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Abstract

Stochastic generators of completely positive and contractive quantum stochastic convo-
lution cocycles on a C∗-hyperbialgebra are characterised. The characterisation is used to
obtain dilations and stochastic forms of Stinespring decomposition for completely positive
convolution cocycles on a C∗-bialgebra.

Stochastic (or Markovian) cocycles on operator algebras are basic objects of interest in
quantum probability ([1]) and have been extensively investigated using quantum stochastic
analysis (see [12]). There is also a well-developed theory of quantum Lévy processes, that is
stationary, independent-increment, *-homomorphic processes on a *-bialgebra (see [6, 22]
and references therein). Close examination of these two directions has naturally led to the
notion of quantum stochastic convolution cocycle on a quantum group (or, more generally,
on a coalgebra), as introduced and investigated in [14] in an algebraic context, and in [17]
in the analytic context of compact quantum groups. The main results have been summarised
in [15]. Recent years have also seen an increased interest in the noncommutative gener-
alisation of classical hypergroups ([3]), initiated by Chapovsky and Vainerman ([5]) and
continued, for example, in the papers [10] and [11]. Compact quantum hypergroups differ
from compact quantum groups in that their coproduct need not be multiplicative. How-
ever, it remains completely positive, which makes compact quantum hypergroups, or more
generally C∗-hyperbialgebras, an appropriate category for the consideration of completely
positive quantum stochastic convolution cocycles in a topological context (for the purely
algebraic case see [7]). These cocycles may be viewed as natural counterparts of station-
ary, independent-increment processes on hypergroups. In [17] it is shown that, under certain
regularity conditions, they satisfy coalgebraic quantum stochastic differential equations.

The aim of this paper is to prove dilation theorems for quantum stochastic convolution
cocycles on a C∗-bialgebra. To this end it is first necessary to establish the detailed structure
of the stochastic generators of completely positive and contractive convolution cocycles. We
give a direct derivation of this exploiting ideas used in the analysis of standard quantum
stochastic cocycles with finite-dimensional noise space ([13]). Once the structure of gen-
erators is known, one may consider question of dilating completely positive convolution
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cocycles to ∗-homomorphic ones. In the context of standard quantum stochastic cocycles
this problem was treated in [8] and [9] (see also [2]). In the first of these papers it was shown
that every Markov-regular completely positive and contractive cocycle arises as the image of
a ∗-homomorphic cocycle under a vacuum conditional expectation which averages out some
dimensions of the quantum noise. In the second every Markov-regular completely positive
and contractive cocycle was shown to be realisable as a composition of a ∗-homomorphic
cocycle with conjugation by a contraction operator process. This may be seen as a stochastic
Stinespring decomposition. In this paper using the techniques of Goswami, Lindsay, Sinha
and Wills we obtain analogous results for convolution cocycles on C∗-bialgebras. Mul-
tiplicativity of the coproduct is necessary here for obtaining dilations to ∗-homomorphic
cocycles.

An alternative approach to the one presented in this paper would be to exploit more dir-
ectly theorems known for standard quantum stochastic convolution cocycles and properties
of the R-map introduced in [17]. In that paper the general form of the stochastic generat-
ors of completely positive and contractive convolution cocycles was determined by using
a particular representation of the C∗-bialgebra in question and appealing directly to the
results of [13], [18] and [20]; similar methods may be further used to obtain the dilation
results presented here. One drawback of such an approach is that it involves using the deep
Christensen-Evans theorem on quasi-innerness of derivations on represented C∗-algebras.
Another is the necessity to reformulate the results of [8] and [9] in coordinate-free quantum
stochastic calculus. This is also necessary for overcoming separability assumptions on the
noise dimension spaces. Finally the von Neumann algebraic framework used in [8] would
require nontrivial modifications. In sum, the method presented here has the advantage of
being more elementary.

The paper is structured as follows. The first section contains the notation and elements
of quantum stochastic analysis and operator space theory needed. In the second section
C∗-hyperbialgebras are defined and the well-known technique of obtaining them from C∗-
bialgebras via a noncommutative conditional expectation is recalled. Basic facts concerning
quantum stochastic convolution cocycles and the structure of their stochastic generators in
the completely positive and ∗-homomorphic cases are also included here. In the third sec-
tion a more detailed description of the stochastic generators of Markov-regular, completely
positive, contractive convolution cocycles, in terms of a certain tuple of objects, is derived.
Dilations of such convolution cocycles on a C∗-bialgebra to *-homomorphic convolution
cocycles are given in the fourth section, and the fifth section contains a stochastic Stine-
spring decomposition.

1. Preliminaries

In this section we introduce our notations and review results from quantum stochastic
analysis relevant to the rest of the paper. We shall usually abbreviate quantum stochastic to
QS, completely positive to CP and completely positive, contractive to CPC.

Notation

All vector spaces in this paper are complex and inner products are linear in their second
argument. Algebraic tensor products are denoted by �.

Let h be a Hilbert space. Ampliations are denoted

ιh: B(H) −→ B(H ⊗ h), T �−→ T ⊗ Ih,
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and each vector ξ ∈ h defines operators

Eξ : H −→ H ⊗ h, v �−→ v ⊗ ξ and E ξ = (Eξ )
∗,

generalising Dirac’s bra-ket notation:

Eξ = IH ⊗ |ξ〉 and E ξ = IH ⊗ 〈ξ |.
The particular Hilbert space H will always be clear from the context. For a subspace E of h,
O(E) will denote the vector space of linear operators in h with domain E .

Finally, for a function f : R+ → h and subinterval I of R+, f I denotes the function
R+ → h which agrees with f on I and is zero outside I (cf. standard indicator-function
notation). This convention also applies to vectors, by viewing them as constant functions—
for example

ξ[s,t[, for ξ ∈ h and 0 � s < t.

Matrix spaces

For an introduction to the theory of operator spaces we refer to [4]. For this paper it
is sufficient to work with concrete operator spaces, that is closed subspaces of the space
B(h; h′) of all bounded linear operators acting between Hilbert spaces h and h′. The spa-
tial/minimal tensor product of operator spaces is denoted by ⊗, and when V, W are operator
spaces C B(V; W) denotes the space of all completely bounded maps from V to W.

We need the concept of matrix spaces introduced by Lindsay and Wills in [20]. Let V ⊂
B(K) be an operator space and let h be a supplementary Hilbert space. The operator space:

Mh(V) = {T ∈ B(K ⊗ h) : E ξ ′
T Eξ ∈ V for all ξ, ξ ′ ∈ h}

is called the h-matrix space over V. It is easy to see that Mh(V) contains the spatial tensor
product V ⊗ B(h). Whenever W ⊂ B(H) is another operator space, and φ ∈ C B(V; W),
the map φ ⊗ idB(h) extends uniquely to a completely bounded map φ(h): Mh(V) → Mh(W)

satisfying

E ξ ′(
φ(h)(T )

)
Eξ = φ(E ξ ′

T Eξ ),

for all T ∈ Mh(V), ξ, ξ ′ ∈ h. The map φ(h) is called the h-lifting of φ.

