIO, is the same for promastigotes and intracellular amastigotes. 
Could the authors comment on that?

We believe that the fact that the IC50 values against 5-Me-6-BIO are approximately 
the same between the two stages may be explained by  a higher activity of the kinase in 
amastigotes stage than in  promastigotes which may be associated with the different pH 
and temperature conditions. Also we cannot exclude that 5-Me-6-BIO may also target
other kinase in this stage.
We have included a comment on this in the Discussion section (lines 656-658)

3- There are two GSK-3 isoforms (alpha and beta) in L. donovani. The authors have only 
investigated the LdGSK-3beta isoform. Did overexpression studies done with the GSK-
3alpha isoform revert also the phenotype induced by 5-Me-6-BIO? It will be important to 
assess in future studies whether the GSK3-alpha isoform is also inhibited by the selected 
indirubin compounds to further validate GSK-3 as a potential drug target. 

Please note that we have renamed the studied homologue from GSK-3β to GSK-3 short
(see reply to comment 1, reviewer 2).
We have studied only the LdGSK-3short isoform, because it is almost identical in
different Leishmania species and is closer to both  the mammalian GSK-3 isoforms. 
Indeed future studies focusing on GSK3 long isoform and its inhibition by the selected 
indirubin compounds will  further validate GSK-3 as a potential drug target. 

4- The manuscript is overall well written but is too long and needs to be reduced 
significantly in length. For example, reorganizing the different subsections and merging 



some of them should shorten the Materials and methods section. The Results section 
needs also to be shortened, especially the last section 3.8. It will also be preferable to 
integrate the 6-BIO data (section 3.7) together with the 5-Me-6-BIO data, as most of the 
observed phenotype with either inhibitor is quite similar. This will also save some space.

Following the suggestions of the reviewer we have merged in the Materials and 
methods 2.4 (Analysis of indirubin-treated promastigotes by flow cytometry) with 2.6 
(Double staining with Annexin V and PI) and 2.13 (Expression of Leishmania Histone 
H1) with 2.14 (Kinase assays). This has shortened this section.
We also have integrated section 3.7 of the initial submission (G2/M phase arrest and 
induction of apoptosis-like death in 6-BIO-treated L. donovani promastigotes: LdGSK-
3s over-expression counteracts 6-BIO induced cellular effects) with sections 3.5 and 
3.6 . Thus the new sections 3.5 and 3.6 are shorter.
We also have shortened section 3.8 (Structure Activity Relationships studies of 
indirubin-leishmanial kinases interactions using molecular simulations) that is 3.7 in 
the revised manuscript. Some data on 3.7 are provided as supplementary.

5- 6-BIO has a much higher binding affinity (IC50=0.005uM) for the human GSK-3beta 
than for the Leishmania enzyme (IC50=0.15uM) but it has a stronger affinity for the 
Leishmania CRK3 (IC50=0.02 uM). On the other hand, 5-Me-6-BIO has a high affinity 
(IC50=0.09uM) for the LdGSK-3beta but there is no mention on its binding affinity for 
the human ortholog.
The data generated from the molecular docking experiments in section 3.8 should be 
better discussed in the context of the binding affinities of these inhibitors to the 
Leishmania kinase targets vs. the corresponding human targets and what it could be done 
to improve or to reverse some of these binding affinities in order to increase parasite 
killing while reducing toxicity to human cells. 

We have included this omission concerning the activity of 5-Me-6-BIO for its human 
ortholog (lines 577-580). Also possible ways for the improvement of the affinities of 
indirubins towards parasite kinases have been incorporated in the Results (3.7 last 
paragraph lines 619-625) as suggested by the reviewer.

Minor points:

6- Figure 1 might be included as a supplemental material.

Figure 1 is provided as supplemental material, as suggested by the reviewer.

7- The Alamar blue assay, although it constitutes an improvement over other staining
assays is not very quantitative for measuring intramacrophage Leishmania growth. 
Therefore, more quantitative assays that make use of reporter genes should eventually be
used in the future to better evaluate the activity of indirubin compounds on intracellular
amastigotes in vivo. 



We discuss the disadvantages of Alamar blue assay for measuring the growth of 
intracellular amastigotes compared to the use of reporter genes in the Discussion 
section of the revised manuscript (line 634-637).

8-This reviewer would like to stress the attention on the possibility that some of the
indirubin compounds targeting specifically GSK-3 might have an effect on the host
immune responses against the parasite, hence altering parasite growth inside
macrophages (see the paper by Ohtani M, et al., Blood 2008). 

We would like to note that in the context of this study we have not used activated 
macrophages and therefore LPS-induced phosporylation of GSK-3 which in turn 
regulates IL-12 production is not applicable.  However, since this is an important issue 
we have briefly stated in the Discussion of the revised manuscript that indirubins 
(GSK-3 inhibitors) may affect host immune responses (lines 724-726)

Reviewer #2:
This paper describes the effects of indirubin derivatives on Leishmania. The compounds
causes cell cycle defects and apoptosis-like cell death. Based on the fact that this family
of compounds target GSK3 in mammalian cells, the authors focus subsequent work on
one of the GSK3-like enzymes, LdGSK3beta (the reasons given to select one rather than
the other -"most well-studied mammalian isoform" and "almost identical in different
Leishmania species"- are not compelling). The central finding is that over-expression of 
LdGSK3beta renders parasite more resistant to the inhibitor, suggesting the enzyme is a 
major target.
The topic is clearly of interest. My main concern with the paper is its length: lack of 
concision causes a dilution of the central points. The text should be shortened 
significantly (several sections, e.g. the data on the Paullones, might be included as 
supplementary information), so as to present the main findings in a more incisive way. 

We have shortened the revised manuscript by ~ 20% and data on additional 
structurally divergent inhibitors (e.g. Paullones) has been provided as supplemental.

There are also additional issues that should be addressed before the manuscript becomes 
suitable for publication.

Major points :

1. Phylogeny of the Leishmania GSK3 enzymes. The authors rather summarily say (line 
406) that LGSK3a and GSK3b are "equivalent" to mammalian GSK3a and GSK3b. What 
does this mean? A simple phylogenetic tree of alpha and beta orthologues from several 
species is required to support the statement. The two GSK3-like proteins were identified 
in the Parsons et al., study of the kinome of trypanosmatids, which should be cited here 
(Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania 



major, Trypanosoma brucei and Trypanosoma cruzi. Parsons M, Worthey EA, Ward PN, 
Mottram JC. BMC Genomics. 2005 Sep 15;6:127).

The phylogenetic tree of alpha and beta orthologues from several species is provided 
for the reviewer but it is not included in the submitted revised version. For generating 
the tree GSK-3 protein sequences from different species were aligned and for the 
analysis PHYLIP package was used. For tree construction, we used either the 
neighbor-joining (NJ) method with at least 100 bootstrap samples, or the heuristic 
approximation of the maximum likelihood (ML) method which produced trees with the 
same topology. The Leishmania GSK-3 forms group with the T. brucei and T. cruzi 
homologues and are close to the S. cerevisiae GSK-3β proteins. Oddly both the 
Leishmania GSK-3 forms seem to have the same distance from the mammalian GSK-3 
forms. This could be explained by the fact that Leishmania GSK-3 long is 
characterized by several long amino-acid stretches which do not correspond to
sequences from GSK-3 molecules from the other species and force the alignment 
algorithms to introduce a lot of gaps. The gaps in the multiple alignments are ignored 
by the tree construction algorithms, thus producing a tree in which the differences 
between the two Leishmania GSK-3 forms are not well represented. 

Using pairwise global alignments the resulting identity/similarity matrix (Table 2 of the 
revised manuscript) shows a higher identity (%) of the Leishmania GSK-3 short  than 



the GSK-3 long form to both the human GSK-3 forms although GSK-3s has a slightly 
higher identity to GSK-3β than to GSK-3α (Table 2).This does not allow us to 
unambiguously determine whether GSK-3s is equivalent to the GSK-3β mammalian 
form.  Therefore we have renamed the studied homologue from GSK-3β to GSK-3 
short.
Please refer to the Introduction and Results sections (lines 107-108 and lines 340-345
respectively). The annotation in the database has also been modified accordingly (Ac 
number EF620873).

Also, we have cited the suggested relevant publication (line 340).

2. Km values. Line 327-330 : < Km values for ATP and substrate for each kinase were 
measured; In order to determine IC50 values, we used ATP and substrates concentrations 
at the calculated Km values". Two questions/comments: (1) the enzymological raw data 
(e.g. Lineweaver-Burke plots) should be made available (e.g. as Supplementary 
Information). (2) From the statement above, it follows that both kinases have the same 
Km for ATP. Is that correct? That would be quite a coincidence!

As suggested by the reviewer Lineweaver-Burke plots are included in the revised 
manuscript as supplementary information (figure 3).

The Km values for ATP for both kinases are around 15 μM, specifically LdGSK3s and 
CRK3 Km for ATP was 15.2 μM and 14.78 μM respectively. So, we used 15 μM for the 
kinase assays, in order to be able to compare the IC50 values with the inhibitors. 
We refer to this in the Materials and Methods section 2.12. (lines 282-285).

3. Effect of the inhibitors on amastigotes. Line 381 ff. If I understand the assay correctly, 
the infected macrophages are treated for 72h with the inhibitor, lysed, and the viability of 
parasites is measured 48 hours after lysis. If this is indeed the case, then the amastigotes 
are under drastically non-physiological conditions for 48 hours prior to measurement of 
viability. Can it be excluded that the function assigned to GSK3 in intracellular survival 
is in fact a function in stress response (i.e. parasites require GSK3 activity to survive 
stress caused by the sudden change to axenic conditions?). In other systems, GSK3 
homologues are known to be involved in stress response (see for example Richard O, 
Paquet N, Haudecoeur E, Charrier B. "Organization and expression of the GSK3/shaggy 
kinase gene family in the moss Physcomitrella patens suggest early gene multiplication in 
land plants and an ancestral response to osmotic stress", J Mol Evol. 2005 Jul;61(1):99-
113. Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR.T-DNA tagged 
knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced 
tolerance to various abiotic stresses. Plant Mol Biol. 2007Nov;65(4):453-66.) This would 
deserve a comment in the Discussion.



The reviewer’s comment is correct. It could be speculated that in the intracellular 
amastigotes the function of LdGSK-3 may be linked among others to their response 
and adaptation to stress (acidic pH and shift in temperature). This is mentioned in the 
Discussion lines 653-655.

4. Figure 3. the text and legend to Fig. 3 do not provide sufficient information: 
-There is no information on quality of the purified enzyme, other than the sentence (line 
460) "we have purified LdGSK3 and CRK3 from L. donovani over-expressing 
transfectants and transgenic Lm promastigotes, respectively". One would really like to 
see a gel of the purified proteins, to be able to evaluate purity, especially considering the 
fact that the authors propose specific activity measurements (lines 465-466). To know 
how much kinase was used, one has to go to the Material & Methods section; even so, it 
is not clear what the source of enzyme is, as production from both bacteria and transgenic 
parasites is described. Please clarify.
-There is no mention of the concentration of 5-Me-6-BIO used in lane 3.
-Also, which casein was used (alpha, beta?) 
-Finally, in Fig 3 the negative control is a heat-denatured extract; the kinase-dead enzyme 
would be a much better and more specific control. It is said (line 573) that "LdGSK-
3<beta>/K49R, which was a kinase-dead mutant as confirmed by kinase assays".. why 
not include this in Fig. 3?

The requested information and relevant clarifications have been incorporated in the 
revised version. 
- In particular we clearly mention that the LdGSK3s enzyme  used for the kinase assays 
in Fig. 2 was purified from L. donovani LdGSK3s over-expressing transfectants (1 μg 
LdGSK-3s/reaction) (section 3.4, lines 417-418). We also mention this in the legend to 
Fig.2.
- A gel of the purified LdGSK3s and CRK3 is provided as supplementary figure 2 as 
suggested.
- In the material and methods section 2.12 (lines 273-274 and 290-291), we report that 
the source of the enzyme in both cases was from transgenic parasites. 
-The concentration of 5-Me-6-BIO used in lane 3 was 4 μΜ, in order to achieve 
maximum inhibition of the enzyme (section 3.4, line 424). We also mention this in the
legend to Fig.2.
- Concerning the type of casein we used it was dephosphorylated from bovine milk and 
was obtained from Sigma (C4032). It is usually used as a substrate for protein kinase 
assays (section 2.12, line 293).
-The reviewer’s comment was correct. So, we have repeated the experiment and used 
the kinase-dead mutant LdGSK-3s/K49R as a negative control (new Fig. 2, lane 4)

5. Effect of over-expression of a kinase-dead mutant. One would expect that this would 
lead to a dominant-negative effect. In Fig. 7, there is no panel showing the sat-
LdGSK3betaK49R in the absence of any inhibitor (the "control" line show presumably 



wild-type parasites?). It would be interesting to see if overexpression of the mutant itself 
causes some phenotype. 

