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Abstract. Some chaotic properties of a classical particle interacting with a time-
dependent double-square-well potential are studied. The dynamics of the system
is characterised using a two-dimensional nonlinear area-preserving map. Scaling
arguments are used to study the chaotic sea in the low energy domain. It is shown
that the distributions of successive reflections and of corresponding successive reflection
times obey power laws with the same exponent. If one or both wells move randomly,
the particle experiences the phenomenon of Fermi acceleration in the sense that it has
unlimited energy growth.

1. Introduction

The dynamics of systems interacting with time-dependent potentials has received close

attention in theoretical and experimental physics over many years. In quantum systems,

one interesting question is the tunnelling time through a potential barrier [1]. It is well

known that it depends on the energy of the particle and the height of the potential,

but the situation becomes much more complicated [2] when the height of the barrier is

time-dependent. Considerable effort has been devoted to trying to understand such

systems, including numerical studies of the transmission probability spectrum in a

driven triple diode in the presence of a periodic external field [3], photon-assisted

tunnelling through a GaAs/AlxGa1−xAs quantum dot induced by a microwave external

frequency [4], sequential tunnelling in a superlattice induced by an intense electric field

[5], transmission above a quantum well considering the effect of possible capture into a

bound state in the well due to dissipation [6], and the probability of tunnelling in the

presence of friction in Josephson junction circuits [7].

For a classical particle interacting with a time-dependent barrier some notable

results are presented in [8, 9]. The main result of these latter papers is that the traversal

time, i.e. the length of time that the particle spends before crossing the barrier obeys a

power law. This is a good indication of sensitivity to initial conditions. The problem of a

particle interacting with one, two and finally an infinite chain of synchronised oscillating

square wells was studied in [10]. The authors showed that, for one oscillating well, the

particle is not chaotically scattered since topological chaos is not observed for such a

case but that chaotic scattering is, however, observed for two oscillating wells. For the
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case of an infinite chain of oscillating square wells they showed that, although there

is an intricate and complex dynamics, a chaotic orbit does not have unlimited energy

gain. This is closely related to the fact that the phase space presents invariant spanning

curves. A different version of this problem considering a classical particle interacting

with an infinite box of potential that contains one oscillating square well was discussed in

[11] using a formalism that could be interpreted as equivalent to studying the problem of

a particle interacting with an oscillating square well with periodic boundary conditions;

it could also be applied to the problem of an infinite chain of oscillating square wells.

The authors found an abrupt transition in the Lyapunov exponent and suggested that it

was due to destruction of the first invariant spanning curve and the consequent merging

of different large chaotic regions.

It is also interesting to study problems where a classical particle interacts with a

static or time-dependent multi-well potential in the presence of noise. Recent results

include exact solutions for the problem of diffusion within static single and double

square wells [12, 13], an introduction of external fields for a two-level system in a classical

potential [14], a general solution of the problem of activated escape in periodically-driven

systems [15], analytical solutions for the problem of a piecewise bistable potential in

the limit of low external perturbation [16], the escape flux from a multi-well metastable

potential preceding of the formation of quasi-equilibrium [17], activation over a randomly

fluctuating barrier [18, 19], diffusion across a randomly fluctuating barrier [20] and

diffusion of a particle in a piecewise potential in the presence of small fluctuations of the

barriers [21]. The main result of this latter paper is that the flux of particle through the

barrier may either increase or decrease, a result that is independent of the frequency of

the oscillations.

The well known billiards problems are closely related. They consist basically

of quantum or classical particles confined within closed boundaries with which they

undergo elastic collisions [22, 23, 24, 25, 26], producing a variety of behaviours.

Depending on the boundary and the control parameters, as well as on the initial

conditions, it is possible to observe integrability, non-integrability, and ergodicity. The

main question with a time-dependent boundary is whether or not the system exhibits

the phenomenon of Fermi acceleration [27]. A more detailed discussion of this very

interesting question together with specific examples can be found in Ref. [28] where

the authors proposed the following conjecture: “chaotic dynamics of a billiard with

fixed boundary is a sufficient condition for the Fermi acceleration in the system when a

boundary perturbation is introduced”.