Fock space notations and QS processes

Let k be a Hilbert space, called the noise dimension space. Then Fk denotes the symmetric
Fock space over L2(R+; k). Exponential vectors in Fk are written ε( f ), f ∈ L2(R+; k). The
CCR flow of index k, defined in terms of the second quantised shift on L2(R+; k), is denoted
σ = (σt)t�0. Define

Sk � Lin
{
d[0,s[ : d ∈ k, s ∈ R+

}
and a corresponding subspace of Fk:

Ek � Lin{ε( f ) : f ∈ Sk}.
When the space k is clear from the context we will simply write F, S and E. Elements of
E will play the role of test functions. For a subspace E of k the following notation will be
employed:

Ê � Lin{̂c : c ∈ E}, where ĉ �
(

1

c

)
∈ ĥ � C ⊕ h.
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Two further useful notations are

e0 =
(

1

0

)
∈ k̂ and �QS =

[
0

Ik

]
∈ B(̂k). (1·1)

Let h be an additional Hilbert space. By an h-operator process we understand a family
X = (Xt)t�0 of operators on h ⊗ F, each having the (dense) domain h � E, being weak-
operator measurable in t and adapted to the natural Fock-space operator filtration. Thus
X : R+ → O(h � E), t �→ Xtξ is weakly measurable for all ξ ∈ h � E and, for each t � 0,
ζ ∈ h, Xt(ζ⊗ε( f )) = X (t)(ζ⊗ε( f |[0,t[))⊗ε( f |[t,∞[) for some operator X (t) ∈O(h�E[0,t[),
where E[0,t[ is defined as E is, except that R+ is replaced by [0, t[. The linear space of all h-
operator processes is denoted P(h � E), or P(E) if h = C, with subscripts on the E when
necessary for avoiding ambiguity. A process X ∈ P(h � E) is called weakly regular if for
each ξ, ξ ′ ∈ h � E, the scalar-valued function

t �−→ 〈ξ ′, Xtξ〉, t ∈ R+,

is locally bounded. It is called bounded if Xt is a bounded operator for each t � 0 (in such
a case Xt is usually identified with its continuous extension to the whole of h ⊗ F).

Now let V and W be operator spaces with W ⊂ B(h). A linear map k from V to P(h � E)
is called a process on V with values in W if, for each v ∈ V, k(v) is an h-operator process
and, for each f, g ∈ S, t � 0 and v ∈ V, the operator Eε( f )kt(v)Eε(g) belongs to W. Here W
will usually be either V or C.

The vector space of all processes on V with values in W is written P(V; W, E) (this cor-
responds to the notation P(V → W : h � E) used in [17]); when W = C we simply write
P(V; E). We say that k ∈ P(V; W, E) is pointwise weakly regular if each k(v) (v ∈ V) is
weakly regular. It is completely bounded if, for each v ∈ V, the process k(v) is bounded and,
for each t � 0, the map kt : V → B(h ⊗ F) is completely bounded.

QS differential equations and standard QS cocycles

Let V, W be operator spaces with W ⊂ B(h) for some Hilbert space h. For maps θ ∈
C B(V; W) and φ ∈ C B(V; Mk̂(V)) consider the quantum stochastic differential equation

dkt = k̂t ◦ φ d	t , k0 = ιF ◦ θ. (1·2)

By a weak solution of this equation we understand a process k ∈ P(V; W, E) such that

〈ξ ⊗ ε( f ), (kt(v) − θ(v)1F)η ⊗ ε(g)〉 =
∫ t

0

〈
ξ ⊗ ε( f ), ks

(
E f̂ (s)φ(v)Eĝ(s)

)
η ⊗ ε(g)

〉
ds

for all t � 0, v ∈ V, ξ, η ∈ h and f, g ∈ S. If there is a quantum stochastically integrable
h ⊗ k̂-process K on V (see [12]), with domain h ⊗ k̂ � E, satisfying

E ζ ′
Kt(v)Eζ = kt(E ζ ′

φ(v)Eζ )

for all t � 0, ζ, ζ ′ ∈ k̂ and v ∈ V, then k is called a strong solution. The equation (1·2) has a
unique weakly regular weak solution, which is also a strong solution ([16], [18]). We denote
it by kθ,φ , or simply kφ if V = W and θ = idW.

A completely bounded process k ∈ P(V; V, E) is called a standard QS cocycle on V if,
for s, t � 0,

kt+s = k̂t ◦ σ̃t ◦ ks and k0 = ιF ◦ idV

where k̂t denotes an F[t,∞[-lifting of kt and σ̃s = idh⊗σs . It is said to be Markov-regular if
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its Markov semigroup P: R+ → B(V), defined by

Pt(v) = Eε(0)kt(v)Eε(0), t � 0, v ∈ V,

is norm-continuous. Whenever φ ∈ C B(V; Mk̂(V)), the process kφ is a Markov-regular weak
standard QS cocycle (see [12, 19]; note however that what is here called a weak standard
QS cocycle, there is simply called a quantum stochastic cocycle).

2. C∗-hyperbialgebras and QS convolution cocycles

In this section we describe the standard construction of C∗-hyperbialgebras via noncom-
mutative conditional expectation, and give the definition and some properties of quantum
stochastic convolution cocycles. We then relate quantum stochastic convolution cocycles on
the respective C∗-hyperbialgebras.

C∗-hyperbialgebras and the conditional expectation construction

Definition 2·1. A unital C∗-algebra A is called a C∗-hyperbialgebra if it is equipped with a
unital completely positive map �: A → A⊗A (called a coproduct) and a character ε: A → C

(called a counit) satisfying the following conditions:

(� ⊗ idA) ◦ � = (idA ⊗ �) ◦ �,

(ε ⊗ idA) ◦ � = (idA ⊗ ε) ◦ � = idA.

If additionally � is multiplicative then A is called a C∗-bialgebra (and may be thought of as
a compact quantum semigroup with a neutral element).

The following construction, of new C∗-hyperbialgebras from old, was described explicitly
(in the context of compact quantum hypergroups) in the papers [10] and [11], but its origins
go back much further (see [5] and references therein). All known examples of noncommut-
ative C∗-hyperbialgebras arise in this way from C∗-bialgebras.

PROPOSITION 2·2. Let (A, �, ε) be a C∗-hyperbialgebra. Assume that Ã is a unital C∗-
subalgebra of A and that there exists a conditional expectation, that is a norm-one projec-
tion, P from A onto Ã satisfying the following identities:

(P ⊗ idA) ◦ � ◦ P = (P ⊗ P) ◦ � = (idA ⊗ P) ◦ �.

Then (Ã, �̃, ε̃) is a C∗-hyperbialgebra, where

�̃ = (P ⊗ P) ◦ �|Ã and ε̃ = ε|Ã.

Two particular cases of this construction are double coset bialgebras and Delsarte C∗-
hyperbialgebras; they are described below.

Let (A1, �1, ε1) and (A2, �2, ε2) be C∗-bialgebras and assume that the latter is a
quantum subsemigroup of the former. This means that there exists a unital *-homomorphism
π : A1 → A2 which is surjective and intertwines the coalgebraic structures:

(π ⊗ π) ◦ �1 = �2 ◦ π, ε2 ◦ π = ε1.