The expression of the kinase-dead mutant did not lead to an apparent phenotype, as the 
cells still express the native kinase (Fig 5A). In Fig 6 (previously Fig 7) we do not show 
the sat-LdGSK-3s/K49R in the absence of any inhibitor, as they have the same 
phenotype with sat and sat-LdGSK-3s promastigotes. No apparent changes in parasite 
growth, cell cycle progression or morphology were observed. Fig. 5C shows that the 
cell cycle of the parasites expressing LdGSK-3s/K49R in the absence of the inhibitor is 
normal. We mention this in lines 552-553. In Fig. 6 control cells (sat, sat-LdGSK-3s or 
sat-LdGSK-3s/K49R) treated with 0.02% DMSO had a normal morphology. We 
mention this in lines 552-554.

6. Structural modelling. The identification of the gatekeeper as a potential cause for 
difference in IC50s is interesting. One suggestion: since the authors rightly point out (line 
683) in the context of GSK3 that apo structures are not as suitable as holo structures for 
docking experiments, it is important that that state that the structure (1E9H) they used in 
the context of CRK3 modelling is not just that of "CDK2" as they mention, but that of the 
CDK2-cyclinA complex, and hence much closer to an active configuration; it would be 
best to cite the original paper (Davies et al., Structure, 2001).

We have cited the original paper (Davies et al., Structure, 2001), concerning the 
CDK2-cyclinA complex, which was used to build the CRK3 homology model as 
suggested.

Minor and editorial points:

Several sentences are misconstructed and should be rewritten. Examples:
Line 416: "GSK-3<beta> homologues are almost identical in different Leishmania 
species and is the most well-studied mammalian isoform including crystallographical 
data."
Line 347 was rewritten: “GSK-3s homologues are almost identical in different 
Leishmania species and b) GSK-3s is slightly closer to the mammalian GSK-3<beta, 
the most well-studied  isoform.

Line 467: "After determining the Km values for ATP and the respective for the 
substrates,."
Line 398 was rewritten: "After determining the Km values of both kinases for ATP and 
their respective substrates."

Line 672: "Moreover indirubin analogs, while potently inhibit leishmanial GSK-3<beta> 
(6BIO IC50=0.150<mu>M), they are not as efficient as in the case of the human 
homolog (6-BIO IC50=0.005<mu>M)."
Line 578 was rewritten: "While indirubin analogs potently inhibit leishmanial GSK-3s



(5-Me-6-BIO IC50=0.09μM, 6BIO IC50=0.150μM), they are not as efficient as in the 
case of the human homolog (5-Me-6-BIO IC50=0.006μM, 6-BIO IC50=0.005μM) 
(Meijer et al., 2003; Polychronopoulos et al., 2004).

Please give references for the TDZD-8 and SNS-032 inhibitors (line 494)
We give the references for all the inhibitors that we used in the kinase assays in the 
supplementary material under the name “Structurally divergent inhibitors”.

For the benefit of the non-specialist reader, explain what a hypodiploid Leishmania cell 
is.
We have explained in the text that a hypodiploid Leishmania cell is a cell with <2N 
DNA content (line 447).
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Abstract: 29

Indirubins known to target mammalian cyclin-dependent kinases (CDKs) and glycogen synthase 30

kinase (GSK-3) were tested for their antileishmanial activity. 6-Br-indirubin-3’-oxime (6-BIO), 6-31

Br-indirubin-3'acetoxime and 6-Br-5methylindirubin-3'oxime (5-Me-6-BIO) were the most potent 32

inhibitors of L. donovani promastigote and amastigote growth (IC50 values ≤ 1.2 μM). Since the 6-33

Br substitution on the indirubin backbone greatly enhances the selectivity for mammalian GSK-3 34

over CDKs, we identified the leishmanial GSK-3 homologues, a short (LdGSK-3s) and a long one, 35

focusing on LdGSK-3s which is closer to human GSK-3β for further studies. Kinase assays showed 36

that 5-Me-6-BIO inhibited LdGSK-3s more potently than CRK3 (the CDK1 homologue in 37

Leishmania), while 6-BIO was more selective for CRK3. Promastigotes treated with 5-Me-6-BIO 38

accumulated in the S and G2/M cell-cycle phases and underwent apoptosis-like death. 39

Interestingly, these phenotypes were completely reversed in parasites over-expressing LdGSK-3s. 40

This finding strongly supports that LdGSK-3s is a) the intracellular target of 5-Me-6-BIO and b) 41

involved in cell-cycle control and in pathways leading to apoptosis-like death. 6-BIO treatment 42

induced a G2/M arrest, consistent with inhibition of CRK3, and apoptosis-like death. These effects43

were partially reversed in parasites over-expressing LdGSK-3s suggesting that in vivo 6-BIO may 44

also target LdGSK-3s. Molecular docking of 5-Me-6-BIO in CRK3 and 6-BIO in human GSK-3β45

and LdGSK-3s active sites predict the existence of functional/structural differences that are 46

sufficient to explain the observed difference in their affinity. In conclusion, LdGSK-3s is validated 47

as a potential drug target in Leishmania and could be exploited for the development of selective 48

indirubin-based leishmanicidals. 49

50

Keywords: L. donovani glycogen synthase kinase-3 short; 5-Me-6-BIO; 6-BIO; indirubins;51

apoptosis-like death; drug target52

53



3

1. Introduction54

Leishmaniasis is an umbrella term for a group of protozoan vector-borne parasitic diseases and 55

manifests with three major forms, visceral, cutaneous and mucocutaneous. It is a significant cause 56

of morbidity and mortality in developing countries, and affects about 2 million people per year 57

mostly in tropical and subtropical regions (Alvar et al., 2006). Leishmaniasis is also an important 58

public health and veterinary concern in Mediterranean countries (Dujardin, 2006). Chemotherapy 59

for leishmaniasis is generally ineffective mainly due to the emerging drug-resistance and severe 60

toxic side effects (Croft et al., 2006). Antimonials are used as first-line treatment despite their 61

toxicity. In case of antimonial resistance, liposomal formulations of amphotericin B, not devoid of 62

adverse side effects, are used (Croft et al., 2006). Miltefosine, the first oral drug, has proved to be 63

highly effective against visceral leishmaniasis. However, miltefosine-resistant parasites have been 64

obtained in vitro indicating that there is a risk of resistance emerging in the field. Consequently 65

there is an urgent need to discover new targeted drugs against leishmaniases (Croft et al., 2006).66

Leishmania species are transmitted to mammals by the bite of a sand fly vector. During a sandfly67

blood meal, Leishmania promastigotes pass into the mammalian host where they penetrate  68

macrophages and, within their phagolysosomes, transform into the non-flagellated, non-motile 69

amastigote form  and multiply (Chang, 1983). These trypanosomatid protozoan parasites have 70

developed unusual and unique features in their cell biology to ensure adaptation to the contrasting 71

environments of their insect and mammalian hosts that are reflected in the complexity of their cell-72

cycle control and during their differentiation. Therefore, differences between cell-cycle control in 73

Leishmania and mammals may lead to the identification of essential molecules regulating the 74

parasite cell-cycle that could  be exploited for rational drug design (Naula et al., 2005). Potential 75

parasite candidate targets include cyclin-dependent kinases (CDKs), glycogen synthase kinases 76

(GSK-3), Aurora kinases and mitogen activated protein kinases (MAPKs) (Naula et al., 2005).77

Recently, it was shown that T. brucei GSK-3 “short” is a potential drug target for trypanosomiasis 78

therapy (Ojo et al., 2008). Efforts are therefore focused on the exploitation of kinase inhibitor79
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libraries for the identification and further development of inhibitors that selectively target parasite 80

kinases without damaging the host. 81

Indirubin analogues (collectively referred to as indirubins), a family of bis-indoles known for 82

over a century as a minor constituent of plant, animal and microorganism-derived indigo, are83

powerful inhibitors of mammalian CDKs and GSK-3 by competing with ATP for binding to their84

catalytic site (Meijer et al., 2003; Polychronopoulos et al., 2004). 6-bromo substituted indirubins 85

display higher selectivity for mammalian GSK-3 over CDKs (Meijer et al., 2003; Polychronopoulos 86

et al., 2004). In cell-based assays, indirubins display anti-mitotic and anti-tumoral activity  and 87

induce arrest in G1 or G2/M phase of the cell-cycle, depending on the cell line (Hoessel et al., 1999; 88

Damiens et al., 2001). Specifically, 6-bromo-indirubin-3’-oxime (6-BIO) induces apoptotic death in 89

neuroblastoma cells (Ribas et al., 2006).90

GSK-3 is a multifunctional serine/threonine kinase found in all eukaryotes. This enzyme is 91

known to play a key role in many cellular and physiological events, including Wnt signaling, 92

transcription, cell-cycle and differentiation, neuronal functions and circadian rhythm (Frame et al., 93

2001; Doble and Woodgett, 2003). These functions of GSK-3 and its implication in many human 94

diseases such as Alzheimer’s disease, non-insulin-dependent diabetes mellitus and cancer have 95

stimulated an active search for potent and selective GSK-3 inhibitors, like indirubins (Meijer et al., 96

2004).  97

CRK3, a leishmanial CDK1 homologue, displaying 54% identity and 71% similarity with 98

human CDK1, has been validated as a drug target (Grant et al., 1998; Hassan et al., 2001). Three 99

indirubins (5-sulfonamide-indirubin-3’oxime, 5-SO3Na-3’oxime and 5-SO3H) have been shown to 100

inhibit CRK3 with IC50 values of 11 nM, 16 nM and 47 nM respectively and L. donovani infection 101

of mouse macrophages with IC50 values of 3.56 μM , 5.8 μM and 7.6 μM respectively (Grant et al., 102

2004; Wells et al., 2006). L. mexicana promastigotes treated with indirubins displayed growth arrest 103

and disruption of cell-cycle, in line with the inhibition of a CDK (Grant et al., 2004). 104
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In this study, sixteen indirubins were tested for their antileishmanial activity and three, 6-BIO, 6-105

BIA and 5-Me-6-BIO, were found to be the most powerful inhibitors of both L. donovani106

promastigotes and intracellular amastigotes growth. Since the 6-Br substitution on the indirubin 107

backbone greatly enhances the selectivity for mammalian GSK-3 over CDKs, we identified the 108

leishmanial GSK-3 homologues, a short (LdGSK-3s) and a long one (LdGSK-3l). We then 109

investigated whether our compounds target LdGSK-3s which is closer to human GSK-3β. LdGSK-110

3s was identified as the predominant intracellular target of 5-Me-6-BIO. Evidence is also presented 111

that LdGSK-3s is involved in cell-cycle control as well as in pathways leading to apoptosis-like 112

death.113

114

115

2. Materials and methods116

117

2.1. Cell culture118

L. donovani (strain LG13, MHOM/ET/0000/HUSSEN) promastigotes and the murine 119

macrophage J774 cell line (ATCC) were cultured in medium 199 (M199) and RPMI 1640 (RPMI) 120

respectively, both supplemented with 10% heat inactivated fetal bovine serum (HI-FBS), 10 mM 121

Hepes and antibiotics. Axenic L. donovani amastigotes were generated as previously described122

(Barak et al., 2005; Smirlis et al., 2006). Spleen-derived L. donovani amastigotes were maintained 123

in Schneider’s insect medium pH 5.5 supplemented with 20% HI-FBS at 370C. L. donovani124

transfectants with pLEXSY-sat, pLEXSY-sat-LdGSK-3s, and pLEXSY-sat-LdGSK-3s/K49R were 125

cultured in M199 supplemented with 100 μg/ml nourseothricin (Jena Bioscience). L. mexicana126

CRK3his transfectants were cultured as described previously (Grant et al., 2004). 127

128

2.2. Chemical library129



6

The library consists of sixteen indirubins (Table 1), synthesized as previously described,130

(Polychronopoulos et al., 2004; Ribas et al., 2006). The compounds were dissolved in DMSO at 10 131

mM and serial dilutions in DMSO were made (1 mM and 100 μΜ). Indirubins were diluted in132

culture medium to give the desired final concentrations. 133

134

2.3. Testing in vitro the antileishmanial activity of indirubins against L. donovani promastigotes, 135

intracellular amastigotes and axenic amastigotes. 136

The Alamar blue assay (Mikus and Steverding, 2000) was applied for determining the 137

antileishmanial activity of indirubins  and Amphotericin B (Fungizone) was used as a reference 138

drug. Stationary-phase L. donovani promastigotes (2×107 cells/ml) were seeded into 96-well flat 139

bottom plates at a density of 2.5×106 cells/ml in 200 μl M199 without phenol red, containing 140

increasing indirubin concentrations or the equivalent volume of the diluent DMSO, each in 141

quadruplicate. The final concentration of DMSO was always <1% (v/v) and did not affect the 142

growth of parasites. Following indirubin treatment for 72 h, Alamar blue (20 μl/well) was added 143

and the plates were incubated at 260C for a further 12 h. Colorimetric readings were performed at a 144

test wavelength of 550 nm and a reference wavelength of 620 nm. Comparison of DMSO-treated 145

controls with samples allowed the calculation of the concentration of indirubin necessary to reduce 146

the growth rate of promastigotes by 50% (IC50 values).147

To evaluate the inhibitory activity of indirubins on intracellular amastigotes we treated infected 148

macrophages for 72 h with indirubins and then assessed amastigote survival by lysing infected 149

macrophages using the Alamar blue assay. Briefly, J774 macrophages (2×105 cells/ml in 200 μl 150