In this paper we study the problem of a particle within an infinite box of potential

that contain two oscillating square wells. We will concentrate on the problem of non-

synchronised oscillation, although some results for the synchronised case will also be

discussed. The dynamics of this problem is analysed using a two-dimensional nonlinear

area-preserving map in energy and time variables. We focus our attention on the chaotic

low energy domain, characterising it by use of Lyapunov exponents. We also derive a

scaling relation for the variance of the average energy in the chaotic sea at low energy.
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Depending on the energy, the particle may stay trapped in one well for some interval

of time. We show that the time that the particle remains trapped in the well, also

called the reflection time, obeys a distribution fitted by a power law that has the same

exponent for both wells. This distribution is observed only for chaotic orbits located

below the first invariant spanning curve. In a similar way, we have observed that for

very specific values of the energy, the particle can exhibit the phenomenon of resonance

in which it exits the well with the same energy as it had on entry. As we will see, the

introduction of random fluctuations in the depths of one or both wells confers unlimited

energy growth on the particle.

The paper is organised as follows: in section 2, we describe in full detail all the steps

used to construct the map. We present in Sec. 3 our results for the deterministic version

of this problem, while Sec. 4 discusses the stochastic model. Finally, we summarise and

and make our concluding remarks in Sec. 5.

2. The model with periodic oscillations

We consider the problem of a classical particle moving inside an infinite box of potential

that contains two oscillating square wells. It could be related directly to mesoscopic

systems [3] with time-dependent potentials [3, 6] with the square wells representing the

conduction band for a heterostructure of GaAs/AlxGa1−xAs while the time-dependent

potential could represent the electron-phonon interaction [29]. Furthermore, the

formalism used to derive the scaling relation for the chaotic low energy region in

this problem could be very useful and directly applicable to billiards problems. Such

formalism was recently applied to the careful investigation of the chaotic sea in the

Fermi-Ulam accelerator model [30].

The problem relates to a typical one-dimensional system and may be described

using the Hamiltonian H(x, p, t) = p2/2m+V (x, t). Here V (x, t) describes the potential

within which the particle must remain, which can be written as

V (x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞ if x ≤ 0 and x ≥ l + a + L

d1 sin(ω1t) if 0 < x < l

V0 if l ≤ x ≤ l + a

d2 sin(ω2t) if l + a < x < l + a + L

where d1 and d2 are the amplitudes of oscillation of wells I and II respectively, l

and L are their widths and a is the width of the constant potential V0. Each well

oscillates independently with its own frequency, ω1 or ω2. The potential V (x, t) is

shown schematically in Fig. 1. We choose to describe the dynamics of this problem

using a map T that gives, respectively, the new total energy and the corresponding time

when the particle enters well I, i.e. (En+1, tn+1) = T (En, tn). Although it is explicit that

the Hamiltonian is time-dependent and the energy of the particle is not constant, we

will show that the map describing the dynamics of this system is area-preserving.
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Figure 1. Sketch of the potential V (x, t). The zero of x is in the bottom left-hand
corner.

2.1. Map derivation

We now describe in detail the steps used in construction of the map. We adopt the same

general procedures [9] recently applied [31] to the problem of a time modulated barrier.

Suppose that the particle is at x = l travelling to the left with total energy En = Kn+V0

at time t = tn. As it enters well I, it experiences an abrupt change in its kinetic energy,

and the new value is given by K ′
n = En − d1 sin(ω1tn). Inside well I, the particle travels

with constant velocity v′
n =

√
2[En − d1 sin(ω1tn)]/m because there are no potential

gradients. It undergoes an elastic collision with the wall at x = 0, and is reflected back.

The time taken by the particle in travelling the distance 2l is t′n = 2l/v′
n. When it arrives

at x = l again, it will escape from well I only if E ′
n = K ′

n + d1 sin[ω1(tn + t′n)] > V0. If

E ′
n ≤ V0, the particle is reflected inside well I, travels the distance 2l again, and so on.

It will escape from well I only when the following condition is satisfied

E ′
n = K ′

n + d1 sin[ω1(tn + it′n)] > V0 . (1)

Here, i is the smallest integer number that makes equation (1) true. When the

particle escapes from well I, it again experiences an abrupt change in its kinetic

energy, which becomes K ′′
n = E ′

n − V0. The particle then travels above the barrier

with a constant velocity v′′
n =

√
2K ′′

n/m until it reaches the entrance to well II. The
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time spent in this way above the barrier is t′′n = a/v′′
n. On entry to well II, the

particle again suffers an abrupt change in its kinetic energy and the new relation is

K ′′′
n = E ′

n − d2 sin[ω2(tn + it′n + t′′n)]. The velocity of the particle inside the well II is

v′′′
n =

√
2K ′′′

n /m. When it reaches the right hand wall at x = l +a+L, it experiences an

elastic collision and is reflected backwards at same velocity. So the time spent by the

particle in travelling the distance 2L is t′′′n = 2L/v′′′
n . The particle will escape from well

