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ABSTRACT

A numerical approach based on dynamic importance sampling (DIMS) is introduced to investigate the acti-
vation problem in two-dimensional nonequilibrium systems. DIMS accelerates the simulations and allows the
investigation to access noise intensities that were previously forbidden. A shift in the position of the escape
path compared to a heteroclinic trajectory calculated in the limit of zero noise intensity is directly observed. A
theory to account for such shifts is presented and shown to agree with the simulations for a wide range of noise
intensities.
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1. INTRODUCTION

The study of stochastic processes in nonlinear systems is a very wide and important subject within modern
physics as they are one of the main ways to describe the dynamics of a real system subject to a source of “noise”.
If the noise intensity is small, the system is expected to spend the majority of its time in the close vicinity of
some stable equilibrium point. Nevertheless, very rarely, a large fluctuation may drive the system far from the
stable state, and eventually settle it in the basin of attraction of a different stable structure. As a result of this
activation process, the qualitative dynamics of the system may change dramatically. Consider for example a
vertical cavity surface emitting laser (VCSEL) operating with two stable linearly polarised modes; the random
fluctuations due to spontaneous emission in the active medium may induce strong changes in the polarization
resolved light intensity.1–4 In biological membranes, a current of ions passes through open ionic channels5 as
the result of an activation process. Moreover, activation processes lie at the heart of many other physical
phenomena in nonequilibrium systems, such as stochastic resonance,6 directed diffusion in stochastic ratchets.7–9

The Kramers activation process lies within this class of problems.10–12 Despite its importance, the problem of
activation cannot be regarded as solved. On the theoretical side, important steps toward the solution have been
taken in the regime of zero noise intensity. It has been predicted that, even though the activation events become
exponentially rare when the noise intensity approaches zero, they take place with increasing probability along
activation trajectories that are close to an optimal trajectory. Such a most probable escape path (MPEP) can be
obtained solving an auxiliary Hamiltonian system.13–20 The same picture still applies even for escape at short
times (i.e. before quasi-equilibrium has been established).21 The solution of the escape problem using the MPEP
is in principle true only for the limit of zero noise intensity. However, for real systems, the intensity of noise
fluctuations is necessarily finite. More recently it has been established22 that finite noise diffusion does more
than just changing the prefactor of the exponential. It causes the system to follow a path that differs from the
zero-noise theoretical MPEP.

During the last years, in particular due to the availability of fast computers, the activation problem has
also been extensively studied numerically, in particular using Monte Carlo simulations. However, even for
simple systems, the simulation time grows exponentially with decreasing noise intensity. Consequently, the
really interesting range of noise intensities, i.e. small enough for valid comparisons to be made with theoretical
predictions, have in practice been inaccessible to numerical experiments. Intensive efforts are therefore being
made to find ways of speeding up the simulations.23–25 The probability distribution for the system can be built
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up iteratively23 performing the simulation in regions far away from the equilibrium states. In this way, the shift
of singularities in the probability distribution, and oscillation of the probability at the boundary due to finite
noise intensity, have been observed. These features are consistent with the predicted shift of optimal paths due
to the finiteness of the noise intensity. However, simulations able to reveal the predicted shift in the optimal
path with increasing noise intensity are still lacking: to address this question we need numerical approaches
which yield, not the probability distributions, but rather the actual paths followed by the dynamics of the
system of interest. Simulation techniques based on dynamic importance sampling (DIMS) were proposed24 for
1-dimensional dynamical systems to study dynamics in the limit of very small noise intensity. DIMS aims to
accelerate Monte Carlo integrations by adding an appropriately chosen biasing field to the equations of motion,
which remain stochastic in nature. Standard techniques are then used to relate Monte Carlo results in the
presence of the bias to the statistical observables of the original system.

The investigation of real systems (such as the lasers mentioned above) requires the analysis of higher dimen-
sional nonequilibrium systems. However, the extension of DIMS to multidimensional systems is not straightfor-
ward. An earlier biasing technique,25 introduced for both 1 and 2 dimensional systems, was found incapable of
detecting either the shift of the escape path22 or saddle point avoidance,26 both of which had been predicted
theoretically. Moreover, in the presence of singularities, a bad choice of bias might hide important physical
features of the system of interest. Note that other numerical approaches, like the umbrella sampling technique27

are not appropriate for nonequilibrium systems.