RPMI) were left to adhere overnight at 370C in 5% CO2 into 96-well flat bottom plates.151

Macrophages were infected with stationary-phase L. donovani promastigotes at a ratio of 10 152

parasites/macrophage and incubated for a further 24 h at 370C in 5% CO2 as previously described153

(Papageorgiou and Soteriadou, 2002). Then the overlying medium was removed and cells were 154

washed three times in fresh RPMI. Fresh RPMI was added containing increasing concentrations of 155
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indirubins or the equivalent volume of the diluent DMSO, each in quadruplicate. After 72 h, the 156

medium was removed and infected cells were lysed by addition of 100 μl 0.01% SDS in PBS for 30 157

min at 370C. Then 100 μl Schneider’s medium was added to each well, that contained the liberated 158

amastigotes (Papageorgiou and Soteriadou, 2002). Amastigote growth was assessed by the addition 159

of Alamar blue (20 μl/well) and the plates were incubated for 48 h at 370C. Comparison of DMSO-160

treated controls with samples enabled the calculation of the degree to which infection had been 161

inhibited by the presence of indirubins and to calculate the concentration that reduces the number of 162

amastigotes by 50%.163

L. donovani axenic amastigotes  were treated with the inhibitors and the percentages of growth 164

inhibition were assessed by addition of Alamar blue after 72 h of treatment (Habtemariam, 2003). 165

In all cases, IC50 values were determined from dose-response curves via linear interpolation.166

167

2.4. Analysis of indirubin-treated promastigotes by flow cytometry (FACS).168

Stationary-phase (2×107 cells/ml) L. donovani promastigotes were seeded at 106 cells/ml in 169

M199 and incubated at 260C in the presence of DMSO (the diluent, used as control) or the tested 170

indirubin. Preparation of samples for FACS analysis of the cell-cycle was carried out as described 171

by Smirlis et al. (Smirlis et al., 2006). Exposed phosphatidylserine on the outer membrane of cells 172

and plasma membrane integrity of cells were assessed using Annexin V-FITC and PI staining 173

(Apoptosis Detection kit, R&D Systems). Preparation of samples for FACS analysis was performed 174

according to the manufacturer’s instructions. In all cases, twenty thousand cells/sample were 175

analyzed, using a Becton Dickinson FACSCalibur flow cytometer and data were analyzed using the 176

Cell Quest software. All experiments were performed at least three times.  177

178

2.5. Cellular and nuclear morphology. 179

Stationary-phase L. donovani promastigotes were seeded at 106 cells/ml and incubated with 180

either 2 μM indirubin or DMSO for 24 and 48h.  Cells were fixed in 2% paraformaldehyde, and181
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treated with 50 μg/ml RNaseA and 10 μg/ml propidium iodide (PI). Parasites were observed under a 182

TCSSP Leica Confocal fluorescence microscope. At least 100 cells from three independent 183

experiments were recorded for each condition.184

185

2.6. Cell count and viability assay186

Stationary-phase L. donovani promastigotes were seeded at 106 cells/ml and incubated with 187

either 2 μM 5-Me-6-BIO or DMSO for 24, 48h and 72 h.  Cells were then washed twice in PBS, 188

resuspended in drug-free medium and allowed to recover for 24h, 48 h and 72 h. The viability assay 189

at different time points after exposure of parasites to 5-Me-6-BIO and drug removal was assessed 190

using 0.4% Trypan blue solution. Both total cell count and the percentages of viable and non viable 191

cells were recorded. The experiment was performed three times. 192

193

2.7. In situ labeling of DNA fragments by TUNEL.194

In situ detection of DNA strand breaks was performed using the Cell Death Fluorescein 195

Detection kit (Roche Applied Science) following the manufacturer’s instructions. Samples were 196

analyzed under a Zeiss fluorescence microscope at 120× magnification. The ratio of apoptosis197

(apoptotic to total cells) was determined by counting at least 400 cells per group in three 198

independent experiments.199

200

2.8. Gene cloning and antibody production. 201

The L. donovani GSK-3s gene was amplified by PCR from L. donovani (strain LG13, 202

MHOM/ET/0000/HUSSEN) genomic DNA, using a sense primer 5’-ACC GCC ATG GAC ATG 203

TCG CTC AAC GCT GC-3’ and an antisense primer 5’-CCC CCT CGA GCT GCT TGC GAA 204

CTA GCT T-3’, that were designed based on the gene coding for the shorter of the two L. major 205

Friedlin GSK-3 proteins (LmjF18.0270). The amplified PCR product was cloned into the NcoI-206

XhoI site of pTriEx-1.1 vector (Novagen), a construct allowing the addition of a poly-Histidine 207
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extention to the C-terminus of the recombinant protein (pTriEx-1.1-LdGSK-3s). The cloned gene 208

was then sequenced and compared with the short sequence of L. infantum GSK-3209

(LinJ18_V3.0270). The LdGSK-3s DNA and protein sequences were found to be identical to the L. 210

infantum GSK-3s sequences. LdGSK-3s nucleotide sequence was deposited in GenBank 211

(EF620873). The pTriEx-1.1-LdGSK-3s construct was transformed into bacteria and (His)6–tagged212

LdGSK-3 was purified by Metal-Affinity Chromatography (Qiagen Ni-NTA Superflow resin). 213

LdGSK-3s was detected using a polyclonal IgG His-probe antibody (1:500 dilution, stock solution 214

200 μg/ml, Santa Cruz Biotechnology) and a polyclonal anti-ratGSK-3β antibody. The recombinant 215

protein  was subsequently used to immunize a New Zealand white rabbit using the scheme 216

described in a previous study (Smirlis et al., 2006). Affinity purified anti-LdGSK-3s antibody was 217

isolated by low pH elution of antibodies bound to purified LdGSK-3s on nitrocellulose strips, as 218

previously described (Smirlis et al., 2006).219

220

2.9. Generation of transgenic promastigotes and purification of LdGSK-3s and CRK3.221

The DNA encoding (His)6–tagged LdGSK-3s was amplified by PCR from the construct pTriEx-222

1.1-LdGSK-3s, described above. Sense and antisense primers for the amplification were 5’-ACC 223

GCC ATG GAC ATG TCG CTC AAC GCT GC-3’ and 5’ GCA GGC GGC CGC TGA GGT 224

TAA TCA CTT AGT G 3’ respectively. The PCR product was then cloned in the NcoI and NotI225

sites of the Leishmania expression vector pLEXSY-sat (pF4X1.4sat) (Jena Bioscience) to generate 226

the pLEXSY-sat-LdGSK-3s plasmid. The cloned gene was sequenced to confirm the correct 227

orientation. Site-directed mutagenesis was performed on LdGSK-3s in pLEXSY-sat-LdGSK-3s228

construct, using the Phusion® Site-Directed Mutagenesis Kit (Finnzymes) following the 229

manufacturer’s protocol. Primers used for Lysine 49 to Arginine mutation (K49R) were as follows: 230

Forward 5’-GAGCGTGGCGATCCGGAAGGTTATCCAGGAC-3’ and Reverse 5’-231

ATGCCCGTCGACTTCTCCTTGCCTAGTTGCA-3’. The K49R mutation in the construct232

pLEXSY-sat-LdGSK-3s/K49R was confirmed by sequencing.  233



10

L. donovani transfectants with pLEXSY-sat, pLEXSY-sat-LdGSK-3s and pLEXSY-sat-LdGSK-234

3s/K49R plasmids (supercoiled, transfected as episomes) were generated as previously described 235

(Smirlis et al., 2006). Selection of transgenic promastigotes was performed in M199 containing 100 236

μg/ml nourseothricin.237

Purification of LdGSK-3s from L. donovani sat-LdGSK-3s transfectants and of LdGSK-3s/K49R 238

from sat-LdGSK-3s/K49R transfectants as well as of CRK3 from transgenic L. mexicana  239

promastigotes was carried out as previously described (Grant et al., 2004). LdGSK-3s and CRK3 240

were stored with 10% glycerol at -800C for kinase assays.241

242

2.10. Immunoblotting243

Parasites were suspended in lysis buffer (50 mM MOPs pH 7.5, 100 mM NaCl, 1 mM EDTA, 1 244

mM EGTA, 1 mM Na3VO4, 10 mM NaF, 1% Triton X-100) supplemented with protease inhibitors 245

(0.1mg/ml leupeptin, 1 mM PMSF, 5 μg/ml aprotinin, 5 μg/ml pepstatin A, 1 mM phenanthroline) 246

and Laemmli sample buffer was added. Whole cell lysates were resolved by 12% SDS-PAGE,247

transferred to nitrocellulose membranes and subsequently probed with the appropriate primary 248

antibodies: a polyclonal anti-ratGSK-3β antibody [directed against the C-terminal sequence 249

CAHSFFDELRDPNVK, residues identical between rat and LdGSK-3s are underlined] (1:100 250

dilution, stock solution 500 μg/ml, Abcam); the generated anti-LdGSK-3s rabbit polyclonal 251

antibody (1:1000 dilution) and the polyclonal IgG His-probe antibody (1:200 dilution). After 252

incubation with peroxidase-conjugated secondary antibody, 3,3′-Diaminobenzidine was used for 253

detection.254

To demonstrate equal loading of cells, the blot was stripped and re-probed with antiserum 255

against L. infantum myo-inositol-1-phosphate synthase (LinJ14_V3.1450, INO1), reported to be 256

equally expressed in L. mexicana promastigotes and amastigotes (Ilg, 2002). The INO1 gene was 257

PCR-amplified from L. infantum genomic DNA, using a sense primer 5’-258

CAAGGGATCCGATGACGCGTGACATGGACG-3’ and an antisense primer 5’-GGCACTC 259
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GAGCAGCATGTTGCTGTCGG-3’, cloned into the BamHI and XhoI site of pTriEx-1.1, in frame 260

with a C terminal his-tag, expressed in E. coli and purified on Ni-NTA resin. Anti-Lin INO1261

antibody was produced and purified, using nitrocellulose strips with purified INO1, as previously 262

described (Smirlis et al., 2006).263

264

2.11. Immunofluorescence265

Parasites were fixed in 2% formaldehyde and 0.05% glutaraldehyde. Cells were blocked in 50 266

mM NH4Cl containing 3% BSA in PBS and treated with 50 μg/ml RNaseA. Nuclei were stained 267

with 10 μg/ml PI followed by incubation for 5 h with either anti-LdGSK-3s or the anti-ratGSK-3β 268

antibodies (10 μg/ml or 5 μg/ml respectively) in PBS containing 0.1% Triton X-100 and 3% BSA. 269

The bound antibody was detected with 1:100 diluted FITC conjugated anti-rabbit or anti-rat IgG 270

antibody (Sigma). Cells were observed with a TCSSP Leica Confocal fluorescence microscope. 271

272

2.12. Kinase assays273

Kinase assays were performed with purified LdGSK-3s and CRK3 from L. donovani over-274

expressing transfectants and transgenic L. mexicana promastigotes respectively (supplementary Fig.275

2). The kinase activity of LdGSK-3s was assayed using GS-1 peptide 276

(YRRAAVPPSPSLSRHSSPHQSpEDEEE) as a substrate; GS-1  peptide was patterned after the 277

GSK-3 phosphorylation sites of mammalian glycogen synthase (Meijer et al., 2004). CRK3 kinase 278

assays were performed using histone H1 substrate as previously described (Grant et al., 2004). All 279

assays were performed in the kinase assay buffer (50 mM MOPS pH 7.2, 20 mM MgCl2, 10 mM 280

EGTA, 2 mM DTT) in the presence of [γ-33] ATP (3,000 Ci/mmol; 1 mCi/ml) in a final volume of 281

30 μl and incubated for 30 min at 300C as previously described (Meijer et al., 2004). Initially the 282