II if En+1 = K ′′′
n + d2 sin[ω2(tn + it′n + t′′n + t′′′n )] > V0. But if En+1 ≤ V0, the particle will

be reflected again inside well II, travel the distance L and, after suffering another elastic

collision, will be reflected back again. It will escape from well II only if the following

condition is fulfilled

En+1 = K ′′′
n + d2 sin[ω2(tn + it′n + t′′n + jt′′′n )] > V0 , (2)

where j is the smallest integer for which equation (2) is true. Escaping from well

II, the particle travels the distance a with velocity v′v
n =

√
2(En+1 − V0)/m in time

t′v = a/v′v until reaches the entrance of well I. The total time thus expended is

tn+1 = tn + it′n + t′′n + jt′′′ + t′v, so that the map T can be written as

T :

{
En+1 = K ′′′

n + d2 sin[ω2(tn + it′n + t′′n + jt′′′n )]

tn+1 = tn + it′n + t′′n + jt′′′ + t′v
. (3)

Because of the way in which the map was derived, there are an excessive number of

control parameters, 8 in total, including l, L, a, ω1, ω2, d1, d2 and V0. It is much more

convenient to rewrite the map (3) in terms of dimensionless parameters, retaining only

those that are relevant and effective. We use both normalised energy en = En/V0 and

normalised amplitudes δ1 = d1/V0 and δ2 = d2/V0 of oscillation of the bottoms of the

wells. A practical measure of time could be by counting the number of oscillations of

well I, so that we can define the phase φn = ω1tn. We define the ratio of the frequencies

as r = ω2/ω1. It is also interesting to define the following parameter,

Nc =

√
m

2V0

2l

τ1

, (4)

where τ1 = 2π/ω1 is the oscillation period of well I. The parameter Nc then gives us the

number of oscillations of well I during the length of time in which the particle travels

distance 2l inside it at constant kinetic energy K = V0, in the absence of oscillations.

Using these new variables, the map T can be rewritten as

T :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

en+1 = en − δ1 sin(φn) + δ1 sin(φn + iΔφa)

− δ2 sin[r(φn + iΔφa + Δφb)]

+ δ2 sin[r(φn + iΔφa + Δφb + jΔφc)]

φn+1 = φn + iΔφa + Δφb + jΔφc + Δφd

, (5)

where the auxiliary variables are given by

Δφa =
2πNc√

en − δ1 sin(φn)
, Δφb =

a

l

πNc√
e′n − 1

,
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Δφc =
L

l

2πNc√
e′n − δ2 sin[r(φn + iΔφa + Δφb)]

,

Δφd =
a

l

πNc√
en+1 − 1

,

i is the smallest integer for which equation (6) is true,

e′n = en − δ1 sin(φn) + δ1 sin(φn + iΔφa) > 1 , (6)

and j is the smallest integer number for which equation (7) is true,

en+1 = e′n − δ2 sin[r(φn + iΔφa + Δφb)]

+ δ2 sin[r(φn + iΔφa + Δφb + jΔφc)] > 1 . (7)

This map is area-preserving because it possesses the property that detJ = 1, where J

is its Jacobian matrix. Using these variables the map now has six dimensionless and

effective control parameters namely δ1, δ2, Nc, r, a/l and L/l.

The case of synchronised oscillations (r = 1) of equal amplitude (δ1 = δ2) for

symmetrical wells (L/l = 1) has already been studied [10, 11]. For the special case

where the driving is also in-phase, the system must be related to the problem of a time-

modulated barrier [8, 9] (see also [31] for recent results) because the relative movement

of the different parts of the potential is then identical. As we will see, however, it is also

of interest to investigate the dynamical properties in the more general cases that arise

where the oscillations may be of unequal amplitude, not necessarily synchronised, and

where the wells may be asymmetrical as well as symmetrical.

3. Numerical results

We now present and discuss our numerical results for the model defined in Sec. 2.

The first step is choose appropriate control parameters and to start investigating the

corresponding dynamical properties. We will consider first the symmetrical case and

then, secondly, the asymmetrical one.