The aim of this paper is the introduction of a generalized and robust version of DIMS valid, in principle for
an arbitrary number of dimensions. Such an extended method would allow one to reveal the behaviour of the
system in the vicinity of the MPEP in the finite noise regime. accelerating the simulation by exploitation of
well-established zero-noise-limit theoretical results.

In order to give some concrete examples of the application of the technique, we apply it to the investigation
of escape in three different multidimensional nonequilibrium systems: the inverted van der Pol oscillator, the
harmonically driven overdamped Duffing oscillator and the polarization dynamics of a vertical cavity surface
emitting laser. The noise intensities considered lie far beyond the range of anything investigated previously. As
we will show, the predicted shift of the optimal path due to the finiteness of the noise is clearly resolved and
turns out to be in excellent agreement with theory22 over more than 4 orders of magnitude in the noise intensity.
The extension of the algorithm to stochastic maps is discussed.

2. THEORY

As mentioned in the introduction, stochastic nonlinear systems are used to describe a very large number of
different physical problems. In order to keep the discussion as general as possible, we consider a generic nonlinear
system under the influence of noise described by the following Langevin equation

ẋ = f(x) + ξ(t), (1)

〈ξ(t)〉 = 0 〈ξ(t)ξ(s)〉 = ǫδ(t− s) (2)

Here x represents a vector of coordinates, f(x) is a nonlinear function, and ξ(t) is a family of zero-mean uncor-
related Gaussian noise processes of intensity ǫ. The drift field f(x) is chosen in order to display multiple stable
states (including eventually x → ∞) and noise induced transitions between them are considered. For systems in
detailed balance (for example if f(x) is the gradient of some potential function), activation takes place according
to paths that are time-reversed relaxational trajectories.28 In what follows, we consider the case where f(x) does
not satisfy the detailed balance condition, and we will focus on the important case of coexisting steady states
whose basins of attraction are separated by saddle cycles.

The time evolution of the probability density for the system (1) is regulated by the following Fokker-Planck
equation

∂̺

∂t
= −∂ (f̺)

∂x
+

ǫ

2

∂2̺

∂x2
(3)



In the limit ǫ → 0, (3) can be solved using the WKB expansion.13, 14 The probability distribution is considered
to have the form

̺(x, t) = z(x, t) exp

(

−S(x, t)

ǫ

)

, ǫ → 0, (4)

where S(x, t) and z(x, t) are two functions. Inserting (4) in (3) and considering different order of expansion in ǫ,
at leading order ǫ−1 the auxiliary function S turns out to be the solution of the Hamilton-Jacobi equation for a
classical action

∂S

∂t
= −H

(

x,
∂S

∂x

)

. (5)

The Hamiltonian for the system,

H(x, p) =
p2

2
+ p · f, (6)

is known as the Wentzell-Freidlin Hamiltonian14 and the Hamiltonian equations for the system are

ẋ = f(x) + p, ṗ = −p
df

dx
. (7)

The evolution of the function S along the solutions of (7) is calculated starting from dS
dt

= ∂S
∂t

+ ∂S
∂x

ẋ. Using ∂S
∂x

together with Eq.(5) and Eq.(6), the final equation for the action is

dS

dt
=

1

2
p2. (8)

Being non-decreasing along trajectories and differentiable almost everywhere, the function S can be considered
as a non-equilibrium potential for the system.29–32 It is known from the theory of dynamical systems that
S(x, t) can be a multi-valued function of position in the coordinate space.29, 31, 33, 34 In this case, more than one
trajectory solution of (5) reaches the same point in coordinate space. In the limit ǫ → 0, only that of least
action Smin is relevant, and all trajectories corresponding to higher values of S are exponentially disadvantaged.
Escape takes place along the least action trajectory with overwhelming probability in the limit ǫ → 0. This is
the MPEP, and the action calculated along it is the “activation energy”. Regions of coordinate space reached
by different families of optimal paths are separated by switching lines (SL).18, 19, 35 A trajectory ceases to be
optimal after crossing a switching line. For this reason, the most probable escape path can touch the SL only
asymptotically. Because the SL reaches the cycle asymptotically,18 the only possible optimal escape trajectories
are heteroclinic paths connecting the initial state to the saddle cycle in infinite time.