Km values for ATP and substrate for each kinase were measured. The Km values for ATP for both 283

kinases were around 15 μM (15.2 μM for LdGSK3s  and 14.78 μM for CRK3). In order to 284

determine the IC50 values with the inhibitors, we used ATP and substrate concentrations at the 285
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calculated Km values. For both LdGSK-3s and CRK3 15 μΜ ATP were used in the assays, in the 286

presence of 8.3 μΜ GS-1 peptide and 5 μΜ histone H1 respectively. Ki values for each inhibitor 287

were calculated using the Cheng-Pursoff equation [Ki= IC50/ (1+ S/Km)]. Kinase assays were also 288

performed using the Kinase Luminescent Assay Kit (Promega), following the manufacturer’s 289

instructions, and gave comparable results.290

LdGSK-3s activity (purified from L. donovani over-expressing transfectants, 1 μg 291

enzyme/reaction) was also determined using potential protein substrates: L. infantum histone H1 292

(LeishH1), mammalian histone H1 (Sigma), axin (recombinant, purified from bacteria), myelin 293

basic protein and casein (dephosphorylated from bovine milk, Sigma), (approximately 1 μg 294

substrate/reaction). LeishH1 was expressed in bacteria as a fusion protein with Glutathione-S-295

Transferase (GST) and purified with Sepharose 4B-Glutathione beads as previously described 296

(Smirlis et al., 2006). LeishH1 recombinant protein was cleaved from the GST moiety by thrombin 297

treatment (Smirlis et al., 2006). In vitro phosphorylation of protein substrates was performed in the298

kinase assay buffer.  After 30-min incubation at 300C, in the presence of [γ-32P] ATP (6,000 299

Ci/mmol, 10 mCi/ml) in a final volume of 30 μl, the kinase reaction was stopped by addition of 300

Laemmli buffer (Meijer et al., 2004). The protein substrates were resolved by 12% SDS-PAGE, 301

stained with Coomassie blue and their phosphorylation level was visualized by autoradiography. 302

303

2.13. Homology modeling304

The homology model of parasite GSK-3s was based on the crystal structure of the human 305

GSK-3β complexed with 6-BIO (pdb 1Q41) and the respective of CRK3 on the template structure 306

of human CDK2-cyclin A (pdb 1E9H), (Davies et al., 2001). Model building was performed with 307

MODELLER v. 6 program (Sali and Blundell, 1993) and stereochemical validation with 308

PROCHECK program (Laskowski, 1991). Docking was performed with a Monte Carlo search 309

algorithm. Ligand partial charges were calculated in a semi-empirical level by MOPAC6 (AM1 310

hamiltonian) (Stewart, 1990).311
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3. Results312

313

3.1. Evaluation of the antileishmanial effect of indirubins towards L. donovani promastigotes and314

amastigotes. 315

The Alamar blue assay (Mikus and Steverding, 2000) in a 96-well format, was used for the 316

primary screening and subsequent monitoring of the growth of L. donovani promastigotes and 317

axenic amastigotes exposed to indirubins. The same assay was adapted and used for estimating the 318

growth of intracellular amastigotes 48 h after lysis of the infected macrophages treated for 72 h with 319

the indirubins. In the initial screening, sixteen indirubins were tested at 10 μM. Nine of the 320

compounds did not significantly affect parasite growth even when used at a higher concentration of 321

50 μM. Four out of the sixteen compounds tested significantly inhibited Leishmania growth and 322

their IC50 values were determined, (Table 1). More specifically, 6-BIO, 6-BIA and 5-Me-6-BIO323

inhibited promastigote growth with an IC50 of 0.8±0.1 μM, 0.9±0.1 μM and 1.2±0.2 μM 324

respectively (Table 1). 5-BIO inhibited promastigote growth with an IC50 of 5.2±1.6 μM (Table 1). 325

Interestingly, 6-BIO, 6-BIA, 5-Me-6-BIO and 5-BIO were also found to significantly inhibit the 326

growth of both L. donovani intracellular and axenic amastigotes with IC50 values ranging from327

0.75±0.05 μM to 1±0.2 μM respectively (Table 1). N1-methyl derivatives of 6-BIO and 6-BIA did 328

not inhibit the growth of either promastigotes or amastigotes, consistent with the inactivation of 329

indirubins as kinase inhibitors by this modification (Meijer et al., 2003).330

All four compounds did not affect the growth of macrophages at the concentration used, but as 331

determined using the same assay, they were toxic for host cells at significantly higher 332

concentrations (IC50 values >25 μM). Amphotericin B used as a reference drug inhibited 333

promastigote and amastigote (intracellular or axenic) growth with IC50 values of 0.1±0.01 μM and 334

0.2±0.02 μM respectively. 335

336

337
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3.2. Molecular characterization of LdGSK-3s: expression and localization in L. donovani life cycle.338

Since 6-bromo indirubins are powerful and selective  inhibitors of mammalian GSK-3 (Meijer et 339

al., 2003; Polychronopoulos et al., 2004) we searched in the Leishmania GeneDB database for 340

GSK-3 homologues (Parsons et al., 2005). Two GSK-3 encoding genes were found in the 341

Leishmania genome by BLAST homology searches, a short and a long version. Comparison of the 342

amino acid identities of the two human GSK-3 orthologues versus the two L. infantum forms 343

revealed that GSK-3s is closer than GSK-3l to human GSK-3α and GSK-3β. However, GSK-3s has 344

a slightly higher identity to GSK-3β than to GSK-3α (Table 2). This does not allow us to 345

unambiguously determine whether GSK-3s is equivalent to the GSK-3β mammalian form.346

We focused on the GSK-3s isoform for further studies, since: a) the GSK-3s homologues are347

almost identical in different Leishmania species and b) GSK-3s is slightly closer to the mammalian 348

GSK-3β, the most well-studied isoform. The GSK-3s gene in L. infantum, in L. major and in L. 349

mexicana is located on chromosome 18 and encodes a protein of 355 amino acids with a predicted 350

molecular mass of 40.7 kDa. BLASTP analysis showed that the identified L. donovani GSK-3s351

gene was identical to the L. infantum GSK-3 short gene and almost identical to L. major and L. 352

mexicana GSK-3 short and GSK-3β genes respectively (98% identity and 99% similarity), 353

(supplementary Fig. 1). LdGSK-3s shares 49% sequence identity and 68% similarity with hGSK-354

3β. It also shares 65% identity and 80% similarity with T. brucei GSK-3 “short”, 47% identity and 355

67% similarity with Danio rerio GSK-3β, 42% identity and 64% similarity with Plasmodium 356

falciparum GSK-3, and 49% identity and 68% similarity with Mus musculus GSK-3β 357

(supplementary Fig. 1).358

      LdGSK-3s was detected in L. donovani extracts using an affinity-purified anti-LdGSK-3s359

polyclonal antibody (raised against the recombinant protein expressed in E.coli) and a commercially 360

available polyclonal anti-ratGSK-3β antibody (raised against the C-terminal sequence of rat GSK-361

3β). The ~40 kDa protein detected by both antibodies is in line with the predicted molecular mass of 362

LdGSK-3s. Western blot analysis indicated that the level of expression of LdGSK-3s in L. donovani363
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stationary and logarithmic-phase promastigotes (107 cells/lane) was comparable (Fig. 1A, lanes S 364

and L respectively). LdGSK-3s was also detected in spleen-derived L. donovani amastigotes and 365

axenic amastigotes (107 cells/lane), (Fig. 1A, lanes Am and Ax respectively). Scanning 366

densitometry of the detected bands revealed that LdGSK-3s expression level was about 3-fold lower 367

in amastigotes. As a control for loading equal number of cells, the blot was stripped and re-probed 368

with the antiserum against L. infantum myo-inositol-1-phosphate synthase (LinINO1), a 46 kDa 369

protein whose level of expression is constitutive during promastigote growth and which is equally 370

expressed in promastigotes and amastigotes, (Ilg, 2002; Rosenzweig et al., 2008) (Fig. 1B). No 371

protein band was detected when pre-immune serum was used, as a negative control, (Fig. 2C, lane 372

S, Ax). LdGSK-3s was also recognized by the anti-ratGSK-3β antibody (Fig. 2D lane S). Similarly, 373

the mouse GSK-3β (a 47 kDa protein) in J774 cell extracts (9×105 cells/lane) was detected using 374

both antibodies (Fig. 1A and D, lane J774). This result shows the cross reactivity of the two 375

antibodies with mammalian and leishmanial GSK-3s. 376

The intracellular localization of LdGSK-3s in L. donovani promastigotes and axenic amastigotes 377

was detected by immunofluorescence using both the affinity-purified anti-LdGSK-3s and the anti-378

ratGSK-3β antibodies. Immunostaining of L. donovani logarithmic-phase promastigotes showed 379

that LdGSK-3s is localized in the parasite cytoplasm and flagellum (Fig. 1E). FITC-staining in the 380

parasite nucleus or kinetoplast was detected at background levels. Interestingly, LdGSK-3s was 381

localized mainly in the parasite nucleus and flagella in stationary-phase promastigotes (Fig. 1E).382

LdGSK-3s was also detected in logarithmic-phase axenic amastigotes but the pattern of 383

immunostaining was different from both logarithmic- and stationary-phase promastigotes:  more 384

condensed and localized immunostaining in the cytoplasm of axenic amastigotes (Fig. 1E). In all 385

cases staining with the two antibodies was similar and therefore only that with the affinity-purified386

anti-LdGSK-3s is shown.387

388

3.3. LdGSK-3 s and CRK3 inhibitor screen.389
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Since 6-bromo indirubins are powerful inhibitors of mammalian CDKs and GSK-3 (Meijer et al., 390

2003; Polychronopoulos et al., 2004) we thought to examine whether they also target LdGSK-3s391

and/or CRK3. To this end we have purified LdGSK-3s and CRK3 from L. donovani over-392

expressing transfectants and transgenic L. mexicana promastigotes respectively (supplementary Fig. 393

2) and their kinase activities were assayed using GS-1 peptide and histone H1 as substrates 394

respectively, in the presence of the indirubins that displayed maximum growth inhibition in the cell-395

based assay.  Of note is that L. donovani CRK3 displays 99% sequence identity with L. mexicana 396

CRK3, which was used for the inhibitor screen. Specific activities of the enzymes were found to be 397

800 U/mg for LdGSK-3s and 750 U/mg for CRK3. After determining the Km values of both 398

kinases for ATP and their respective substrates, (supplementary Fig. 3), dose-response curves were 399

used to calculate the IC50 values (Table 3). 6-BIO, 6-BIA, 5-BIO and 5-Me-6-BIO inhibited 400

LdGSK-3s with IC50 values of 0.15, 0.17, 0.35 and 0.09 μM respectively, whereas CRK3 was 401

inhibited with IC50 values of 0.02, 0.25, 0.7 and 0.65 μM respectively (Table 3). Thus, 5-Me-6-BIO 402

displayed an approximately 7-fold selectivity for LdGSK-3s over CRK3, while 6-BIO was about 7-403

fold more active towards CRK3 than LdGSK-3s. 6-BIA inhibited CRK3 ~1.5-fold more than 404

LdGSK-3s. N1-methyl derivatives of 6-BIO and 6-BIA, that displayed no growth inhibition in the 405

cell-based assay, were inactive on both kinases (Table 3).406

To compare the inhibitory activity of indirubins against LdGSK-3s and CRK3, IC50 values were 407

evaluated relatively to Ki values of the inhibitors which were equal to ½ of IC50 values because 408

kinase assays were performed in ATP concentration equal to the Km for ATP. 5-Me-6-ΒΙΟ409

inhibited LdGSK-3s with a Ki of 0.045 μM and CRK3 with a Ki of 0.325 μM . 6-ΒΙΟ inhibited410

LdGSK-3s with a Ki of 0.075 μM and  CRK3 with a Ki of 0.01 μM. 411

Indirubins 6-FIO, 6-ClIO and 6-IIO substituted at position 6 with the halogens F, Cl and I 412

respectively were found less active towards both kinases (Table 3) as well as towards L. donovani413

promastigotes (IC50 values >3 μM). Interestingly, 6-iodo substituted indirubin was 5-fold more 414

active towards LdGSK-3s. 415
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416

3.4. Substrate selectivity of LdGSK-3s. 417

Substrate selectivity of LdGSK-3s purified from L. donovani over-expressing transfectants (1 μg 418

LdGSK-3s/reaction) was investigated using potential substrates: LeishH1, axin, myelin basic 419

protein (MBP), mammalian histone H1 and casein (Fig. 2). LeishH1 was chosen because it 420

possesses the consensus recognition motif for phosphorylation by GSK-3β: S/TXXXS/T(P), where 421

X is any amino-acid (Doble and Woodgett, 2003).  LdGSK-3s shows no autophosphorylation when 422

the kinase assay is performed without substrate (Fig. 2, lane 1). Phosphorylation of LeishH1 by 423

LdGSK-3s (Fig 2, lane 2) was inhibited when the kinase reaction was performed in the presence of 424