3.1. The symmetrical case

The symmetrical case consists basically in analysing the system specified by a/l = L/l =

1, such that each well and the barrier (see Fig. 1) are of the same width. Before choosing

the value of the control parameter Nc, let us first discuss its physical significance. As

originally defined (see eq. (4)), it gives information about the frequency of oscillation

of well I, and we can rewrite it in a more appropriate form as Nc = tc/τ1. The time

tc = 2l
√

m/(2V0) gives the interval within which the particle travels the distance 2l with

kinetic energy K = V0. Related to this time, we can define a characteristic frequency

ωc = 2π/tc. Using such a relation, and a similar one for the period τ1, the control

parameter Nc can be written as Nc = ω1/ωc. In this section, we will consider Nc = G

with G = (
√

5 − 1)/2, sometimes referred to as the golden mean [32]. Using this value
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Figure 2. Phase space for the map T . The control parameters used were a/l = L/l =
1, Nc = G, δ1 = δ2 = 0.25, with: (a) r = 2; and (b) r = 3.

of Nc, we obtain that ω1 = 0.618 . . . ωc, characterising the fact that well I oscillates with

a frequency that is low compared to ωc. Having defined the control parameters, we now

construct the phase space for this model. Fig. 2 shows the phase spaces for (a) r = 2

and (b) r = 3 with a fixed amplitude of oscillation δ1 = δ2 = 0.25. They exhibit a

very rich hierarchy of behaviours including KAM islands, invariant spanning curves and

chaotic seas. We also see that variation of the control parameter r influences the shape

of the phase space directly, changing the positions of the invariant spanning curves and

KAM islands. An immediate consequence is that the shape of the chaotic sea is also

modified. We will use Lyapunov exponent to characterise the chaotic sea.

It is well known that the Lyapunov exponent quantifies the average exponential
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Figure 3. Asymptotic convergence of the positive Lyapunov exponent for the chaotic
sea. The control parameters used were a/l = L/l = 1, Nc = G, δ1 = δ2 = 0.25 with:
(a) r = 2; and (b) r = 3.

rate of expansion or contraction of nearby initial conditions in the phase space. In this

sense, negative exponents mean convergence of two slightly different initial conditions,

whereas a positive Lyapunov exponent implies their divergence. If two initial conditions

diverge exponentially in time, the system presents a chaotic component and the orbit

is said to be chaotic. Periodic or quasi-periodic behaviour is characterised by negative

Lyapunov exponents. We use the algorithm of triangularisation proposed by Eckmann

and Ruelle [33] to evaluate the Lyapunov exponents. They are defined as

λj = lim
n→∞

n∑
k=1

1

n
ln |Λk

j |, j = 1, 2,
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Figure 4. Positive Lyapunov exponent, λ as a function of r for the chaotic sea. The
control parameters used were a/l = L/l = 1, Nc = G and δ1 = δ2 = 0.25.

where Λk
j are the eigenvalues of M =

∏n
k=1 Jk(ek, φk) and Jk is the Jacobian matrix

evaluated on the orbit (ek, φk). In order to calculate the eigenvalues of M , we use the

fact that J can be written as the product J = ΘT , where Θ is an orthogonal matrix

and T is a triangular one. We now define the elements of these matrices as

Θ =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
, T =

(
T11 T12

0 T22

)
.

Introducing the identity operator, we rewrite M = JnJn−1 . . . J2Θ1Θ
−1
1 J1, and thus

define Θ−1
1 J1 = T1. The product J2Θ1 defines a new matrix J∗

2 . As a next step, we

may then write M = JnJn−1 . . . J3Θ2Θ
−1
2 J∗

2T1. The same procedure yields T2 = Θ−1
2 J∗

2 .

The problem is thus reduced to the evaluation of the diagonal elements of Ti : T i
11, T

i
22.

Using the Θ and T matrices, we find the eigenvalues of M , given by

T11 =
j2
11 + j2

21√
j2
11 + j2

21

, T22 =
j11j22 − j12j21√

j2
11 + j2

21

.
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We can then evaluate the Lyapunov exponent using the relation

λj = lim
n→∞

n∑
k=1

1

n
ln |T k

j |, j = 1, 2.

The Lyapunov exponents possesses the property λ1 = −λ2 because the map T is area-

preserving. Fig. 3 shows the convergence of the positive Lyapunov exponent from 5

different initial conditions for the chaotic low energy regions shown in Fig. 2. Each

initial condition was iterated 5 × 108 times to guarantee that the asymptotic value has

been reached. The ensemble average of the five samples is: (a) λ = 0.733 ± 0.001

and (b) λ = 0.831 ± 0.002. We also obtain the behaviour of the positive Lyapunov

exponent for the chaotic low energy region as function of r, as shown in Fig. 4 for

control parameters a/l = L/l = 1, Nc = G and δ1 = δ2 = 0.25. Because of the change

in the shape of the chaotic sea caused by variation of r, and in particular the position of

the first invariant spanning curve, the asymptotic convergence of the positive Lyapunov

exponent requires progressively longer runs in order to approach its asymptotic value

as r increases. Equivalently, with a fixed maximum iteration number nmax = 5 × 108,

the error bars for large values of r are bigger than for those for small r.