To calculate the effect of finite, but small, ǫ 6= 0 in this picture, a calculation of the next-to-leading order in
the WKB expansion is performed. In this order of approximation, the prefactor z(x, t) satisfies.19

dz

dt
= −∂f i

∂xi

z − 1

2

∂2S

∂xi∂xi

z (9)

where summation over repeated indexes is understood. The solution of (9) calls for a knowledge of the second
derivatives of the action calculated along the characteristics. Differentiating twice (5), the following equations
are obtained19

d

dt

(

∂2S

∂xi∂xj

)

= − ∂2H

∂xi∂xj
− ∂2S

∂xi∂xk

∂2H

∂pk∂xj

− ∂2S

∂xj∂xl

∂2H

∂xi∂pl
− ∂2S

∂xj∂xl

∂2S

∂xi∂xk

∂2H

∂pk∂pl
(10)

The non-constancy of the prefactor along the trajectories can be expressed in terms of a corrected non-equilibrium
potential (dependent on ǫ)

Sǫ = S − ǫ log(z). (11)

It is this corrected potential that has to be used to locate the position of the switching line for finite noise regimes.
Points on the modified SL are defined by S1

ǫ = S2
ǫ where the index 1, 2 refers to two different trajectories reaching



the same point in the coordinate space.23 The modified switching line does not touch the cycle asymptotically,
but hits it at a definite position which depends on the noise intensity. As a consequence, heteroclinic trajectories
are no longer optimal and the optimal escape follows a path that differs from the MPEP.

The case of a non-linear stochastic map is very similar. Consider a generic map of the form

xn+1 = f(xn) + ξn, (12)

〈ξn〉 = 0 〈ξnξm〉 = ǫδnm (13)

where the function f(x) is chosen to display multiple coexisting stable states. As (12) is a discrete system, a
Fokker-Plank equation cannot be written for the probability distribution. Nevertheless, it has been proved36

that the MPEP for the map (12) satisfies the extended map

xn+1 = f(xn) + λn, (14)

λn+1 =
[

∂f
∂x

∣

∣

xn+1

]

−1T

λn. (15)

Here the variable λn plays the role of the momentum p in (7) and the symbol T indicates the transpose matrix.
The “action” for the solutions of (14) and (15) can be calculated using the discrete version of (8)

Sn+1 = Sn +
1

2
λ2
n (16)

In the same way as in continuous systems, the transitions from an initial stable state to a final state take place
along the path that minimize (16).

3. ALGORITHM

In this section we propose we propose an extension of DIMS24, 25 to the multidimensional case. It will be used to
unravel features of the topology close to the optimal escape path in the limit of small but finite noise intensity.
The method is applicable to continuous systems or maps characterized by a stable attractor with a sizable basin
of attraction, where escape takes place via a large fluctuation.

Consider a generic dynamical system of the form (1); we will focus on the transitions from a stable attractor
As toward a final saddle Fs. The process takes place in three steps: in the vicinity of As the dynamics of the
stochastic system is purely diffusive; then, when the system leaves the vicinity of As (the length scale is defined
by

√
ǫ), the escape becomes essentially ballistic, along the MPEP and, in the vicinity of Fs, the finite noise

diffusion dominates. In order to take into account the existence of these three regimes, the integration method
is built as follow: the system is initially set close to As, the exact equations of motion (1) are integrated using
a standard SDE (stochastic differential equation) integrator: for the examples shown below, we used the Heun
integrator.37 This reproduce the diffusive regime in the vicinity of As. We also set a boundary at some distance
from the stable attractor: this boundary has nothing to do with the boundary of the basin of attraction, but it
delineate where we define the diffusive regimes to change to ballistic. When the boundary is crossed, we switch
from standard SDE integration to DIMS integration. Although the final result does not appear to depend on
the boundary choice, nevertheless the boundary ought to be chosen on some rational basis: we require that the
boundary should be fairly easily reached by the dynamical system when using straight SDE integration, but also
that this event should not be too probable. In practice, a reasonable boundary could be e.g. a circle centered
on the stable attractor, with a radius of a few

√
ǫ. This choice reproduces the diffusive dynamics in the vicinity

of the stable state. When the system hits the boundary, we switch to the DIMS integrator: from the above
discussion, we know that the SDE

ẋ = f(x) + ξ(t)

maps onto the Hamiltonian equation (7), so we switch to the integration of

ẋ = f(x) + p(x) + ξ(t) (17)
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Figure 1. The scheme for one step of the DIMS method, where: Ω is a cross section in the extended phase space; γ (thick
line) is the optimal path predicted by the theory; the thin lines are the stable and unstable eigenspaces (as indicated by
the directions of the arrows) of the optimal path. The dashed lines represent respectively the coordinate space x and the
momentum space p. A is a point in the coordinate space, A∗ is the corresponding point on the stable manifold of γ as
required by the integration procedure.