Assume additionally that A2 admits a Haar state; this means that there exists a state µ ∈ A∗
2

such that for all a ∈ A2

(µ ⊗ idA2)(�2(a)) = µ(a)1A2 .
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Define the following C∗-subalgebras of A1:

A1/A2 �
{
a ∈ A1 : (idA1 ⊗ π

) ◦ �1(a) = a ⊗ 1
}
,

A2\A1 �
{
a ∈ A1 : (π ⊗ idA1

) ◦ �1(a) = 1 ⊗ a
}
,

A2\A1/A2 � A1/A2 � A2\A1,

called respectively the algebras of right and left cosets of A2 and the double coset bialgebra.
It can be checked that the map P: A1 → Ã � A2\A1/A2 defined by

P(a) = ((µ ◦ π) ⊗ idA1 ⊗ (µ ◦ π)
) (

�1 ⊗ idA1

)
�1(a), a ∈ A1,

satisfies the conditions given in Proposition 2·2. Its action may be understood as averaging
(twice) over the quantum subsemigroup; this construction is common in the theory of clas-
sical hypergroups ([3]).

Let now (A, �, ε) be a C∗-bialgebra and assume that a compact group  acts (continu-
ously with respect to the topology of pointwise convergence) on A by C∗-algebra auto-
morphisms satisfying

(γ ⊗ γ ) ◦ � = � ◦ γ, ε ◦ γ = ε, γ ∈ .

Let Ã be the fixed point subalgebra, Ã � {a ∈ A : ∀γ∈γ (a) = a}. It is easily checked that
the map P: A → Ã given by

P(a) =
∫



γ (a)dγ, a ∈ A,

where dγ denotes the normalised Haar measure on , satisfies the assumptions of Proposi-
tion 2·2. The resulting C∗-hyperbialgebra is called a Delsarte C∗-hyperbialgebra.

Given a C∗-hyperbialgebra A, each operator space V determines a map

RV: C B(A; V) −→ C B(A; A ⊗ V), ϕ �−→ (idA ⊗ ϕ) ◦ �. (2·1)

When V = C we write R instead of RC.

QS convolution cocycles

The following definition originates in [14] and is inspired by the theory of quantum Lévy
processes. Let A be a C∗-hyperbialgebra.

Definition 2·3. A QS convolution cocycle on A, with noise dimension space k, is a com-
pletely bounded process l ∈ P(A; E) such that, for s, t � 0,

ls+t = (ls ⊗ (σs ◦ lt)) ◦ � and l0 = ιF ◦ ε.

The first of these conditions is referred to as the convolution increment property.

A QS convolution cocycle l is said to be Markov-regular if its Markov convolution semig-
roup of functionals λ: R+ → A∗, defined by

λt(a) = 〈ε(0), lt(a)ε(0)〉, t � 0, a ∈ A,

is norm-continuous.
For ϕ ∈ C B(A; B(̂k)) we consider coalgebraic QS differential equations of the form

dlt = lt � d	ϕ(t) = (lt �π ϕ)d	t , l0 = ιF ◦ ε, (2·2)

where π indicates a tensor flip exchanging the order of k̂ and F. In fact the above equation
may also be written as an equation of the type (1·2), with φ = RB(̂k)ϕ and θ = ε. The unique
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solution of (2·2) will be denoted by lϕ . The process lϕ ∈ P(A; E) is a Markov-regular weak
QS convolution cocycle. For full discussion of the precise meaning of (2·2), weak QS con-
volution cocycles and relations between the equation (2·2) and equations of the type (1·2)
we refer to [16] and [17]. The next two propositions are proved in [17] by applying the
semigroup decompositions of cocycles and convolution cocycles.

PROPOSITION 2·4. Let l = lϕ and k = kφ where ϕ ∈ C B(A; B(̂k)) and φ = RB(̂k)ϕ.
Then the process l is completely bounded (respectively, completely positive and contractive)
if and only if k is, and if l and k are completely bounded then

kt = RB(F)lt , t ∈ R+. (2·3)

PROPOSITION 2·5. Let k = RB(F)l where l is a completely bounded process in P(A; E).
Then l is a QS convolution cocycle if and only if k is a standard QS cocycle on A, and in this
case l is Markov-regular if and only if k is.

Application of these results to the characterisation of the generators of Markov-regular
CPC QS cocycles, and *-homomorphic QS cocycles, given in [20] and [21] respectively,
leads to the following results.

THEOREM 2·6 ([17]). Let A be a C∗-hyperbialgebra and l ∈ P(A; Ek). Then the follow-
ing are equivalent:

(i) l is a Markov-regular, completely positive and contractive QS convolution cocycle;
(ii) l = lϕ where ϕ ∈ C B(A; B(̂k)) satisfies ϕ(1) � 0 and may be decomposed as

follows:
ϕ(a) = ψ(a) − ε(a)(�QS + |e0〉〈χ | + |χ〉〈e0|), a ∈ A, (2·4)

for some completely positive map ψ : A → B(̂k) and vector χ ∈ k̂.

THEOREM 2·7 ([17]). Let A be a C∗-bialgebra and let l = lϕ where ϕ ∈ C B(A; B(̂k)).
Then the following are equivalent:

(i) l is *-homomorphic;
(ii) ϕ satisfies

ϕ(a∗b) = ε(a)∗ϕ(b) + ε(b)ϕ(a)∗ + ϕ(a)∗�QSϕ(b), a, b ∈ A. (2·5)

QS convolution cocycles and the conditional expectation construction

We end this section by describing the connection between QS convolution cocycles on
C∗-hyperbialgebras related by the construction given in Proposition 2·2.

PROPOSITION 2·8. Let (Ã, �̃, ε̃) be the C∗-hyperbialgebra arising from a C∗-
hyperbialgebra (A, �, ε) via the construction presented in Proposition 2·2, with associated
conditional expectation P. Then there is a 1-1 correspondence between QS convolution
cocycles on Ã and P-invariant processes on A satisfying the convolution increment property
and having initial condition given by the functional ε ◦ P.

Proof. Assume first that l̃ ∈ P(Ã; E) is a QS convolution cocycle and define l ∈ P(A; E)
by

lt = l̃t ◦ P, t � 0.

Then clearly l0(a) = ε(P(a)) for all a ∈ A, and l is P-invariant. It remains to check it is a
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convolution increment process. Choose t, s � 0 and compute:

ls+t = l̃s+t ◦ P = (̃ls ⊗ (σs ◦ l̃t)) ◦ �̃ ◦ P

= (̃ls ⊗ (σs ◦ l̃t)) ◦ (P ⊗ P) ◦ �P

= (̃ls ⊗ (σs ◦ l̃t)) ◦ (P ⊗ P) ◦ � = (ls ⊗ (σs ◦ lt)) ◦ �.

Conversely, let l ∈ P(A; E) be a P-invariant convolution increment process, with initial
condition given by ε ◦ P . Then the process l̃ ∈ P(Ã; E), defined simply by the restriction of
l, is a QS convolution cocycle on Ã — again the only thing to be checked is the convolution
increment property: for all s, t � 0, a ∈ Ã,

l̃s+t(a) = ls+t(a)

= (ls ⊗ (σs ◦ lt))(�(a))

= (ls ⊗ (σs ◦ lt))(�(Pa))

= (ls ⊗ (σs ◦ lt))((P ⊗ P) ◦ � ◦ P)(a) = (̃ls ⊗ (σs ◦ l̃t))(�̃(a)).