Let now us discuss some scaling properties for this model in the region related to

the chaotic sea. We choose to characterise the behaviour in terms of the variance of the

average energy, which we will refer to it as the roughness ω [34]. The procedure adopted

here has already been used to characterise the chaotic low energy region of the Fermi-

Ulam accelerator model [30] and to investigate scaling present in the chaotic sea for a

time-modulated barrier [31]. Given the large number of control parameters present in

this model, we will shall consider the following parameters to be fixed: a/l = L/l = 1;

δ1 = δ2 = 0.25; r = G (unsynchronised case). We then study the behaviour of the

roughness as function of the parameter Nc. To define the roughness we must first

consider the average of the energy over the orbit generated from one initial condition

e(n, Nc) =
1

n

n∑
i=0

ei , (8)

and then evaluate the interface width around this average energy. We can thus define

the roughness formally, considering an ensemble of B different initial conditions, as

ω(n, Nc) ≡ 1

B

B∑
j=1

(√
e2

j(n, Nc) − e2
j(n, Nc)

)
. (9)

An ensemble of initial conditions is used to smooth the roughness evolution, for which

a typical curve is shown in Fig. 5(a); it was constructed by fixing the initial energy at

e0 = 1.001 and then ensemble-averaging 5, 000 different initial phases in the interval

φ0 ∈ [0, 2π), all of which gave rise to chaotic behaviour. The main idea of averaging

over the initial phases is to analyse the asymptotic dynamics starting for the same initial

energy, but considering a large number (in principle) of allowed positions to the bottom

of well I. We can see in Fig. 5(a) that there are two different regimes of behaviour. After

a very brief initial transient, the roughness grows according to a power law and then, as
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Figure 5. (a) Roughness evolution for an ensemble of 5, 000 different initial phases
and same the initial energy e0 = 1.001, all of them leading to chaotic behaviour. (b)
Procedure used to extrapolate the roughness after application of the transformation
n → 1/n. The values of control parameters were a/l = L/l = 1, δ1 = δ2 = 0.25, r = G

and Nc = 3000.

the iteration number increases, the roughness eventually bends towards the direction of

a saturation regime that is obtained only for long enough iteration number (see below

the details used to extrapolate the saturation of the roughness). The changeover from

growth to convergence on saturation is characterised by a crossover iteration number

nx. It is well known that the chaotic sea is limited by the first invariant spanning

curve which, in a sense, plays the role of a boundary limiting the size of the chaotic

sea. It is as an immediate consequence of this limitation that the roughness saturates.

As the control parameter Nc increases, however, the position of the first invariant
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spanning curve changes. For the range of Nc over which we will investigate scaling

in the roughness, an increase in Nc implies a rise in the position of the first invariant

spanning curve so that, as a consequence, the roughness saturates at a higher value. We

can then start to characterise the roughness scaling, supposing that:

(i) After the brief initial transient, the roughness grows as function of iteration number

according to

ω(n, Nc) ∝ nβ. (10)

This growth can be seen in region I of Fig. 5. β is called the growth exponent.

Equation (10) is valid for n 
 nx.

(ii) As the iteration number increases, the roughness reaches saturation, as can be seen

in region II of Fig. 5. The behaviour of the roughness within the saturation regime

follows the equation

ωsat(Nc) ∝ Nα
c , (11)

where α is the roughening exponent. Equation (11) is only valid for n � nx.

(iii) The crossover iteration number nx that tells us when the roughness growth slows

and saturation is being approached is given by

nx(Nc) ∝ N z
c (12)

where z is called the dynamical exponent.

We now summarise the procedure adopted to obtain the saturation value. Even for our

maximum iteration number (n ≈ 500nx), we can see from the numerical simulations that

growth of the roughness has not quite reached saturation. But if we choose to increase

the maximum iteration number even more, this carries the disadvantage of leading to

very much longer simulations. We therefore take the option of finding the saturation

value by extrapolation. We apply the transformation n → 1/n for the iteration number,

which is applicable because the saturation grows slowly and linearly for sufficiently large

values of n, yielding

ω(n, Nc) = ωsat(Nc) +
const.

n
. (13)

Considering the case of n → ∞, it is easy to see that Eq. (13) gives us that

ω(n, Nc) → ωsat(Nc), which may be obtained after doing a linear fit to the results.

The procedure is illustrated in Fig. 5(b).

Next we discuss how to obtain the exponents α and z. The intercept of the power

law (see Fig. 5(a)) with the linear coefficient obtained from Eq. (13) gives the crossover

iteration number nx. The exponents α and z are then obtained from the graphs of n(Nc)

and ωsat(Nc) as shown in Fig. 6. Applying the power law fit, we find that α = 0.632(5)

and z = 1.26(1). Obtaining β by averaging over all curves in the range of Fig. 6, we

find β = 0.500(2).