where p(x) is the momentum conjugated with x as obtained from the MPEP and ξ(t) is the DIMS stochastic
component. It is clear that in more than one dimension the probability of being exactly on the MPEP during
each integration time step is negligible: but the idea is that we should nevertheless use in the integration of
(17) the value of p(x) which “pulls” the escape tube toward the boundary. This is achieved by linearising the
Hamilton equations near the MPEP, and using the p(x) that keeps the system on the stable manifold of the
MPEP. A step of the scheme is explained in Fig.1. Consider a point A in the coordinate space. The momentum
p(x) to be used in the equation (17) is calculated in the following way: the point A∗ in the extended phase
space which has the same x coordinate as A, and lies on the stable manifold of the MPEP, is located. The
momentum of the point A∗ is then used as p(x) in (17). The integration scheme is interrupted and reset if the
trajectory leaves a small neighborhood of the MPEP (size of a few

√
ǫ). The generalization to stochastic maps

is straightforward: once again it is necessary to define a boundary separating the diffusive region (in the vicinity
of the initial stable state) and the ballistic region. Inside the diffusive region, Eq.(12) is integrated numerically
in standard way; when the fluctuations bring the system in the ballistic region, the integration scheme switches
to DIMS: instead of integrating directly Eq.(12), we integrate

xn+1 = f(xn) + λn + ξn (18)

where the “momentum” λn is chosen in order to “pull” the path toward the MPEP. If the trajectory leaves a
neighborhood of the order of

√
ǫ from the MPEP, it is rejected and the integration is restarted from scratch.

4. EXAMPLES

In this section we show some explicit examples of the application of the multidimensional DIMS algorithm. First,
we consider the inverted van der Pol oscillator (IVDP). It is characterized by the presence of an unstable cycle
with a stable point at its centre. DIMS is used here to study transitions from the stable state to the limit cycle.
The IVDP system is described by the following pair of equations

ẋ = y

ẏ = −x− 2η
(

1− x2
)

y +
√
ǫξ(t)

(19)
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Figure 2. Comparison between theory and simulations for the escape in the IVDP system (19). Here the parameter
η = 0.5 and two different noise intensities are considered: ǫ = 10−5 (left figure) and ǫ = 10−2 (right figure). The limit
cycle and the most probable escape path are indicated by full lines; the crosses are points on the ridge of the prehistory
probability density for the escape. The arrows indicate the positions where the theoretical modified optimal escape path
hits the cycle. The theory agrees well with the experimental points for both noise intensities. A significant shift in the
position where the optimal path hits the boundary is evident.

Here x and y are dynamical variables and ξ(t) is a white Gaussian processes of unit intensity. The parameter
η determines both the friction and the pumping of energy in the system. The DIMS simulations have been
performed for a range of intensities running between 10−5 and 10−2. Some results are shown in figure 2 for two
different noise intensities. The agreement between the theoretical and experimental escape paths at finite noise
intensities is seen to be excellent. The shift in the optimal path is continuous with the noise intensity and the
change in the point where the MPEP hits the cycle is dramatic.

In order to show how the modified DIMS can be applied to non-autonomous stochastic systems we consider,
as a second example, the harmonically driven overdamped Duffing oscillator

ẋ = x− x3 +A sin (ωt) +
√
ǫξ(t). (20)

Here x is the dynamical coordinate, A and ω are the amplitude and the frequency of the external driving, and
ξ is a white Gaussian process of unit intensity. The driving term A sin (ωt) keeps the system out of equilibrium;
the parameters A and ω are chosen to be in the non-perturbative, non-adiabatic regime. The dynamics of this
system is characterized by two stable limit cycles separated by an unstable limit cycle. In the presence of noise,
the system can fluctuate from one stable cycle to the other. Some simulation results are shown in Fig. 3. The
experimental trajectory follows closely the heteroclinic path when it is far from the stable and unstable cycles.
As the system approaches the unstable cycle, however, diffusion becomes important and the escape then runs
along the finite noise escape path calculated using finite noise corrections. An increase in the noise intensity
determines an increase in the shift of the hitting position of the experimental MPEP. Once again, the shift in
the position is continuous with the noise intensity.