Markov-regularity is clearly preserved in the above correspondence.
If ε = ε ◦ P (as is the case for Delsarte C∗-hyperbialgebras, but usually not for double

coset bialgebras), then the processes l arising in the proof of the above theorem are ob-
viously QS convolution cocycles. Assuming this is the case, it is easily checked that if
ϕ ∈ C B(Ã; B(̂k)) then l̃ � lϕ ∈ P(Ã; E) corresponds to the process lϕ◦P ∈ P(A; E). There is
an analogous correspondence on the level of weak QS convolution cocycles.

In [17] a variety of examples of C∗-bialgebras is presented, and ∗-homomorphic QS con-
volution cocycles on them are given alternative interpretations.

3. Generator of CPC QS convolution cocycle

In this section we consider the detailed structure of the stochastic generators of CPC QS
convolution cocycles. Our approach is direct, following ideas used in the study of CPC
standard QS cocycles. The crucial analysis was carried out in [13], with extension to infinite
dimensional noise done in [18] and [20] (see also [2]).

Adapting arguments used in [13] requires some care, and the R-map introduced in (2·1)
is an indispensable tool. A straightforward approach to complete positivity for QS convo-
lution cocycles leads to nontrivial considerations of the proper convolution-counterpart of
conditional complete positivity, and here the R-map does not appear to be helpful. However,
nonnegative-definite kernels taking values in a C∗-algebra do behave well under the R-map,
as will be seen in the proof of the next proposition.

For the rest of this section A denotes a fixed C∗-hyperbialgebra. For any τ ∈ B(A) define
∂τ : A × A → A by

∂τ(a1, a2) = τ(a∗
1 a2) − a∗

1τ(a2) − τ(a∗
1)a2 + a∗

1τ(1)a2, a1, a2 ∈ A.

By analogy, for any f ∈ A∗ define ∂ε f : A × A → C by

∂ε f (a1, a2) = f (a∗
1a2) − ε(a∗

1) f (a2) − f (a∗
1)ε(a2) + ε(a∗

1) f (1)ε(a2), a1, a2 ∈ A.

If (ρ, K) is a representation of A, a map δ: A → B(C; K) is called a (ρ, ε)-derivation if for
all a1, a2 ∈ A

δ(a1a2) = ρ(a1)δ(a2) + δ(a1)ε(a2).
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Observe that if ϕ ∈ C B(A; B(̂k) and lϕ is completely positive then it is easily verified that
it is contractive too if and only if

ϕ(1) � 0. (3·1)

We need to start with the finite-dimensional situation. The key fact is the following result,
corresponding to [13, theorem 4·1].

LEMMA 3·1. Assume that k is finite dimensional. Let ϕ ∈ C B(A; B(̂k)) and suppose
that the (weak) QS convolution cocycle l � lϕ ∈ P(A; Ek) is CPC. Then there exist a unital
*-representation (ρ, K) of A, a (ρ, ε)-derivation δ : A → B(C; K), an operator D ∈ B(k; K)

and a vector d ∈ k such that

ϕ(a) =
[

λ(a) ε(a)〈d| + δ†(a)D
ε(a)|d〉 + D∗δ(a) D∗ρ(a)D − ε(a)Ik

]
, a ∈ A, (3·2)

where the functional λ is real,

∂ελ(a1, a2) = δ(a1)
∗δ(a2), a1, a2 ∈ A,

and the following minimality condition holds:
K = Lin{δ(a)1 + ρ(a)Dc : a ∈ A, c ∈ k}. (3·3)

If (K′, ρ ′, δ′, D′) is another quadruple satisfying the above conditions (except possibly the
minimality condition), then there exists a unique isometry V : K → K′ such that

δ′(a) = V δ(a), ρ ′(a)V = Vρ(a), D′ = V D, a ∈ A.

Proof. The proof is a modification of the argument used in the proof of lemma 4·5 in [13],
where k is taken to be C

d . Write ϕ in block matrix form:[
λ η̃

η σ − ε(·)Ik

]
.

By Propositions 2·4 and 2·5, k = RB(Fk)l is a CPC standard QS cocycle and φ = RB(̂k)ϕ is
real. Therefore ϕ is real too, in particular η̃ = η†, and φ has block matrix form[

τ α†

α ν − ι

]
,

where τ = Rλ, α = RB(C;k)η and ν = RB(k)σ . Now lemma 4·4 in [13] implies that the map
� from A × A to A ⊗ B(̂k), there identified with Md+1(A), defined by

�(a1, a2) =
[

∂τ(a1, a2) α†(a∗
1a2) − a∗

1α
†(a2)

α(a∗
1a2) − α(a∗

1)a2 ν(a∗
1a2)

]
, a1, a2 ∈ A,

is nonnegative-definite. Observe that if ψ : A × A → B(̂k) is defined by the formula

ψ(a1, a2) =
[

∂ελ(a1, a2) η†(a∗
1a2) − ε(a∗

1)η
†(a2)

η(a∗
1a2) − η(a∗

1)ε(a2) σ (a∗
1a2)

]
, a1, a2 ∈ A,

then ψ = (ε⊗idB(̂k))◦�. This in turn implies that ψ is a nonnegative-definite kernel. Indeed,
for any n ∈ N, a1, . . . , an ∈ A and T1, . . . , Tn ∈ B(̂k)

n∑
i, j=1

T ∗
i ψ(ai , a j )Tj = (ε ⊗ idB(̂k)

)⎛⎝ n∑
i, j=1

(1A ⊗ T ∗
i )�(ai , a j )(1A ⊗ Tj )

⎞⎠� 0,

as (1A ⊗ Ti )
∗ = (1A ⊗ T ∗

i ) ∈ A ⊗ B(̂k), ε is CP, and � is nonnegative-definite.



210 ADAM G. SKALSKI

Now let (K, χ) be the minimal Kolmogorov pair associated with ψ . This means that χ is
a map A → B(̂k; K) satisfying

χ(a1)
∗χ(a2) = ψ(a1, a2), a1, a2 ∈ A,

K = Lin{χ(a)ζ : a ∈ A, ζ ∈ k̂}.
Properties of ψ imply that χ is linear and bounded. Write χ =[δ γ ], where
δ∈ B(A; B(C; K)) and γ ∈ B(A; B(k; K)). Then, for any a, b ∈ A,

δ(a)∗δ(b) = ∂ελ(a, b) and γ (a)∗δ(b) = η(a∗b) − η(a∗)ε(b).

Setting a = b = 1 shows that δ(1) = 0. Now for u ∈ A unitary, define

δu(a) = δ(ua) − δ(u)ε(a), γu(a) = γ (ua) and χu = [δu γu], for a ∈ A.

A straightforward computation yields

χu(a1)
∗χu(a2) = χ(a1)

∗χ(a2).

The uniqueness of minimal Kolmogorov pairs implies the existence of a unique isometry
ρ(u) : K → K given by the formula

ρ(u)(δ(a)1 + γ (a)c) = δ(ua)1 − δ(u)ε(a) + γ (ua)c, a ∈ A, c ∈ k.