4 μM 5-Me-6-BIO, (Fig 2, lane 3). Control kinase reaction was also performed, using the kinase-425

dead mutant LdGSK-3s/K49R with LeishH1 as a substrate (Fig 2, lane 4). The GST moiety was not 426

phosphorylated by LdGSK-3s (Fig 2, lane 5). Axin (~ 55 kDa), MBP (18.4 kDa), mammalian 427

histone H1 (21.5 kDa) and casein (23 kDa) were found to be good protein substrates of LdGSK-3s428

(Fig 2, lanes 6-9). The basic nature of histones and the rich content in prolines in casein that affects 429

its conformation cause them to migrate slower in SDS-PAGE. None of the substrates tested 430

displayed intrinsic phosphorylation (data not shown). However, more experimental data is needed 431

to prove in vivo interaction of LdGSK-3s and LeishH1, as the kinase phosphorylating LeishH1 has 432

not been identified so far.  433

434

3.5. Cell-cycle disruption and induction of apoptosis-like death in 5-Me-6-BIO- and 6-BIO- treated435

L. donovani promastigotes.436

The cell-cycle distribution of promastigotes incubated with 5-Me-6-BIO and 6-BIO was 437

analyzed using flow cytometry (Fig. 3A). Promastigotes treated with 1 μΜ 5-Me-6-BIO for either 438

24 h or 48 h resulted in a decrease in the G0/G1 DNA content (40.9% and 37.5% respectively439

compared to 66% of control parasites) and an increase in cells in S phase (13.4% and 11% 440

respectively compared to 7.3% of control cells) with a concomitant increase in the G2/M phase of 441
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the cell-cycle (43.7% and 49.4% respectively compared to 23.9% of control cells). Treatment of442

promastigotes with 6-BIO resulted in an increase in the proportion of cells with G2/M DNA 443

content, the latter being time and dose dependent. After 48 h of treatment with 2 μM 6-BIO 74.5% 444

of cells were in G2/M ((Fig 3B). Control cells treated with the diluent (0.01% or 0.02% DMSO) 445

had a normal cell-cycle distribution at all time-points studied (66% G0/G1, 7.66% S, 23.8% G2/M).446

Of note is that cells treated with 2 μΜ 5-Me-6-BIO for 24 h and 48 h had a high percentage of 447

hypodiploid cells  (<2N DNA content) and  accumulated in the sub-G0 phase (29.8% and 40% 448

respectively) which is indicative of apoptotic-like cell death (Fig. 3A).449

In order to investigate whether 5-Me-6-BIO- and 6-BIO- induced apoptotic-like mechanisms in 450

Leishmania we used double staining with Annexin V-FITC and PI. This staining allows the 451

differentiation between early apoptotic (Annexin V-FITC positive), late apoptotic (Annexin V-452

FITC and PI positive), necrotic (PI positive) and viable cells (unstained). Incubation of cells with 453

0.02% DMSO showed negative staining for both Annexin V and PI, as 97.8% of cells were viable 454

at all time-points (Fig. 3C, control). In the positive control for necrosis, 39.23% of Triton X-100-455

treated promastigotes were found to be PI positive (Fig. 3C, Triton X-100).  49.23%  of cells treated 456

with 4 mM hydrogen peroxide (H2O2), used as a positive control for apoptosis, for 40 min (Das et 457

al., 2001) were found to be late apoptotic, 2.97%  early apoptotic and 13.99% necrotic (Fig. 3C, 458

H2O2). Treatment of promastigotes with 2 μΜ 5-Me-6-BIO for 48 h resulted in a high percentage of 459

Annexin V positive cells (57.9%), of which 6.42% were early apoptotic and 51.48% were late 460

apoptotic, while viable cells were 38.42% (Fig. 3C, 5-Me-6-BIO). The percentage of cells 461

undergoing early apoptosis was higher than that of late apoptosis (29.35% versus 12.03%) when 462

cells were treated for 24 h whereas treatment of promastigotes with 2 μΜ 5-Me-6-BIO for 72 h463

resulted in an increase in PI positive cells, as 26.04% of cells were necrotic and 61.2% late 464

apoptotic, while only 10.83% of cells were viable (data not shown). Treatment of promastigotes 465

with 2 μΜ 6-BIO for 48 h resulted in an increased labeling with Annexin V. Early and late 466
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apoptotic cells together constituted about 40.4% of the cells: 20.18% of cells were late apoptotic 467

and 20.23% were early apoptotic compared to controls (Fig. 3C, 6-BIO).468

To further study whether the observed effect of indirubins was due to apoptosis-like death  we 469

monitored morphological and nuclear changes by confocal microscopy. Control cells displayed a 470

normal elongated morphology with two discrete stained organelles, the nucleus and the kinetoplast 471

(Fig. 4, control). Promastigotes exposed to 5-Me-6-BIO for 24 h showed rounded forms, cell 472

shrinkage and variations in the length of their flagella as well as nuclear changes characteristic of 473

apoptosis-like death; apoptotic nuclei were identified by their bright red fluorescence, which 474

included a certain degree of condensation of nuclear chromatin in 36% of cells and breakdown of 475

the nuclear material in 41% of cells (Fig. 4, 5-Me-6-BIO, 24 h). At the 48 h-time point, 78% of cells 476

exhibited a totally fragmented nucleus (Fig. 4, 5-Me-6-BIO, 48 h). Formation of zoids was not 477

observed (Grant et al., 2004). Treatment with 2 μM of 6-BIO for 24 h had less pronounced 478

morphological alterations. It resulted in cells with either a normal morphology with a discrete 479

kinetoplast and a nucleus (approximately 38% of cells) or in rounded-shaped with short flagella and 480

condensed nuclear chromatin (~62%) (Fig. 4, 6-BIO, 24 h). After treatment with 6-BIO for 48 h, 481

the majority of parasites (75%) displayed an aberrant morphology, with round body shape and short 482

flagella of which 36% displayed nuclear condensation and 39% nuclear fragmentation (Fig. 4, 6-483

BIO, 48 h).484

Since the cellular effects induced by 5-Me-6-BIO were more pronounced than those of 6-BIO we485

investigated whether they were reversibile after drug removal. To this end the recovery of cells 486

following exposure to 5-Me-6-BIO for 24h, 48 h and 72 h was assessed 24h, 48 h and 72 h after the 487

drug removal. Control cells treated with 0.02% DMSO were viable at all time-points tested (100% 488

viability). As shown in Fig. 3D treatment of cells with 5-Me-6-BIO for 24 h followed by incubation 489

with fresh medium up to 72 h resulted in full recovery of cells. After 48 h of treatment, about 48% 490

of cells were viable. Further incubation in fresh medium for 24 h resulted in an increase in the 491

percentage of viable cells (77.7%). At the 48 h and 72 h time-points, a full recovery of the cells was 492



20

observed.  In contrast, incubation for 72 h with 5-Me-6-BIO resulted in about 89% dead cells. 493

Removal of the drug resulted in irreversible cytotoxicity. 494

495

3.6. LdGSK-3s over-expression in L. donovani counteracts 5-Me-6-BIO- and 6-BIO- induced 496

growth inhibition, cell-cycle progression and apoptosis-like death497

To investigate whether LdGSK-3s is the intracellular target of 5-Me-6-BIO and whether all the 498

observed phenotypes in the presence of 5-Me-6-BIO could be attributed to inhibition of this kinase,499

we have generated transgenic L. donovani promastigotes over-expressing LdGSK-3s and compared 500

their susceptibility to 5-Me-6-BIO with that of control transfectants bearing the plasmid alone. We 501

also investigated whether over-expression of LdGSK-3s affected the growth inhibitory effect of 6-502

BIO. As a control, we generated transgenic promastigotes overexpressing LdGSK-3s/K49R, which 503

was a kinase-dead mutant as confirmed by kinase assays (Fig. 2, lane 4). The mutation of the 504

catalytic residue Lys 49 to Arg was designed based on the homology model of LdGSK-3s and on 505

the widely used mutation of Lys 85 to Arg or Ala of mammalian GSK-3β, which results in a kinase-506

dead protein (He et al., 1995). Over-expression of LdGSK-3s and expression of LdGSK-3s/K49R507

in the LdGSK-3s and LdGSK-3s/K49R transfectants was confirmed by immunoblotting using both508

a His-probe antibody and the anti-LdGSK-3s antibody (Fig. 5A). The LinINO1 antibody was used 509

as a loading control. Scanning densitometry showed that the level of expression of LdGSK-3s in 510

LdGSK-3s and LdGSK-3s/K49R transfectants was about 2-fold higher in comparison with sat511

transfectants (Fig. 5A). Expression of the kinase-dead mutant did not cause any apparent changes in 512

parasite growth or morphology.513

The susceptibility of stationary-phase L. donovani sat, sat-LdGSK-3s and sat-LdGSK-3s/K49R514

transfectants to increasing concentrations of 5-Me-6-BIO was assessed after 24h, 48 h and 72 h of 515

treatment by cell counting. The IC50 of 5-Me-6-BIO after 24h, 48h and 72h of treatment of the sat-516

transfectants was 1.5±0.2 μM, 1.25±0.1 μM and 1.2±0.1 μM respectively, which are comparable 517

with the IC50 against wild type promastigotes (Table 1), whereas its respective IC50 for the LdGSK-518
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3s over-expressing transfectants was 3.6±0.3 μM, 3.2±0.2 μM  and  2.8±0.2 μM (Fig. 5B). As 519

expected, the sat-LdGSK-3s/K49R transfectants were inhibited by 5-Me-6-BIO with IC50 values of 520

1.7±0.1 μM after 24 h, 1.4±0.1 μM after 48 h and 1.3±0.05 μM after 72 h, which are comparable 521

with the respective IC50 values against sat-transfectants (Fig. 5B).522

Treatment of the LdGSK-3s over-expressing transfectants with 6-BIO resulted in a clear 523

decrease in their sensitivity, with IC50 values of 4.8±0.5 μM after 24 h, 2.2±0.4 μM after 48 h of 524

treatment and 1.57±0.3 μM after 72 h of treatment, which were approximately 2-fold higher 525

compared to IC50 values of sat and sat-LdGSK-3s/K49R transfectants (Fig. 5D). Sat and sat-526

LdGSK-3s/K49R transfectants treated with different 6-BIO concentrations displayed growth 527

inhibition with approximately the same IC50 values as L. donovani wild type promastigotes. Sat 528

transfectants were inhibited with IC50 values of 2.75±0.45 μM after 24 h of treatment, 1.3±0.3 μM 529

after 48 h of treatment and 0.78±0.25 μM after 72 h of treatment and sat-LdGSK-3s/K49R 530

transfectants were inhibited with IC50 values of 2.9±0.3 μM after 24 h, 1.3±0.2 μM after 48 h and 531

0.85±0.2 μM after 72 h (Fig. 5D). 532

Flow cytometry analysis of the DNA content of control L. donovani sat, sat-LdGSK-3s and sat-533

LdGSK-3s/K49R over-expressing transfectants, treated with 0.02% DMSO, showed that cells had a 534

normal cell-cycle distribution: 67.9% G1, 6.9% S, 23.2% G2 (Fig. 5C, control). Interestingly, sat-535

LdGSK-3s promastigotes incubated with 2 μΜ 5-Me-6-BIO for 48 h had a normal cell-cycle 536

distribution: 62% G1, 5.45% S and 30.5% G2 (Fig. 5C, 5-Me-6-BIO), whereas 40% of sat and sat-537

LdGSK-3s/K49R transfectants were hypodiploid  and  accumulated in the sub-G0 phase (Fig. 5C), 538

as was observed with wild type promastigotes (Fig. 3A). 539

However, as shown in Fig. 5C, LdGSK-3s over-expressing promastigotes treated with 6-BIO 540

displayed a less pronounced increase in G2/M (41.7% compared to 74.5% in 6-BIO-treated wild 541

type parasites) and a less pronounced decrease in G0/G1 (46% compared to 15.8% in 6-BIO-treated 542

wild type parasites) (Fig. 5C, sat-LdGSK-3s).  In contrast, sat transfectants incubated with 2 μΜ 6-543

BIO for 48 h were comparable with wild type promastigotes and arrested at G2/M (74.9% 544
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compared to 23.2% of control), with a significant decrease in G0/G1 (19.3% compared to 67.9% of 545

control) (Fig. 5C, 6-BIO). Similar results with the latter were obtained for the sat-LdGSK-3s/K49R 546

transfectants which had the following cell-cycle distribution: 21.8% G0/G1, 4.4% S and 71.7% 547

G2/M. 548

Since LdGSK-3s over-expression resulted in a significantly reduced growth inhibition and a 549

normal cell-cycle distribution upon 5-Me-6-BIO-treatment, we investigated whether LdGSK-3s550

over-expression affected apoptosis-like death using the terminal deoxynucleotidyltransferase-551

mediated dUTP nick end labeling (TUNEL) assay, which detects apoptosis at a single-cell level. 552