Having found the exponents, we can then proceed to collapse the roughness curves

onto a universal plot. As the first step, we take the ratio ω(Nc)/ωsat(Nc). This procedure
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Figure 6. (a) Roughness saturation ωsat and (b) crossover iteration number nx as
functions of the control parameter Nc. A power law fit gives us that α = 0.632(5) and
z = 1.26(1).

relocates all curves to the same saturation value, as shown in Fig. 7(b). The second

step is to relocate all the curves to the same crossover iteration number, which is done

by taking the ratio n/nx as shown in Fig. 7(c).

The success of this procedure for obtaining a universal plot for the roughness allows

us to describe it using the following scaling function

ω(n, Nc) = ζω(ζbn, ζcNc) , (14)

where ζ is the scaling factor. We can then choose ζ = n− 1
b and rewrite Eq. (14) as

ω(n, Nc) = n− 1
b ω1(n

− c
b Nc).
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Figure 7. (a) Roughness evolution for different values of Nc. (b) Collapse of the
curves onto the same saturation value. (c) Collapse of the curves onto the same
saturation value and same crossover iteration number.

The function ω1(n
− c

b Nc) = ω(1, n− c
b Nc) is assumed constant for n 
 nx. Considering

Eq. (10) we obtain

n− 1
b = nβ ,

and β = −1/b. From our numerical simulations we have β = 0.500(2).

Our second choice is ζ = N
− 1

c
c and we have that

ω(n, Nc) = N
− 1

c
c ω2(N

− b
c

c n) ,

where the function ω2(N
− b

c
c n) = ω(1, N

− b
c

c n) is supposed to be constant for n � nx.
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Using Eq. (11) we obtain that

N
− 1

c
c = Nα

c ,

with α = −1/c.

Using the two previous relations together with the scaling factor and the

corresponding relations for the exponents b and c, it is easy to show that the exponents

α, β and z are mutually connected by the following relationship

z =
α

β
. (15)

Evaluating Eq. (15) with our numerical results for α and β, we find that z = 1.264(5),

which is gratifyingly close to the result obtained in Fig. 6(b).

3.2. The asymmetrical case

We now discuss a resonance phenomenon that manifests in the chaotic sea. It depends

specifically on the energy of the particle immediately after it enters a well, and it may

occur in either of the wells (see also Ref. [31] for a fuller discussion of resonances in the

problem of a time modulated barrier). Entering the well, the corresponding range of

energy where the resonance can take place is: (a) well I, e ∈ [eI
min, eI

max] and (b) well II,

e ∈ [eII
min, eII

max] where eI
min = 1− δ1, eI

max = 1+ δ1, eII
min = 1− δ2 and eII

max = 1+ δ2. The

resonances can be determined directly from the length of time that the particle spends

travelling inside each well. For well I, this time is

Δφa =
2πNc√

en − δ1 sin(φn)
,

and for well II it is

Δφc =
L

l

2πNc√
e′n − δ2 sin[r(φn + iΔφa + Δφb)]

.

If either of these times is a multiple of 2π, the particle will not remain trapped within

the corresponding well. From the range of energy within the relevant well, we can

estimate the number of oscillations, the resonance energy, and the time of flight. The

corresponding maximum and minimum values for the number of oscillations are given

by: (a) well I, kI
max = Nc/

√
eI

min and kI
min = Nc/

√
eI

max; (b) well II, kII
max = L

l
Nc√
eII
min

and

kII
min = L

l
Nc√
eII
max

. After obtaining the range of k values, the respective resonance energies

for the two wells II are

eI
k =

N2
c

k2
, eII

k =
(

L

l

)2 N2
c

k2
.

To illustrate the occurrence of such resonances, we choose to characterise the

synchronised case (r = 1) and asymmetric case a/l = 1, L/l = 2.5 by different

amplitudes of oscillation, δ1 = 0.25, δ2 = 0.35 for Nc = 15G. The latter value of

Nc gives ω1 = 9.270 . . . ωc and we have that the bottom of well I oscillates in a moderate
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Figure 8. Normalised distribution of successive reflection energies for the control
parameters r = 1, a/l = 1, L/l = 2.5, δ1 = 0.25, δ2 = 0.35 and Nc = 15G for (a) well
I and (b) well II.

range compared to ωc. Table 1 lists the corresponding numbers of oscillations, resonance

energies, and flight times for both well I and well II. It is also expected that near to

the resonance energies, the probability of observing a successive reflection inside the

well, i.e. sufficient condition for the particle to stay temporally trapped, should be quite

low. To provide evidence of such behaviour, we obtained numerically the distribution of

successive reflections energies as shown in Fig. 8. We stress that, exactly at resonance,

the particle has zero probability of being trapped in the well; the corresponding energies

are indicated in Fig. 8. However, if the particle has low but non-resonant energy, it could

be trapped in the well transiently, suffering successive reflections until it has sufficient
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k ek Δφa,c

WELL I

9 1.0610 . . . 56.5486 . . .