It follows, by standard arguments, that

ρ(a)(δ(b)1 + γ (b)c) = δ(ab)1 − δ(a)ε(b) + γ (ab)c, a, b ∈ A, c ∈ k,

defines a bounded operator ρ(a) on K. Moreover, it is easily checked that the resulting
map ρ : A → B(K) is indeed a *-representation of A. It immediately follows that δ is a
(ρ, ε)-derivation and also, from minimality and the identity δ(1) = 0, that ρ is unital. Put
D = γ (1) ∈ B(k; K). Then γ (a) = ρ(a)D, and furthermore σ(a) = D∗ρ(a)D and η(a) =
ε(a)η(1) + D∗δ(a)1. This yields (3·2) with d = η(1)1.

The second part of the lemma follows once more from uniqueness of the Kolmogorov
construction.

The step from finite-dimensional to arbitrary noise dimension space follows in exactly the
same way as for standard cocycles.

LEMMA 3·2. Assume that k is an arbitrary Hilbert space. Let ϕ ∈ C B(A; B(̂k)) and sup-
pose that the (weak) QS convolution cocycle lϕ ∈ P(A; Ek) is CPC. Then the conclusions of
Lemma 3·1 hold.

Proof. Let {kι : ι ∈ I} be an indexing of the set of all finite-dimensional subspaces of k,
which is partially ordered by inclusion. As in [18] we consider finite-dimensional cut-offs
of both lϕ and ϕ itself. For each ι ∈ I denote by ϕι the map A → B(k̂ι) given by the formula

ϕι(a) = Pιϕ(a)Pι, a ∈ A,

where Pι ∈ B(̂k) is the orthogonal projection onto k̂ι. Setting l(ι) = lϕι , Fι = Fkι
, Eι = Ekι

and letting Eι denote the vacuum conditional expectation map from B(Fk) to B(Fι), it is
easy to see that l(ι) ∈ P

(
A; Eι
)

is a CPC QS convolution cocycle and that it satisfies

l(ι)
t (a) = Eι

[
lϕ
t (a)
]
, a ∈ A, t ∈ R+.
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Lemma 3·1 yields quadruples (Kι, ρι, δι, Dι), unique up to isometric isomorphism, such
that for all a ∈ A

ϕι(a) =
[

λ(a) ε(a)〈dι| + δ†
ι (a)Dι

ε(a)|dι〉 + D∗
ι δι(a) D∗

ι ρι(a)Dι − ε(a)Iι

]
,

where Iι denotes the identity operator on kι.
Exploiting uniqueness one can construct an inductive limit K of the Hilbert spaces Kι.

Denote by Uι the respective isometry Kι → K. Then there is a unital *-representation ρ of A
on K and a (ρ, ε)-derivation δ : A → B(C; K)

ρ(a)Uι = Uιρι(a), δ(a) = Uιδι(a)

for all ι ∈ I, a ∈ A. Similarly, for each c ∈ k there exists a vector cD ∈ K such that

cD = Uι Dιc,

for all ι ∈ I such that c ∈ kι. The map c �→ cD is linear; it remains to show that it is bounded.
To this end observe that, for any ι ∈ I such that c ∈ kι,〈(

0

c

)
, ϕ(1)

(
0

c

)〉
=
〈(

0

c

)
, ϕι(1)

(
0

c

)〉
= 〈c, (D∗

ι Dι − ε(1)Iι)c〉 = ‖Dιc‖2 − ‖c‖2 = ‖cD‖2 − ‖c‖2,

and inequality (3·1), being a consequence of the contractivity of lϕ , implies that ‖cD‖ � ‖c‖.
The operator D ∈ B(k; K) given by Dc = cD completes the tuple whose existence we wished
to establish. Minimality holds by construction.

Automatic innerness of (ρ, ε)-derivations leads to the following theorem.

THEOREM 3·3. Let ϕ ∈ C B(A; B(̂k)), for a C*-hyperbialgebra A, and suppose that
the weak QS convolution cocycle lϕ ∈ P(A; Ek) is completely positive and contractive. Then
there exists a tuple (K, ρ, D, ξ, d, e, t) constisting of a unital *-representation (ρ, K) of A,
a contraction D ∈ B(k; K), vectors ξ ∈ K and d, e ∈ k, and a real number t, such that

ϕ(a) =
[

λ(a) ε(a)〈d| + δ†(a)D
ε(a)|d〉 + D∗δ(a) D∗ρ(a)D − ε(a)Ik

]
, (3·4)

t = λ(1) � 0, d = (Ik − D∗ D)1/2e, ‖e‖2 �−t and, for all a ∈ A,

δ(a) = (ρ(a) − ε(a))|ξ〉, λ(a) = ε(a)(t − ‖ξ‖2) + 〈ξ, ρ(a)ξ〉. (3·5)

Proof. Lemma 3·2 gives the form (3·4) for some ρ, K, δ and D. As all (ρ, ε)-derivations
are inner (see [17, appendix]), there exists ξ ∈ K such that

δ(a) = ρ(a)|ξ〉 − ε(a)|ξ〉.
It remains to note that

ϕ(1) =
[

t 〈d|
|d〉 D∗ D − Ik

]
, (3·6)

and the condition ϕ(1) � 0 implies contractivity of D, negativity of t and the existence of a
vector e ∈ k satisfying all the conditions above (see the characterisation of positive ‘block’
matrices given in lemma 2·1 of [9]).
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Remarks. The converse is also true — if a map ϕ ∈ C B(A; B(k)) has the above form
then lϕ is CPC. This follows easily from Propositions 2·4 and 2·5 and theorem 2·4 of [20].

If lϕ is also unital, then ϕ(1) = 0 and (3·4) takes the form

ϕ(a) =
[

λ(a) δ†(a)D
D∗δ(a) D∗ρ(a)D − ε(a)Ik

]
,

with D being an isometry. This corresponds exactly to the characterisation obtained in the
purely algebraic case by Franz and Schürmann ([7]).

The characterisation in Theorem 3·3 yields, as announced in the beginning of this section,
an alternative proof of the existence of the decomposition (2·4) of Theorem 2·6. Indeed, for
ϕ : A → B(̂k) of the form (3·4), define S: k̂ → K by S =[|ξ〉, D]. Then

ϕ(a) = S∗ρ(a)S +
[

λ0(a) ε(a)〈d − D∗c|
ε(a)|d − D∗c〉 −ε(a)Ik

]
, a ∈ A,

where λ0(a) = λ(a) −〈ξ, ρ(a)ξ〉. Note that as ∂ελ0(a1, a2) = 0 for any a1, a2 ∈ A, λ0 =
λ0(1)ε - one can check that (λ0 − λ0(1)ε ) is an (ε, ε)-derivation and so is zero. The map
ψ : A → B(̂k) defined by

ψ(a) = S∗ρ(a)S, a ∈ A,

is completely positive. Setting χ = ( 1
2 λ0(1)

d−D∗c

)
yields the required decomposition.

4. Dilations to *-homomorphic QS convolution cocycles

This section addresses the question of dilating a completely positive, contractive QS con-
volution cocycle on a C∗-bialgebra to a *-homomorphic QS convolution cocycle. It is closely
patterned on [9]. From now on we assume that A is a C∗-bialgebra. Recall that this means
that A is a C∗-hyperbialgebra whose coproduct is multiplicative. Let k0 be a closed subspace
of a noise dimension space k. The vacuum conditional expectation from B(Fk) to B(Fk0)

will be denoted by E0.