Control cells treated with 0.02% DMSO (sat, sat-LdGSK-3s or sat-LdGSK-3s/K49R) containing 553

intact genomic DNA were not stained, (Fig. 6, control). Promastigotes treated with 4 mM H2O2 for 554

6 h, served as a TUNEL positive control, as about 99% of cells showed positive nuclear staining 555

(Fig. 6, H2O2). Sat transfectants exposed to 2 μΜ 5-Me-6-BIO for 48 h were about 68% TUNEL 556

positive and their morphology was dramatically affected in comparison to the normal elongated 557

morphology of control cells (Fig. 6, sat/5-Me-6-BIO). Treated cells displayed an aberrant 558

morphology, with round body shape and cell shrinkage. Sat-LdGSK-3s transfectants treated with 2 559

μΜ 5-Me-6-BIO for 48 h were not positive for TUNEL reactivity, only a background staining of 560

about 3% was detected and their morphology was not affected (Fig. 6, sat-LdGSK-3s/5-Me-6-BIO).561

Sat-LdGSK-3s/K49R transfectants were about 70.4% TUNEL positive (Fig. 6, sat-LdGSK-562

3s/K49R/5-Me-6-BIO).563

The contribution of LdGSK-3s in the apoptosis-like death observed in 6-BIO treated 564

promastigotes was also studied using the over-expressor lines. Whereas sat transfectants exposed to 565

2 μΜ 6-BIO for 48 h were ~ 50% TUNEL positive and their morphology was dramatically affected, 566

LdGSK-3s over-expressing transfectants were resistant to the effects of 6-BIO and displayed a 567

much milder phenotype. Only 20% of the cells were TUNEL positive and their morphology was not 568

significantly affected when compared to control cells (Fig. 6, sat/6-BIO and sat-LdGSK-3s/6-BIO 569
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respectively). As expected, sat-LdGSK-3s/K49R transfectants were about 52.9% TUNEL positive 570

(Fig. 6, sat-LdGSK-3s/K49R/6-BIO). 571

572

3.8. 3.7. Structure Activity Relationships studies of indirubin-leishmanial kinases interactions using 573

molecular simulations. 574

Biological results imply that indirubins inhibit leishmanial kinases. Interestingly, the selectivity 575

observed for 6-substituted indirubins towards GSK-3 with respect to the CDKs in human is reversed 576

in the case of Leishmania and the homologous kinases (GSK-3 and CRK3) with the exception of 577

the 6-iodo as well as the bisubstituted 5-Me-6Br analogs. While indirubins potently inhibit the 578

leishmanial GSK-3s (5-Me-6-BIO with an IC50=0.09μM and 6BIO with an IC50=0.150μM), they 579

are not as efficient as in the case of the human homolog (5-Me-6-BIO with an IC50=0.006μM and580

6-BIO with an IC50=0.005μM) (Meijer et al., 2003; Polychronopoulos et al., 2004).581

Both pairs of homologous kinases are highly similar and the observed differences in affinity 582

could possibly be explained by the key residue differences of the binding cavity. In order to obtain  583

insight in the inhibitor-protein interactions, we built homology models of the parasite kinases584

(supplementary data). Despite the fact that important residues of the leishmanial GSK-3s seem to be 585

well conserved (supplementary Fig. 1), there were two major differences between the two kinases 586

located in the binding pocket: a) the replacement of Gln185hGSK-3β by His155LGSK-3s in the sugar-587

binding region and b) the replacement of the “gatekeeper” Leu132hGSK-3β by Met100LGSK-3s. The 588

“gatekeeper” residue controls access to a hydrophobic cavity of the binding pocket and is 589

considered as a selectivity determinant of most ATP competitive kinase inhibitors (Bohmer et al., 590

2003). In the majority of the members of the GSK-3 family (CMGC III), the gatekeeper is a leucine, 591

except for MCK-1 kinase which has a methionine (Hanks and Quinn, 1991). However, a 592

methionine is present in Leishmania, Trypanosoma brucei and Plasmodium falciparum GSK-3s, 593

(supplementary Fig. 1).594
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Docking calculations were performed in order to study the binding mode/interactions of 595

indirubins in the binding cavity of each kinase. In each case the inhibitor was anchored at the kinase 596

backbone through the formation of three hydrogen bonds in the usually observed adenine type of 597

interaction (Figure 7A), while the substituent of position 6 was positioned in the hydrophobic cavity 598

formed by the sidechain of the gatekeeper residue interacting with it. In human GSK-3β the leucine 599

gatekeeper can form only hydrophobic interactions with the 6 substituent of indirubin. However, in 600

the parasite kinase the mode of interactions accommodated by the methionine gatekeeper is more 601

complicated, resulting in a larger entropic and desolvation cost upon inhibitor binding 602

(supplementary data). Such a net effect for the replacement of the leucine gatekeeper to a 603

methionine could be considered as unfavorable for binding affinity, accounting for the loss of 604

binding affinity in a common trend for all indirubins tested, which is in consistency with IC50605

results obtained from kinase assays. 606

The higher affinity for CRK3 (reversal of selectivity with respect to the human kinases) 607

demonstrated by 6-substituted indirubins tested with the exception of 6-IIO, 5-Me-6-BIO and 608

partially of 6-BIA compared to the affinity for LdGSK-3s could be explained by the formation of a 609

hydrogen bond between Tyr101CRK3 and Glu103CRK3 (Figure 7B), which is not possible in the 610

human CDK2 homolog. The influence of this bonding interaction on the cavity size and 611

subsequently on the ligand affinity could explain the observed gain of selectivity of 6-BIO towards 612

CRK3. The above holds with the exception of 6-IIO, the bisubstituted 5-Me-6-BIO and the 613

acetoxime 6-BIA, for which energy optimization calculations demonstrated that the presence of the 614

bulky substituent provoked a displacement of the ligand and the pair of residues Tyr101-Glu103 615

(Figure 7C) resulting in less favorable interactions and loss of affinity.616

All aforementioned structural observations are in accordance with previous studies showing that617

minor differences of the kinase binding cavity elements induce major variations in affinity and 618

should be taken into account in designing new selective inhibitors of the leishmanial GSK-3s and 619

CRK3. One possible route of selectively improving affinity towards the parasite GSK-3 is by taking 620
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advantage of the differential presence of the proton accepting His155LGSK-3 (instead of Gln185hGSK-621

3β of human). The replacement or extension of the oxime by a group with the potential to form 622

attractive albeit selective interactions with the sidechain of His155 LGSK-3 would increase affinity 623

towards the parasite protein. Combined with the obvious preference of LdGSK-3 for bisubstituted 624

or generally bulkier substituents with regard to CRK3, a moderate selectivity improvement can be 625

achieved, resulting in an increase of parasite killing while reducing toxicity to human cells.626

627

628

4. Discussion629

Herein we showed that three 6-bromo substituted indirubins, 6-BIO, 6-BIA and 5-Me-6-BIO630

were powerful inhibitors of both L. donovani promastigote and intracellular amastigote growth. L. 631

donovani axenic amastigotes were also inhibited by the three indirubins with IC50 values ≤1 μM, a 632

finding that further supports that indirubin-induced growth inhibition of intracellular amastigotes is 633

mediated through parasite-kinase(s) inhibition and not through inhibition of the host-kinase(s). 634

The adapted Alamar blue assay allows the rapid and easy screening of the antileishmanial 635

activity of compounds in 96-well format, although it is not very quantitative for measuring636

intramacrophage Leishmania growth when compared to luciferase-expressing recombinant parasites 637

(Roy et al., 2000). Also it does not measure the number of amastigotes at the point of lysis. 638

However, contrary to Giemsa staining it takes into account only viable cells.  639

Since 6-bromo substitution on the indirubin backbone enhances the selectivity for mammalian 640

GSK-3 over CDKs (Meijer et al., 2003) we investigated whether 6-BIO, 6-BIA and 5-Me-6-BIO641

target GSK-3 in Leishmania and studied their selectivity over CRK3. To this end we identified and 642

characterized one of the two GSK-3 forms in L. donovani, namely LdGSK-3s, and found that its643

expression pattern was comparable in logarithmic and stationary-phase promastigotes, but it was 644

about 3-fold down-regulated in amastigotes, consistent with recent findings on LdGSK-3s645

expression in L. donovani axenic amastigotes (Rosenzweig et al., 2008). In addition, LdGSK-3s646
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which had cytosolic and flagellar localization in logarithmic-phase promastigotes, displayed nuclear 647

translocation in stationary-phase promastigotes. In mammalian cells, GSK-3β is also predominately 648

in the cytosol although under proapoptotic stimuli, a portion of GSK-3β is found within the nucleus649

(Meares and Jope, 2007). LdGSK-3s translocation to the nucleus in stationary-phase promastigotes, 650

thought to be arrested in G1 phase of the cell-cycle (Wiesgigl and Clos, 2001), may reflect a role for 651

LdGSK-3s in G1, consistent with accumulation of parasites in G1 when LdGSK-3s is inhibited with 652

5-Me-6-BIO.  The observed differences in the localization and expression level of LdGSK-3s may 653

reflect divergent roles played by LdGSK-3s in the two parasite stages. It could be speculated that in 654

the intracellular amastigotes the function of LdGSK-3s may be linked among others to their 655

response and adaptation to stress conditions i.e. pH and temperature changes (Richard et al., 2005).656

The finding that the level of inhibition of promastigotes and amastigotes by 5-Me-6-BIO is the 657

same although LdGSK-3s is 3-fold less in amastigotes may suggest that LdGSK-3s activity is 658

higher in the latter or that 5-Me-6-BIO may also target other kinases in this stage.659

  Inhibitor screen assays against LdGSK-3s and CRK3 showed that 5-Me-6-BIO, which is a 50-660

fold selective inhibitor of mammalian GSK-3 over CDK1/Cyclin B (Meijer et al., 2003; 661

Polychronopoulos et al., 2004) displayed an approximately 7-fold selectivity for LdGSK-3s over 662

CRK3. However, 6-BIO was about 7-fold more active towards CRK3 than LdGSK-3s, although it is 663

a mammalian GSK-3 selective inhibitor, with 64-fold less potency towards CDK1/Cyclin B664

(Meijer et al., 2003). Molecular docking of the compounds in hGSK-3 and CDK1 active sites as 665

compared to  LdGSK-3s and CRK3 support the higher inhibitory activity of 5-Me-6-BIO towards 666

LdGSK-3s compared to CRK3 and the lower inhibitory activity of 6-BIO towards LdGSK-3s667

compared to that against its mammalian counterpart.668

5-Me-6-BIO and 6-ΒΙΟ displayed a disparity between cellular activity and enzyme activity (Ki 669

values) (22-27 fold for 5-Me-6-BIO and 75-80 fold for 6-BIO), which can be attributed to: a) the670

ATP concentration in the kinase assays, that is several fold lower than the intracellular 671

concentration, which is in the mM range, b) the bioavailability of the inhibitors (cell permeability of 672
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the compounds, rate of inhibitor efflux  by cell efflux pumps), c) possible in vivo phosphatase 673

activity, d) the intracellular concentration of the target kinase, e) the presence of the LdGSK-3l674

isoform and f) need for total inhibition of the enzyme to get cellular effect (Knight and Shokat, 675

2005).676

We next investigated the effects on cell-cycle progression and the death process induced by 5-677

Me-6-BIO treatment, using a number of different techniques. Its effect on parasite growth appeared678

to be more dose- than time-dependent, as the IC50 values did not significantly vary with the 679

incubation time. However, 5-Me-6-BIO treatment affected the recovery potential of treated cells 680

after removal of the drug, as cells were able to recover after 48 h of treatment, whereas 72 h of 681

treatment caused an irreversible inhibition of cell growth .682

In an effort to elucidate whether 5-Me-6-BIO targets LdGSK-3s in vivo and the potential role of 683

LdGSK-3s in cell-cycle progression and apoptosis-like death a sat-LdGSK-3s over-expressor 684

mutant and a cell line expressing a kinase-dead mutant sat-LdGSK-3s/K49R were generated. Cells 685

that over-express LdGSK-3s (about 2-fold) were about 2-fold less susceptible to growth inhibition 686

than sat-LdGSK-3s/K49R and sat transfectants at all time-points, indicating that the observed687

growth inhibition was closely associated with inhibition of LdGSK-3s activity by 5-Me-6-BIO. In 688

addition these results imply that the wild-type kinase should be inhibited by 5-Me-6-BIO with an 689

IC50 value comparable with that of the His-tagged LdGSK-3s. Also, the 2-fold increase in LdGSK-690

3s expression in sat-LdGSK-3s transfectants completely reversed the cell-cycle disruption effect of 691