10 0.8594 . . . 62.8318 . . .

WELL II

20 1.3428 . . . 125.6637 . . .

21 1.2180 . . . 131.9468 . . .

22 1.1097 . . . 138.2300 . . .

23 1.0153 . . . 144.5132 . . .

24 0.9325 . . . 150.7964 . . .

25 0.8594 . . . 157.0796 . . .

26 0.7945 . . . 163.3628 . . .

27 0.7368 . . . 169.6460 . . .

28 0.6851 . . . 175.9291 . . .

Table 1. Resonance energies and flight times inside both well I and well II for the
control parameters r = 1, a/l = 1, L/l = 2.5, δ1 = 0.25, δ2 = 0.35 and Nc = 15G.

energy to escape. We now consider this case.

We discussed in Sec. 2 how, depending on the energy of the particle as it

enters the well, it can stay trapped there while suffering successive reflections. After

some interval of time, however, after satisfying some specific conditions, it will exit

the well, and evolve inside the system (mainly in chaotic behaviour) until it again

becomes trapped, not necessarily in the same well. In this way, we can characterise

the distribution of successive reflections as well as the length of time during which

the particle stays trapped in the well. It is expected that very long times (i.e. large

number of successive reflections) should be observed less commonly than short times

(small numbers of successive reflections). To characterise such behaviour, we choose the

following combination of control parameters: the asymmetric case (a/l = 10), (L/l = 3)

considering non-synchronised oscillations (r = G and Nc = 15G) of differing amplitude

δ1 = 0.25 and δ2 = 0.35. Fig. 9 shows the distributions of successive reflections, Pn,

and corresponding successive reflection times, Pt, for well I (a similar result is in fact

also observed for well II). The analysis of Fig. 9 allows us to describe such distributions

as Pn ∝ tγn and Pt ∝ tγt . After performing a power law fit, we obtain for well I that:

γn = −2.99(1) and γt = −3.00(2). A similar analysis for well II yields γn = −3.00(1)

and γt = −3.01(1). So, we can conclude that γn = γt ≈ −3. It is of interest that such an

exponent value has also been reported for other, different, one-dimensional models, so

that these results may be an indicative of some kind of universality. The same exponent

was found numerically for the distribution of traversal times over a time-modulated
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Figure 9. (a) Distribution of successive reflections, Pn, and (b) successive reflection
times Pt obtained for well I. The values of control parameters used were a/l = 10,
L/l = 3, r = G, Nc = 15G, δ1 = 0.25 and δ2 = 0.35. A power law fit gives us that
γn = −2.99(1) and γt = −3.00(2).

barrier [8, 9] and for a well beside a time-dependent barrier [31], and accounted for

analytically in the case of a particle moving within a random well [11].

4. The stochastic model

Next, we describe the model with stochastic perturbations. Suppose that the potential

can be written as V (x, t) = V (x)fk(t) with k = 1, 2 to indicate wells I and II respectively.

The function fk(t) may be periodic (periodic model) or randomly varying, according to

choice. If the function is random, it gives a set of completely uncorrelated random
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numbers uniformly distributed between [−1, 1] with the property that 〈fk〉 = 0. Using

this formalism, the map T is written as

T :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

en+1 = en − δ1f1(tn) + δ1f1(tn + iΔta)

− δ2f2[r(tn + iΔta + Δtb)]

+ δ2f2[r(tn + iΔta + Δtb + jΔtc)]

tn+1 = tn + iΔta + Δtb + jΔtc + Δtd

,

where the auxiliary variables are given by

Δta =
2πNc√

en − δ1f1(tn)
, Δtb =

a

l

πNc√
e′n − 1

,

Δtc =
L

l

2πNc√
e′n − δ2f2[r(tn + iΔta + Δtb)]

,

Δtd =
a

l

πNc√
en+1 − 1

,

i is the smallest integer number for which the following equation is true

e′n = en − δ1f1(tn) + δ1f1(tn + iΔta) > 1 ,

and j is the smallest integer number that makes true the equation

en+1 = e′n − δ2f2[r(tn + iΔta + Δtb)]

+ δ2f2[r(tn + iΔta + Δtb + jΔtc)] > 1 .