Definition 4·1. A (weak) QS convolution cocycle j ∈ P(A; Ek) is said to be a stochastic
dilation of a (weak) QS convolution cocycle l ∈ P(A; Ek0) if

lt = E0 ◦ jt , t � 0.

The following result follows in exactly the same way as its counterpart for standard
cocycles ([9, lemma 1·2]).

PROPOSITION 4·2. Let ϕ ∈ C B(A; B(̂k)) and ψ ∈ C B(A; B(̂k0)), and let j = lϕ ∈
P(A; Ek) and l = lψ ∈ P(A; Ek0) be the respective QS convolution cocycles. Then j is a
stochastic dilation of l if and only if ψ(·) = P0ϕ(·)P0, where P0 ∈ B(̂k) denotes the or-
thogonal projection onto k̂0.

Generators of *-homomorphic cocycles may be described in the following way.

PROPOSITION 4·3. Let (K, ρ, D, ξ, d, t) be a tuple as in Theorem 3·3 and let ϕ be the
map in C B(A; B(̂k)) given by the formulas (3·4) and (3·5). Then the (weak) QS convolution
cocycle lϕ ∈ P(A; Ek) is *-homomorphic if and only if the following conditions hold:

(i) D is a partial isometry;
(ii) Dd = 0;

(iii) DD∗ ∈ ρ(A)′;
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(iv) t = −‖d‖2;
(v) DD∗δ = δ;

where δ is the (ρ, ε)-derivation a �→ (ρ(a) − ε(a)Ik)|ξ〉.
Proof. In the language of Theorem 3·3, the structure relations (2·5) translate into the

following identities:

D∗ρ(a)DD∗ρ(b)D = D∗ρ(ab)D,

D∗δ(ab) + ε(ab)|d〉 = D∗ρ(a)D(D∗δ(b) + ε(b)|d〉) + D∗δ(a)ε(b) + ε(a)ε(b)|d〉,
λ(a∗b) = 〈D∗δ(a)1 + ε(a)d, D∗δ(b)1 + ε(b)d〉 + λ(a∗)ε(b) + ε(a∗)λ(b),

for all a, b ∈ A. As in proposition 3·3 of [9], this in turn may be shown to be equivalent to
the conditions (i)–(v).

Remarks. Observe that the above characterisation excludes the possibility of obtain-
ing exchange free dilations—it can be seen directly from (2·5) that if a Markov-regular
*-homomorphic QS convolution cocycle is generated by a map having the form[∗ ∗

∗ 0

]
then it is identically 0. This uses the fact that (ε, ε)-derivations are trivial. As to cre-
ation/annihilation free dilations, they are possible only for those CPC QS convolution
cocycles, whose generators have the form[

0 0
0 ∗
]

.

Moreover, j is unital, as well as being *-homomorphic, if and only if (iii) and (v) are
satisfied, D is an isometry, d = 0 and t = 0.

As a consequence of Theorem 3·3 and Proposition 4·3, we obtain the existence of
stochastic dilations.

THEOREM 4·4. Every Markov-regular CPC QS convolution cocycle on a C∗-bialgebra
A admits a Markov-regular *-homomorphic stochastic dilation.

Proof. Let l ∈ P(A; Ek0) be a Markov-regular CPC QS convolution cocycle. Then l =
lϕ for some ϕ ∈ C B(A; B(̂k0)) and we can assume that ϕ has matrix form (3·4) for a
tuple (K, ρ, D, ξ, d, e, t) with the properties described in Theorem 3·3. Let k1, k2 be Hilbert
spaces, suppose that d1 ∈ k1, d2 ∈ k2, D1 ∈ B(k1; K) (all as yet unspecified) and consider
the map ψ : A → B(̂k), where k � k0 ⊕ k1 ⊕ k2, given by

ψ(a) =

⎡⎢⎢⎢⎣
λ(a) ε(a)〈d| + δ†(a)D ε(a)〈d1| + δ†(a)D1 ε(a)〈d2|

ε(a)|d〉 + D∗δ(a) D∗ρ(a)D − ε(a)I0 D∗ρ(a)D1 0

ε(a)|d1〉 + D∗
1δ(a) D∗

1ρ(a)D D∗
1ρ(a)D1 − ε(a)I1 0

ε(a)|d2〉 0 0 −ε(a)I2

⎤⎥⎥⎥⎦ (4·1)

(a ∈ A), with Ii denoting Iki , i = 0, 1, 2. Now observe that ψ can also be written in the form

ψ(a) =
[

λ(a) ε(a)〈d̃| + δ†(a)D̃

ε(a)|d̃〉 + D̃∗δ(a) D̃∗ρ(a)D̃ − ε(a)Ik

]
, (4·2)
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where

d̃ =
⎛⎝ d

d1

d2

⎞⎠ ∈ k and D̃ = [D D1 0] ∈ B(k; K).

As ψ is clearly completely bounded, it generates a weak QS convolution cocycle lψ ∈
P(A; Ek). It follows from Proposition 4·2 that lψ is a stochastic dilation of lϕ; it remains to
show that we can choose the parameters k1, k2, d1, d2 and D1 so that lψ is *-homomorphic.

To this end, it suffices to put k1 = K, k2 = C,

D1 = (I1 − DD∗)
1
2 , d1 = −De, d2 =

√
−(t + ‖e‖2).

The above definitions make sense as ‖e‖ � −t and D is a contraction. It remains then to
check properties (i)–(v) of Proposition 4·3. First note that

D̃ D̃∗ = DD∗ + I1 − DD∗ = I1,

which implies that conditions (i), (iii) and (v) are satisfied (one can easily check that D̃∗ D̃
is a selfadjoint projection). Further we obtain (ii):

D̃d̃ = D(I0 − D∗ D)
1
2 e − (I1 − DD∗)

1
2 De = 0.

Finally (iv) follows since

‖d̃‖2 = ‖(I0 − D∗ D)1/2e‖2 + ‖De‖2 − (t + ‖e‖2) = −t.

This completes the proof.

If l is unital and the Hilbert space dimensions of K and Ran(IK − DD∗) coincide, then j
may be chosen to be unital, with k1 = K and k2 = {0} in the above.

5. Stinespring theorem for QS convolution cocycles

As the previous section was a variation on the theme of [9], this one addresses the con-
volution counterpart of the problem considered in [8] for standard QS cocycles. We shall
show (in Theorem 5·3) that each Markov-regular, completely positive, contractive QS con-
volution cocycle has a Stinespring-like decomposition in terms of a *-homomorphic cocycle
perturbed by a contractive process.

First we need some remarks on QS differential equations of the type:

dWt = Ft( Îk ⊗ Wt) d	t , W0 = IF, (5·1)

where F ∈ P(̂k � E) is a bounded process. We say that W is a weak solution of the above
equation if for all f, g ∈ S and t � 0

〈ε( f ), (Wt − IF)ε(g)〉 =
∫ t

0
〈 f̂ (s) ⊗ ε( f ), Fs( Îk ⊗ Ws)(ĝ(s) ⊗ ε(g))〉ds.