5-Me-6-BIO and abolished the induction of apoptosis-like death. However, the LdGSK-3s/K49R 692

expression resulted in similar phenotypes with those of the sat transfectants. The results provide 693

strong evidence that LdGSK-3s is the intracellular target of 5-Me-6-BIO and suggest the direct or 694

indirect involvement of LdGSK-3s in cell-cycle control as well as in pathways leading to apoptosis-695

like death. Although  there is evidence that apoptosis-like death occurs in Leishmania (Das et al., 696

2001) the pathways and proteins involved remain to be elucidated. GSK3 is known to modulate 697

apoptosis in mammalian cells, by regulating the apoptotic pathways (Beurel and Jope, 2006).698
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Therefore common pathways may exist between Leishmania and mammalian cells in regulating 699

apoptotic signaling pathways through GSK-3.700

In contrast to 5-Me-6-BIO, 6-BIO induced a time-dependent growth inhibition accompanied 701

with a dose- and time-dependent accumulation of cells in G2/M. Moreover, 6-BIO induced702

apoptosis-like death in a lower proportion of promastigotes compared to 5-Me-6-BIO and this death 703

process progressed more slowly in parasites exposed to 6-BIO. These differences between the 704

cellular effects induced by 6-BIO compared to 5-Me-6-BIO suggest that in vivo the two indirubins705

may target different kinases and/or pathways.706

The observation that over-expression of LdGSK-3s only partially reversed the effect of 6-BIO is 707

not unexpected, since in vitro 6-BIO preferentially inhibits CRK3. Moreover, the phenotype of 708

promastigotes incubated with 6-BIO, especially the accumulation of cells in G2/M, is consistent 709

with inhibition of CRK3, which is essential for cell-cycle progression at the G2/M phase transition 710

(Grant et al., 1998; Hassan et al., 2001) and implies that CRK3 may be the main intracellular target 711

of 6-BIO. Although 6-BIO was a more effective inhibitor of CRK3, and despite the observed 712

phenotype being consistent with CRK3-inhibition, the fact that LdGSK-3s over-expression partially 713

reversed promastigote G2/M arrest and partially protected cells from 6-BIO induced apoptosis-like 714

death, implies that 6-BIO may also target LdGSK-3s in the parasite where the level of expression of 715

the two kinases is not known. Since 6-BIO arrests promastigotes in G2/M phase of the cell-cycle, 716

this may mean that LdGSK-3s also plays a role in G2/M phase transition, although this is difficult to 717

reconcile with the results for 5-Me-6-BIO. Alternatively, over-expression of LdGSK-3s may 718

influence 6-BIO activity by a non-specific mechanism (i.e. lower proportion of 6-BIO available for 719

binding to and inactivating CRK3).720

In conclusion, the complete reversal of the cellular effects induced by 5-Me-6-BIO in the over-721

expressing parasites strongly implies that LdGSK-3s is the main target of 5-Me-6-BIO and suggests 722

a potential role for LdGSK-3s in cell-cycle progression and in apoptosis-like death.  Moreover, the 723

dramatic effect of LdGSK-3s inhibitors on Leishmania, especially the intramacrophage amastigote 724
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stage, suggests that LdGSK-3s has potential as a drug target in these parasites. Future work would 725

be required to develop parasite-selective inhibitors that do not target host GSK-3 since its inhibition 726

may  affect the balance between Th1 and Th2 rsponses (Ohtani et al., 2008). In addition, RNAi 727

studies of TbruGSK-3  lead to similar cellular phenotypes, such as growth inhibition and altered 728

parasite morphology (Ojo et al., 2008), to that caused by GSK-3  inhibitors in Leishmania.729

Importantly, the very recent validation of TbruGSK-3 as a drug target for this protozoan parasite too730

(Ojo et al., 2008), reinforces our claim that GSK-3 could constitute a trans-trypanosomatid as well 731

as trans-protozoan target, including P. falciparum and that it should be exploited for anti-protozoan732

drug development.733
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FIGURE LEGENDS859

Fig 1. LdGSK-3s expression in L. donovani:  Western blot analysis (A) anti-LdGSK-3s antibody: 860

Stationary-phase promastigotes (S), logarithimic-phase promastigotes (L), axenic amastigotes (Ax), 861

spleen-derived amastigotes (Am) and J774 macrophages (J774) 107 parasites or 9×105 macrophage 862

cells were loaded per lane. (B) anti-LinINO1 antibody, to confirm equal cell loading. (C) Pre-863

immune serum: Stationary-phase promastigotes (S) and axenic amastigotes (Ax). (D) anti-ratGSK-864

3β antibody: Stationary-phase promastigotes (107) and J774 cell extracts (9×105 cells/lane), used as 865

positive controls. Evaluation of the level of expression of LdGSK-3s was analyzed using the Alpha 866

Imager Software and compared to that of INO1. (E) Localization of LdGSK-3s in L. donovani867

logarithmic and stationary-phase promastigotes and logarithmic-phase axenic amastigotes, using the 868

affinity-purified anti-LdGSK-3s antibody (5 μg/ml). Parasite nuclei and kinetoplasts were 869

counterstained with PI. Scale bars 4 μm.870

871

Fig 2. Kinase activity of LdGSK-3s purified from L. donovani over-expressing transfectants. The 872

ability of LdGSK-3s (1 μg LdGSK-3s/reaction) to phosphorylate various substrates was assessed in 873

vitro.  Kinase reactions, containing approximately 1 μg substrate/reaction, were subjected to SDS-874

PAGE and phosphorylated substrates detected by autoradiography. Lane 1, LdGSK-3s; lane 2, 875

LeishH1; lane 3, LeishH1 plus 4 μΜ 5-Me-6-BIO; lane 4, LeishH1 plus kinase-dead LdGSK-876

3s/K49R; lane 5, GST; lane 6, axin; lane 7, myelin basic protein, MBP; lane 8, mammalian histone 877

H1 and lane 9, casein.878

879

Fig 3. Effects of indirubins on cell-cycle progression and apoptosis-like cell death.  Flow cytometry 880

was used to assess the cell-cycle status of L. donovani promastigotes exposed to indirubins in vitro881

(A) Stationary-phase promastigotes were seeded at 1 x 106 cells/ml and incubated in the presence of 882

5-Me-6-BIO (1 μΜ or 2 μΜ ) or DMSO (control), for 24 h or 48 h or (B) 6-BIO (1 μΜ or 2 μΜ ) or 883

DMSO (control), for 24 h or 48 h. (C) L. donovani promastigotes were incubated with 2 μΜ 5-Me-884
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6-BIO, 2 μΜ 6-BIO or DMSO (Control) for 48 h and then stained with Annexin V-FITC and PI to 885

assess phosphatidylserine translocation and membrane integrity.  Promastigotes were also incubated 886

with either 4 mM H2O2 for 40 min (apoptosis positive control) or 0.1% Triton X-100 for 5 min887

(necrosis positive control). Flow cytometry was performed using a FACSCalibur and data analyzed 888

using the Cell Quest software. The percentage of cells in each quadrant represent the following: 889

lower left, double negative; upper left, PI single positive; lower right, Annexin V single positive and 890

upper right, PI-Annexin V double positive. Results are representative of three independent 891

experiments. (D) L. donovani promastigotes were incubated with 2 μΜ 5-Me-6-BIO for 24h, 48 h 892

and 72 h. At these time-points (white bars/0 h), drug was removed followed by further incubation of 893

cells in drug-free medium for 24 h (black bars),, 48 h (gray bars)  and 72 h (dotted bars). The 894

percentages of cell viability were determined using the trypan blue exclusion test. Error bars 895

represent the standard deviations of three independent experiments.896

897

Fig. 4. Cell and nuclear morphology of L. donovani promastigotes exposed to indirubins:  L. 898

donovani promastigotes were incubated with 2 μM 5-Me-6-BIO, 2 μM 6-BIO or 0.02% DMSO 899

(control) for 24 and 48 hours, in vitro, and then fixed and stained with propidium iodide.  Confocal 900

micrographs are representative of three independent experiments. Scale bar 4 μm. N, nucleus; K, 901

kinetoplast; white arrows indicate condensed nuclei; blue arrows indicate  disintegrated nuclei.902

903

Fig. 5. Over-expression of LdGSK-3s counteracts the effects of 5-Me-6-BIO and 6-BIO on L. 904

donovani promastigotes: (A) Western blot analysis of L. donovani sat, sat-LdGSK-3s/K49R and sat-905

LdGSK-3s promastigotes (107/lane) probed with His-probe, anti-LdGSK-3s or anti-LinINO1906

antibodies. The intensity of the bands was analyzed with the use of the Alpha Imager Software and 907

the fold-over-expression estimated. (B) Growth inhibition of L. donovani sat (gray symbols, dotted 908

lines), sat-LdGSK-3s/K49R (solid symbols) and sat-LdGSK-3s (open symbols) transfectants treated 909

with different 5-Me-6-BIO concentrations after 24 h, 48 h and 72 h of incubation. Results are 910
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depicted from four independent experiments performed in duplicate. (C) Flow cytometry analysis of 911

L. donovani sat, sat-LdGSK-3s/K49R and sat-LdGSK-3s transfectants incubated in the presence of 912

0.02% DMSO (control) or 2 μΜ 5-Me-6-BIO or 2 μΜ 6-BIO for 48 h. Results are indicative of 913

three independent experiments. (D) Growth inhibition of L. donovani sat (gray symbols, dotted 914

lines), sat-LdGSK-3s/K49R (solid symbols) and sat-LdGSK-3s (open symbols) transfectants treated 915

with different 6-BIO concentrations after 24 h, 48 h  and 72 h of incubation. Results are depicted 916

from four independent experiments performed in duplicate.917

918

Fig. 6. DNA fragmentation in L. donovani promastigotes incubated with indirubins:  L. donovani919

sat, sat-LdGSK-3s/K49R and sat-LdGSK-3s transfectants were incubated with 0.02% DMSO920

(negative control), 2 μΜ 5-Me-6-BIO, 2 μΜ 6-BIO or 4mM H2O2 (apoptosis positive control) and 921

then subjected to TUNEL-labeling. Cells were visualized under a Zeiss fluorescence microscope at 922

120× magnification. The experiment was performed three times. 923

924

Fig. 7 (A) A superposition of the crystal structure of human GSK3 active site complexed with 6-925

BIO (green) and the complex of LdGSK3s-6-BIO resulting from docking calculations (turquoise). 926

Hydrogen bonds are depicted as yellow dotted lines. Residues within the active site which differ 927

between human and L. donovani GSK3s are annotated, with the most important for 6-BIO affinity 928

being the gatekeeper mutation of leucine132 in the human to methionine100 in the parasite protein. 929

(B) Overlay of the crystal structure of CDK2 complexed with indirubin-5-sulphonate (turquoise)930

and the CRK3 homology model (orange). The double mutation of phe82CDK2 to tyr101 and of 931

his84CDK2 to glu103 results in a hydrogen bond between tyrosine and glutamate (shown in yellow) 932

that translates the paired sidechains towards the cavity reducing its volume and offering a rigid 933

partner for stacking or charge dipole stabilizing interactions with the extended aromatic scaffold of 934

indirubins to form. (C) Ligands 6-BIO (green) and 5-Me-6-BIO (orange) in the CRK3 binding 935



35

cavity as resulted from simple energy minimizations. Visible are the displacements of the 936

bisubstituted 5-Me-6-BIO relative to 6-BIO and of the tyrosine-glutamate bonded pair.937

938
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TABLES939

Table 1: Indirubin compounds tested in vitro for their antileishmanial activity against L. donovani940

promastigotes (P), intracellular amastigotes (In. A) and axenic amastigotes (Ax. A) using the 941

Alamar blue assay. 942

943

944

945

946

947

948

Compounds   Y X W R                    L. donovani949

                   P          In. A      Ax. A950

                        IC50 (μM)*        951

Indirubin O H H H n.i.† n.i.          n.i.952

Indirubin-3'oxime NOH H H H n.i. n.i.   n.i.953

5-Br-indirubin O H Br H n.i. n.i.         n.i.954

5-Br-indirubin-3'oxime (5-ΒΙΟ) NOH H Br H 5.2±1.6  1±0.15     1 ±0.2  955

5-aminoindirubin-3'oxime NOH H NH2 H >10 ‡      >10           >10 956

6-Br-indirubin O Br H H n.i.  n.i. n.i.957

6-Br-indirubin-3'oxime (6-ΒΙΟ) NOH Br H H 0.8±0.1  0.75±0.05 0.9±0.1958

6-Br-N-methyl-indirubin-3'-oxime NOH Br Br CH3 n.i. n.i. n.i.959

6-Br-indirubin-3'acetoxime (6-BIA) NOAc Br H H        0.9±0.1  1±0.05       1± 0.1      960

6-Br-N-methyl-indirubin-3'acetoxime NOAc Br H CH3 n.i. n.i. n.i.961

6-Br-indirubin-3'diethyl phosphatoxime NOPO(OEt)2 Br H H         >10    >10       >10             962