As a final example, we consider a noise-induced polarization switch in a VCSEL. If the linear dichroism
of the active cavity and mirrors is small enough and the pumping is not too strong, the VCSEL emits in the
fundamental transverse mode3, 4, 38 and the polarization switches between two orthogonally polarized modes. In
this regime, the polarization dynamics can be described using the polarization angle φ and the ellipticity χ. The
dynamical model for these is3

χ̇ = ωl sin(2φ)− γn sin(2χ) cos(2χ) + γl sin(2χ) cos(2φ) + ξχ(t) (21)



0 5 10 15

−1

−0.5

0

0.5

 φ

 x

Figure 3. Comparison of theory and simulations for the activation problem in the Duffing system (20). The parameters
are A = 0.1 and ω = 1. The noise intensity is here ǫ = 4× 10−3. The dashed line indicate the steady states and the most
probable escape path at ǫ = 0. The solid line indicates the noise corrected optimal path. The crosses are points on the
ridge of the prehistory probability density for the escape. The position where the noise corrected optimal path hits the
saddle cycle is indicated by an arrow.

φ̇ = −ωl

sin(2χ)

cos(2χ)
cos(2φ) + γl

sin(2φ)

cos(2χ)
− ωn sin(2χ) + ξφ(t) (22)

〈ξχ(t)〉 = 〈ξφ(t)〉 = 0 ∀t (23)

〈ξχ(t)ξχ(s)〉 = 〈ξφ(t)ξφ(s)〉 = ǫδ(t− s) 〈ξφ(t)ξχ(s)〉 = 0 ∀t, s (24)

Here ωl and γl are the dispersive (birefringence) and absorptive (dichroism) linear anisotropies, and γn and
ωn = αγl (α is the linewidth enhancement factor) are the nonlinear anisotropies. The spontaneous emission of
photons in the cavity is described by the Gaussian stochastic variables ξχ and ξφ. The dynamical variable χ may
vary between −π

4
and π

4
and the angle φ may vary between 0 and π. With a proper choice of the parameters,

two linear polarization modes are stable: the x̂-polarized mode (corresponding to χ = 0 and φ = 0) and the
ŷ-polarized mode (corresponding to χ = 0 and φ = π

2
). Their basins of attractions are separated by an unstable

limit cycle similar to the one in IVDP system.

The DIMS scheme has been applied here to investigate the transitions from the ŷ-polarized mode to the limit
cycle. In figure 4 the numerical simulations are compared with the theoretical MPEP for different values of the
noise intensity. As expected, when the noise intensity increases, the simulations follow the MPEP less closely
and they leave the basin of attraction of the initial lasing mode earlier.

5. CONCLUSIONS AND DISCUSSION

In conclusion, in this paper we have introduced a way to perform numerical simulations in complex nonlinear
systems that is efficient and robust. The main idea of the algorithm is to perform the simulation in the vicinity
of the MPEP which can be calculated solving (7) for a continuous system or (14) and (15) for a stochastic map.
The simulated trajectory is kept close to the MPEP taking the momentum so as to stay on the stable manifold.
The method can be successfully applied to a large class of dynamical systems and maps. The technique is a very
useful tool for the investigation of features induced by finite noise in the neighborhood of the optimal escape
path; and hence leads to a biasing scheme that is based on the dynamics of the system itself, thus constituting
a most natural scheme for dynamic importance sampling. The application of the method has allowed us to
explore regimes of low but finite noise intensity, and enabled us to observe experimentally the predicted shift23 of
escape path; we stress that this shift is a large physical effect, even at the smallest noise intensities investigated
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Figure 4. Comparison between theory and simulations for the polarization switches in a VCSEL. The noise intensity
changes from (a) to (b); the dashed lines are the theoretical MPEP and the solid lines are the results of the simulation.
The full circle marks the point where half of the trajectories plus one leave the basin of attraction of the initial lasing
mode. The shift of this point with the noise intensity is evident.

in this paper. The technique provides a way of extending experimental studies to noise intensities that were
previously inaccessible, and promises to accelerate research in many fields of science, e.g. in the investigation of
the polarization of flip dynamics in vertical cavity surface emitting lasers or in the motion of ions in the pores
of cellular membranes. The discrete version of the algorithm may be used as a tool to investigate problems in
laser dynamics.39, 40
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