The solution of the above equation is given by the iteration procedure:

X 0
t = IF, X 1

t =
∫ t

0
Fs

(
Îk ⊗ X 0

s

)
d	s, . . . , Xn+1

t =
∫ t

0
Fs

(
Îk ⊗ Xn

s

)
d	s, . . .

Wtε( f )�
∞∑

n=0

Xn
t ε( f ).
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Sufficient conditions for the above heuristics to be justified are that F is strongly measurable
and has locally uniform bounds; this is also sufficient for the uniqueness of strongly regular
strong solutions of the equation ([8, proposition 3·1]). These conditions are clearly satisfied
when

Fs = (idB(̂k) ⊗ ls

)
(T ), s � 0,

where l is a Markov-regular, CPC QS convolution cocycle and T ∈ B(̂k) ⊗ A.
Now let j be a *-homomorphic QS convolution cocycle of the form lϕ , where ϕ ∈

C B(A; B(̂k)), and let T ∈ B(̂k) ⊗ A. Assume that W ∈ P(E) is a bounded solution to
the equation

dWt = (idB(̂k) ⊗ jt
)
(T )( Îk ⊗ Wt) d	t , W0 = IF. (5·2)

We shall identify sufficient conditions for W to be a contractive process later. The next
question to be addressed is: when can we expect a process k ∈ P(A; E) defined by

kt(a) = jt(a)Wt , a ∈ A, t � 0,

to be a Markov-regular QS convolution cocycle?
The quantum Itô formula yields

〈ε( f ), kt(a)ε(g)〉 = 〈 jt(a
∗)ε( f ), Wtε(g)〉

= ε(a)〈ε( f ), ε(g)〉
+
∫ t

0
ds(〈 j̃s( Îk ⊗ a∗)( f̂ (s) ⊗ ε( f )), j̃s(T )W̃s(ĝ(s) ⊗ ε(g))〉

+ 〈 j̃s(φ(a∗))( f̂ (s) ⊗ ε( f )), W̃s(ĝ(s) ⊗ ε(g))〉
+ 〈 j̃s(φ(a∗))( f̂ (s) ⊗ ε( f )), (�QS ⊗ IF) j̃s(T )W̃s(ĝ(s) ⊗ ε(g))〉)

( f, g ∈ S, t � 0), where φ = RB(̂k)ϕ, j̃s = (idB(̂k)⊗ js) and W̃s = Îk⊗Ws . Defining analogously
k̃s = (idB(̂k) ⊗ ks) we see that the above equation may be written as

〈ε( f ), kt(a)ε(g)〉 = ε(a)〈ε( f ), ε(g)〉
+
∫ t

0
ds(〈 f̂ (s) ⊗ ε( f ), k̃s(( Îk ⊗ a)T + φ(a) + φ(a)(�QS ⊗ 1A)T )(ĝ(s) ⊗ ε(g))〉).

The process k is equal to lψ for some ψ ∈ C B(A; B(̂k)) if and only if ψ̃ � (ψ ⊗ idA) ◦�

is given by

a �−→ ( Îk ⊗ a)T + φ(a) + φ(a)(�QS ⊗ 1A)T . (5·3)

Note that we need to work with the left version of the map R introduced in (2·1) because
of the tensor flip in the definition of the coalgebraic QS differential equation (2·2). Let
τ = (idB(̂k) ⊗ ε)(T ) ∈ B(̂k). Then (5·3) implies that

ψ(a) = ε(a)τ + ϕ(a)(1 + �QSτ) (5·4)

and so

ψ̃(a) = τ ⊗ a + φ(a) + φ(a)(�QSτ ⊗ 1A). (5·5)

Comparing (5·3) with (5·5) yields

( Îk ⊗ a)T + φ(a)(�QS ⊗ 1A)T = τ ⊗ a + φ(a)(�QSτ ⊗ 1A). (5·6)
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If T = τ ⊗ 1A then this condition is automatically satisfied. If j is unital, then T = τ ⊗ 1A

is also necessary for (5·6) to hold: put a = 1A and use φ(1A) = 0.
Observe that when T = τ ⊗ 1A the equation (5·2) takes the simple form

dWt = (τ ⊗ Ut Wt)d	t , W0 = IF, (5·7)

with Ut = jt(1). In this case the condition on τ assuring contractivity of W is also particu-
larly simple.

THEOREM 5·1. Let j = lϕ where ϕ ∈ C B(A; B(̂k)) and A is a C∗-bialgebra. Suppose
that j is *-homomorphic and τ ∈ B(̂k) satisfies the condition

τ + τ ∗ + τ ∗�QSτ � 0. (5·8)

Then the equation (5·7), with Ut � jt(1), has a unique contractive strong solution W ∈ P(E)
(contractive means that each Wt is a contraction). Moreover the process W ∗

t jt(·)Wt is equal
to lθ , where

θ(a) = ε(a)(τ ∗ + τ + τ ∗�QSτ) + ( Îk + τ ∗�QS)ϕ(a)( Îk + �QSτ), a ∈ A.

Proof. The discussion before the theorem shows that the equation (5·7) has a unique
strongly regular strong solution W ∈ P(E). The Itô formula yields, for u = ∑k

i=1 λiε( fi ),
k ∈ N, λ1, . . . , λk ∈ C, f1, . . . , fk ∈ S,

〈Wt u, Wt u〉 − 〈u, u〉 =
k∑

i, j=1

λiλ j

∫ t

0
ds(〈 f̂i(s) ⊗ Wsε( fi), τ f̂ j (s) ⊗ Us Wsε( f j )〉

+ 〈τ f̂i (s) ⊗ Us Wsε( fi), f̂ j (s) ⊗ Wsε( f j )〉
+ 〈τ f̂i (s) ⊗ Us Wsε( fi), �

QSτ f̂ j (s) ⊗ Us Wsε( f j )〉).
As Us = js(1) and j is *-homomorphic, each Us is a projection. Therefore putting x(s) =∑k

i=1 λi f̂i (s) ⊗ Us Wsε( fi), s ∈ [0, t], yields

〈Wt u, Wt u〉 − 〈u, u〉 =
∫ t

0
ds〈x(s), ((τ + τ ∗ + τ ∗�QSτ) ⊗ IF)x(s)〉 � 0.

It follows that W is contractive.
The proof of the second part of the theorem is a combination of the considerations before

its formulation and one more application of the Itô formula. Again let f, g ∈ S, t � 0, a ∈ A
and T = τ ⊗ 1A, let j̃ , k̃, W̃ and ψ be defined as in the discussion before the theorem and
set ψ̃ = (ψ ⊗ idA) ◦ �. Then

〈ε( f ), W ∗
t jt(a)Wtε(g)〉 = 〈Wtε( f ), jt(a)Wtε(g)〉

= ε(a)〈ε( f ), ε(g)〉
+
∫ t

0
ds(〈W̃s( f̂ (s) ⊗ ε( f )), k̃s(ψ̃(a))(ĝ(s) ⊗ ε(g))〉

+ 〈 j̃s(T )W̃s( f̂ (s) ⊗ ε( f )), j̃s( Îk ⊗ a)W̃s(ĝ(s) ⊗ ε(g))〉
+ 〈 j̃s(T )W̃s( f̂ (s) ⊗ ε( f )), (�QS ⊗ IF)k̃s(ψ̃(a))(ĝ(s) ⊗ ε(g))〉).