Indirubin-3'-methoxime NOCH3 H H H n.i.      n.i.          n.i.963

6-Br-5nitroindirubin O Br NO2 H         n.i.  n.i.          n.i.964

Indirubin-backbone 
showing possible 
substitutions at 

positions 3’, 5, 6 and 
N1

(Y, W, X and R 
respectively)
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6-Br-5nitroindirubin-3’-oxime NOH Br NO2 H         >10 >10      >10965

6-Br-5methylindirubin O Br CH3 H         n.i. n.i.       n.i. 966

6-Br-5methylindirubin-3'oxime967

(5-Me-6-BIO) NOH Br CH3 H 1.2±0.2 1±0.1     1±0.2968

969

*IC50 values were determined from dose-response curves and are expressed in μM. † n.i., no 970

inhibition at 50 μΜ. ‡ IC50 values ranging between 10 and 50 μΜ. 971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990
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Table 2: Amino-acid identity (%, above diagonal) and similarity (%, below diagonal) 991

relationships of L. infantum GSK-3 enzymes versus human and T. brucei proteins *992

993

994

                 H.sap GSK-3β H.sap GSK-3α L.inf GSK-3s L.inf GSK-3l T.bru GSK-3s T.bru GSK-3l995

H.sap GSK-3β ID.. 67.1 39.5 22 40.7 32.2996

H.sap GSK-3α 74.4 ID.. 34.3 21.5 35.4 30.5997

L.inf GSK-3s 55.8 48.1        ID.. 19.5 65.4 29.8998

L.inf GSK-3l 30.5 30.6 29.2        ID.. 20.1 26.5999

T.bru GSK-3s 55.9 48.1 80.6 27.9          ID.. 31.21000

T.bru GSK-3l 47.8 45.7 43.1 36.4 44.7         ID..1001

1002

* The table was constructed using BioEdit 7.0.5.3 Sequence Alignment Editor (pairwise global 1003

alignments using BLOSUM62 similarity matrix). Accession numbers for the enzymes were: H. 1004

sapiens GSK-3β (P49841), H. sapiens GSK-3α (P49840), L. infantum GSK-3s (XP_001464844,1005

LinJ18_V3.0270), L. infantum GSK-3l (XP_001465568, LinJ22_V3.0370), T. brucei GSK-3short1006

(Tb10.61.3140), T. brucei GSK-3long (Tb927.7.2420).1007

1008

1009

1010

1011

1012
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Table 3: Inhibition of LdGSK-3s and CRK3 kinase activities by indirubins*.1013

1014

Compounds   IC50  (μM)1015

LdGSK-3s CRK31016

5-BIO 0.35 0.71017

6-BIO 0.15 0.021018

N-methyl-6-BIO >10 >101019

6-BIA 0.17 0.251020

N-methyl-6-BIA >10 >101021

5-Me-6-BIO 0.09 0.651022

6-FIO 3.3 0.41023

6-ClIO 0.2 0.041024

6-IIO     0.2 11025

1026

*LdGSK-3s and CRK3 were assayed for their ability to phosphorylate GS-1 peptide and mammalian 1027

histone H1 respectively in the presence of increasing concentrations of compounds. IC50 values 1028

were determined from dose-response curves and are expressed in μM. 1029
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SUPPLEMENTARY DATA

Supplementary on Materials and Methods 2.13 (Homology modeling)

The sequence used for the construction of parasite GSK-3s structural model was expasy entry 

Q4QE15. The sequence used for CRK3 homology model was expasy entry O96526. Forty models 

were generated using the loop optimization routine and a slow simulated annealing refining 

protocol as implemented in MODELLER v.6 (Sali and Blundell, 1993) and each one was geometry 

optimized by subsequent steps of SD (50 steps) and PRCG (20000) minimizations with a 

restraining force on the protein α-carbons. The best model was chosen by a consensus of the 

program objective function and stereochemical scores obtained by PROCHECK (Laskowski, 1991). 

To check the stability of the final model, a Stochastic Dynamics simulation of 100ps equilibration 

and 400ps productive run was performed using the SHAKE algorithm on all bonds. The RMSD of 

the enzyme α-carbons from starting coordinates was recorded as a function of time showing that the 

model is stable.

For the docking experiments, the inhibitors were manually docked in the model binding cavity 

and a first minimization was performed with force constraints on the three hydrogen bonds formed 

between each indirubin and the kinase backbone in their crystallographic distances and angles as 

they appear in the reference crystal structure of 6-BIO with human GSK-3β (1UV5). A 1000 steps 

Monte Carlo local search of each inhibitor-protein complex followed, where all residues within 6Å 

from the ligand were free to move except Arg109. In the contracted binding pocket of the L.major

GSK-3 apo crystal structure, inhibitors were fit by manually docking and performing short (300ps) 

MD runs instead of plain minimizations. The AMBER* (docking) or AMBER94 forcefields 

(dynamics) and the GB/SA continuum solvent model were used in all calculations as implemented 

in MACROMODEL v.9 (Mohamadi, 1990).
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Supplementary on Results 3.3

Structurally divergent inhibitors

Structurally divergent inhibitors of mammalian GSK-3 and CDK were also tested on both 

LdGSK-3s and CRK3 and their activity was lower than that of indirubins. These belonged to the 

following chemical families: benzazepinones (kenpaullone and alsterpaullone) pyrrolopyrazines 

(Aloisine A), pyrroloazepines (Hymenialdisine), maleimides (SB 216763 and SB 415286),

thiadiazolidinones (TDZD-8) and aminothiazoles (SNS-032), (Coghlan et al., 2000; Leost et al., 

2000; Meijer et al., 2000; Martinez et al., 2002; Mettey et al., 2003; Ali et al., 2007),

(supplementary Table 1). More specifically, the activity of Kenpaullone on both kinases was low, 

while alsterpaullone was active towards LdGSK-3s with an IC50 of 0.2 μM and inhibited parasite 

growth with an IC50 of 3.5 μM. The activity of Aloisine A on both kinases was also low, while 

Hymenialdisine was more selective for CRK3 and inhibited parasite growth with an IC50 of 5 μM. 

The maleimides SB 216763 and SB 415286 were active towards LdGSK-3s and inactive on  CRK3 

and inhibited parasite growth with IC50 values of >5 μM. The only non-ATP competitive inhibitor 

tested, TDZD-8, as well as the CDK selective inhibitor SNS-032 were found to be completely 

inactive on both kinases.

Supplementary on Results 3.7

Homology modeling

The homology models of the parasite kinases were created as follows. CRK3 structural model 

was built on the template of the human CDK2-cyclinA complex (1E9H), (Davies et al., 2001). The 

leishmanial GSK-3 structural model was built on the human GSK-3-indirubin co-crystal structure

(1UV5), although the crystal structure of leishmanial GSK-3 was recently deposited (pdb code 

3E3P).  In the crystal structure, the kinase was determined in its apoenzyme form, which is not 

considered as suitable for docking experiments as the corresponding holo structures (McGovern and 

Shoichet, 2003). In addition, the sequence similarity between the parasite and the human GSK-3 



homologs (49% identity, 68% similarity) (supplementary Fig. 1), is far above the 30% threshold for 

comparative modeling. To evaluate the quality of the leishmanial GSK-3 structural model,

structural comparisons were performed based on calculation of α-carbon atoms RMS deviation. The 

difference between our model and the aforementioned experimental structure of the L.major apo 

GSK-3 was found to be 15.51 Å, a well tolerated deviation if one considers that the corresponding 

difference between the indirubin complexed (2BHE) and the apo (1PW2) crystal structures of 

CDK2 is 16.08 Å. Furthermore, the deviation between the crystal structures of the human and the 

L.major GSK-3 homologs is even larger, at 18.6 Å. Docking experiments were performed using 

both structures and results (data not shown) indicated the homology model as more suitable for 

performing calculations.

The important residues of the leishmanial GSK-3 seem to be well conserved. The equivalent 

residue of Tyr216hGSK-3β that becomes phosphorylated on the activation loop is Tyr186 in the 

parasite GSK-3s. The catalytic residues Asp200hGSK-3β, Glu97hGSK-3β and Lys85hGSK-3β interacting 

with each other and with the phosphates of ATP are also conserved as Asp170LGSK-3s, Glu61LGSK-3s

and Lys49LGSK-3s. The priming phosphate binding site, responsible for optimizing the orientation of 

primed substrates (Frame et al., 2001) for phosphorylation to occur, is formed in the leishmanial 

GSK-3s by Arg60, Arg150 and Lys175.

Docking calculations

The mode of interactions accommodated by the methionine gatekeeper in the leishmanial GSK-

3s is dependent on the indirubin substituent and can be precisely approached only by quantum 

mechanical calculations. These interactions can differentiate ligand affinity in a range of 2-3 

kcal/mol (Manas et al., 2004). In addition, a larger desolvation cost upon inhibitor binding should 

be expected in this case due to the more polar character of methionine. The entropic penalty 

resulting from constraining a methionine sidechain is larger than the corresponding cost for a 

leucine sidechain. The change of a buried leucine to a methionine has been shown experimentally to 



destabilize the protein with a total entropic and desolvation cost of 1.4 kcal/mol (Lipscomb et al., 

1998).

A comparison between the crystal structure of CDK2 and the homology model of CRK3 

indicates three important differences in residues of the active site. Gln131CDK2 becomes Ala149CRK3, 

Phe82CDK2 becomes Tyr101CRK3 and His84CDK2 becomes Glu103CRK3. Structure refinement of the 

CRK3 model resulted in a conformation where the sidechains of Tyr101 and Glu103 formed a 

hydrogen bond (Fig. 7B). This interaction is not possible in the human CDK2 homolog. The 

influence of this bonding interaction on the cavity size and subsequently on the ligand affinity could 

explain the observed gain of selectivity of 6-BIO towards CRK3. Possibly the steric penalty 

resulting from the 6-substitution (Meijer et al., 2004) is counterbalanced in CRK3 by a better fit and 

a favorable stacking or charge dipole interaction between the aromatic system of indirubin and the 

Tyr101-Glu103 pair. While this is true for 6-BIO, in the case of the compounds carrying the bulkier 

substituents (6-IIO, 5-Me-6-BIO and 6-BIA), the presence of the additional substituent provoked a 

displacement of the ligand and the pair of residues Tyr101-Glu103 (Fig. 7C).
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SUPPLEMENTARY FIGURE LEGENDS

-Legend to supplementary Fig 1. Multiple alignment of GSK-3 from eight organisms: L. donovani

GSK-3s (EF620873), L. mexicana GSK-3s (Q0PKV3), L. major Friedlin GSK-3s

(XP_001682433, LmjF18.0270), T. brucei “short” (Tb10.61.3140), H. sapiens GSK-3β (P49841), 

M. musculus GSK-3β (Q9WV60), D. rerio GSK-3β (Q1LYN4) and P. falciparum (O77344). 

Numbering follows the L. donovani homologue. In the depiction identical residues are enclosed in 

black filled boxes and similar residues in black bordered boxes. Dashes indicate gaps introduced to 

optimize the alignment. Filled circles indicate catalytic residues (Asp 170, Glu 61, Lys 49), open 

circles indicate aminoacids that form the priming phosphate binding site (Arg 60, Arg 150, Lys 

175). The arrow shows the “gatekeeper” residue (Met 100). Asterisks mark aminoacids located in 

the flexible glycine loop (Gln 28, Thr 30). The triangle highlights Tyr 186, that becomes 

phosphorylated on the activation loop. Alignment depiction was created with ESPript.

-Legend to supplementary Fig 2. Purity of LdGSK-3s and CRK3 produced in L. donovani over-

expressing transfectants and transgenic L. mexicana promastigotes respectively. The enzymes were 

purified by metal affinity chromatography on Ni-NTA resin as previously described. Lane 1, 

LdGSK-3s (~41 kDa); Lane 2, CRK3 (~36 kDa). Both proteins carry a His-tag, which slightly 



increases their molecular weights. Lanes were loaded with 2 μg of each protein and the purity was 

judged to be of approximately 95%.

-Legend to supplementary Fig 3. Lineweaver-Burke plots of the initial velocity (1/V) versus 

substrate concentration 1/[S], for the determination of the Km values for ATP and substrate for each

kinase. A. LdGSK-3s black line ATP; gray line GS-1 peptide. B. CRK3 black line ATP; gray line 

histone H1.

SUPPLEMENTARY TABLE

Supplementary table 1. Inhibition of LdGSK-3s and CRK3 kinase activities by various inhibitors.

Compounds   

IC50  (μM)

        LdGSK-3s   CRK3

Kenpaullone 3 3

Alsterpaullone 0.2 0.8 

Aloisine A >10 2

Hymenialdisine 2 0.03

SB 216763 1 >10

SB 415286 0.8 >10

TDZD-8 >10 >10

SNS-032 >10 >10
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