Finally, (5·4) yields

〈ε( f ), W ∗
t jt(a)Wtε(g)〉 = ε(a)〈ε( f ), ε(g)〉

+
∫ t

0
ds〈 f̂ (s) ⊗ ε( f ), W̃ ∗

s j̃s(θ̃(a))W̃s(ĝ(s) ⊗ ε(g))〉.

where θ̃ = (θ ⊗ idA) ◦ �. This completes the proof.
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For each t � 0 denote the orthogonal projection from F onto F[t,∞[ by Pk,[t,∞[. The follow-
ing result may be proved by differentiation, as with its predecessor for standard QS cocycles,
[8, lemma 4·2].

PROPOSITION 5·2. Let k be an orthogonal direct sum of Hilbert spaces: k0 ⊕ k1, let ϕ ∈
C B(A; B(̂k0)) and ψ ∈ C B(A; B(̂k)) and let k0 = lϕ ∈ P(A; Ek0) and k = lψ ∈ P(A; Ek)

be the respective weak QS convolution cocycles. Then

kt(a) = k0
t (a) � Pk1,[t,∞[, a ∈ A, t � 0,

if and only if

ψ(a) =
[
ϕ(a) 0

0 −ε(a)I1

]
, a ∈ A,

where I1 = Ik1 .

We are ready for the main theorem of this section.

THEOREM 5·3. Let k ∈ P(A; Ek0) be a Markov-regular CPC QS convolution cocycle
on a C∗-bialgebra A. Then there exists another Hilbert space k1, a Markov-regular,
*-homomorphic QS convolution cocycle j ∈ P(A; Ek), where k � k0 ⊕k1, and a contractive
process W ∈ P(Ek), such that

k̃t(a) = W ∗
t jt(a)Wt , t � 0, a ∈ A,

where k̃t(a) � kt(a) ⊗ Pk1,[t,∞[. The process W may be chosen so that it satisfies the QS
differential equation

dWt = (τ ⊗ Ut Wt)d	t , W0 = IFk (5·9)

for some τ ∈ B(k̂) in which U ∈ P(Ek) is the projection-valued process given by Ut = jt(1),
t � 0.

Proof. Let ϕ ∈ C B(A; B(̂k)) be the stochastic generator of k (so that k = lϕ) and let
(K, ρ, D, ξ, d, e, t) be an associated tuple, as in Theorem 3·3. Set k1 = K and define
θ : A → B(̂k) by

θ(a) =
⎡⎣λ(a) − tε(a) 0 δ†(a)

0 −ε(a)I0 0
δ(a) 0 ρ(a) − ε(a)I1

⎤⎦ , a ∈ A,

where Ii denotes Iki , i = 0, 1 and δ is the (ρ, ε)-derivation a �→ (ρ(a) − ε(a)Ik)|ξ〉. The
map θ is completely bounded and as such generates a Markov-regular weak QS convolu-
tion cocycle j = lθ ∈ P(A; Ek). It is easily checked that θ satisfies the structure relations of
Theorem 2·7, so j is *-homomorphic. Now choose any contraction B ∈ B(k1; k0) and define

τ =
⎡⎢⎣

1
2 t 〈ξ | 0

0 −I0 B
0 D −I1

⎤⎥⎦ ∈ B(̂k).

Then

τ ∗ + τ + τ ∗�QSτ =
⎡⎢⎣ t 〈ξ | 0

|ξ〉 D∗ D − I0 0
0 0 B∗ B − I1

⎤⎥⎦ � 0,

as B is a contraction, and ϕ(1) � 0 (see (3·6)).
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Theorem 5·1 yields the existence of a contractive process W ∈ P(Ek) satisfying the QS
differential equation (5·9) and shows that the process l ∈ P(A; Ek) given by

lt(a) = W ∗
t jt(a)Wt , t � 0, a ∈ A,

is equal to lψ where ψ : A → B(k̂) is defined by:

ψ(a) = ε(a)(τ ∗ + τ + τ ∗�QSτ) + (1 + τ ∗�QS)θ(a)(1 + �QSτ)

= ε(a)

⎡⎣ t 〈ξ | 0
|ξ〉 D∗ D − I0 0
0 0 B∗ B − I1

⎤⎦
+
⎡⎣1 0 0

0 0 D∗

0 B∗ 0

⎤⎦ ·
⎡⎣λ(a) − tε(a) 0 δ†(a)

0 −ε(a)I0 0
δ(a) 0 ρ(a) − ε(a)I1

⎤⎦ ·
⎡⎣1 0 0

0 0 B
0 D 0

⎤⎦
= ε(a)

⎡⎣ t 〈ξ | 0
|ξ〉 D∗ D − I0 0
0 0 B∗ B − I1

⎤⎦
+
⎡⎣λ(a) − tε(a) δ†(a)D 0

D∗δ(a) D∗ρ(a)D − ε(a)D∗ D 0
0 0 −ε(a)B∗ B

⎤⎦
=
⎡⎣ λ(a) δ†(a)D + ε(a)〈ξ | 0

D∗δ(a) + ε(a)|ξ〉 D∗ρ(a)D − ε(a)I0 0
0 0 −ε(a)I1

⎤⎦ =
[
ϕ(a) 0

0 −ε(a)I1

]
.

Application of Proposition 5·2 now completes the proof.
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Schürmann. Lecture Notes in Math. 1865 (Springer-Verlag, 2005).

[13] J. M. LINDSAY and K. R. PARTHASARATHY. On the generators of quantum stochastic flows.
J. Funct. Anal. 158 (1998), 521–549.

[14] J. M. LINDSAY and A. G. SKALSKI. Quantum stochastic convolution cocycles I. Ann. Inst. H. Poin-
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[15] J. M. LINDSAY and A. G. SKALSKI. Quantum stochastic convolution cocycles—algebraic and C∗-
algebraic. Banach Center Publ. 73 (2006), 313–324.

[16] J. M. LINDSAY and A. G. SKALSKI. On quantum stochastic differential equations. J. Math. Anal.
Appl. 330 (2007), no. 2, 1093–1114.

[17] J. M. LINDSAY and A. G. SKALSKI. Quantum stochastic convolution cocycles II, preprint.
[18] J. M. LINDSAY and S. J. WILLS. Existence, positivity and contractivity for quantum stochastic flows

with infinite dimensional noise. Probab. Theory Related Fields 116 (2000), 505–543.
[19] J. M. LINDSAY and S. J. WILLS. Markovian cocycles on operator algebras, adapted to a Fock filtra-

tion. J. Funct. Anal. 178 (2000), no. 2, 269–305.
[20] J. M. LINDSAY and S. J. WILLS. Existence of Feller cocycles on a C∗-algebra. Bull. London Math.

Soc. 33 (2001), no. 5, 613–621.
[21] J. M. LINDSAY and S. J. WILLS. Homomorphic Feller cocycles on a C∗-algebra. J. London Math.

Soc. (2) 68 (2003), no. 1, 255–272.
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