We consider three different kind of stochastic perturbation to this system:

(1) Well I is periodic and well II moves randomly. In this situation, f1(t) = sin(t) and

f2(t) give uncorrelated random numbers.

(2) Well II is periodic and well I moves randomly. With these conditions, f1(t) give

uncorrelated random numbers and f2(t) = sin(rt).

(3) Wells I and II both move randomly, i.e. f1(t) and f2(t) both give uncorrelated

random numbers, and in addition, function f1(t) and f2(t) are mutually

uncorrelated.

The introduction of the stochastic perturbation affects directly the complex structure of

the phase space. In particular, for the range of control parameters used, it is possible to

observe unlimited energy growth in the time evolution of the particle. To make evident

this behaviour, we evaluate the following observables

ē =
1

B

B∑
i=1

⎡
⎣ 1

n

n∑
j=1

ej,i

⎤
⎦ , t̄ =

1

B

B∑
i=1

⎡
⎣ 1

n

n∑
j=1

tj,i

⎤
⎦ . (16)

The sum over n gives the average over the orbit, while the sum over B gives the

average over the ensemble of initial conditions. Although a calculation for just one
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Figure 10. Behaviour of the average energy as function of (a) iteration number n

and (b) average time t̄ for the case where f1(t) is random and f2(t) is periodic. The
control parameters used were Nc = r = G, δ1 = δ2 = 0.25, a/l = L/l = 1. A power
law fit gives that δn = 0.498(3) and δt = 0.647(2).

initial condition is sufficient to provide evidence for such growth, averaging over an

ensemble of initial conditions makes the energy curve smoother and much easier to

characterise. Fig. 10 shows the behaviour of ē(n) and ē(t̄). The control parameters used

were a/l = L/l = 1, r = G, δ1 = δ2 = 0.25 and Nc = G. Similar results can be obtained

for other combinations of control parameters. We use an ensemble of 10, 000 different

initial conditions, starting with an initial energy e0 = 1.001 and different initial seeds

for the random number generator. Each initial condition was iterated 107 times. The

analysis of Fig. 10 allow us to describe the growth of the energy as: (a) ē ∝ nδn and (b)

ē ∝ t̄δt . Considering the case in which well I behaves randomly while well II is periodic,
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our results shows that δn = 0.498(3) and δt = 0.647(2) (as in Fig. 10). For the case

where well I is periodic and well II behaves randomly, we obtain that δn = 0.496(4)

and δt = 0.644(7). Finally, considering the case where both wells behaves randomly, a

power law fit gives δn = 0.497(4) and δt = 0.648(3). We can see that both exponents are

robust, in the sense that they are independent of which well (I, or II, or both) is behaving

randomly. The averages of the latter three exponents are given by δ̄n = 0.497(4) and

δ̄t = 0.646(4). It is especially gratifyingly that the exponent δ̄n has the same value as

that obtained from a random walk, given that the dynamics is essentially the same. In

an attempt to account for the difference between the exponents δ̄n and δ̄t we point out

that, during a given interval, a particle with high energy can iterate many more times

within a well than a particle with low energy. The authors of [28] conjectured that

Fermi acceleration should be observed for a billiard with a time-dependent boundary if

the corresponding version for a fixed boundary presents chaotic components. However,

we can conclude that for the system studied in the present paper (see also [11] and

[31] for comparable results in other systems) which exhibits chaotic behaviour under a

time-dependent (periodic) perturbation, Fermi acceleration is observed only after the

introduction of random (stochastic) motion to the time dependent potential.

5. Final remarks and conclusions

We have studied the problem of a classical particle inside an infinite box of potential that

contains two time-dependent square wells. We describe this problem via the formalism

of a discrete map, considering two types of time dependence: (i) periodic and (ii)

stochastic. For the periodic dependence we discuss results for both the symmetrical

and asymmetrical cases, as well as for both the synchronised and unsynchronised cases.

We concentrate on the chaotic low energy region, which we characterise in terms of

Lyapunov exponents. We derive a scaling relation for the variance of the average velocity

(roughness) and show that the critical exponents obeys an analytic relationship. In the

low energy region, the particle may stay temporarily trapped in the time-dependent well.

We shown that the distributions of successive reflection numbers and successive reflection

times obey power laws with the same exponent. The particle may also experience the

phenomenon of resonance, i.e. it may exit the well with same energy as it had when it

entered. For the case in which one or both wells move randomly, we have shown that

the particle exhibits growth in velocity and correspondingly in kinetic energy. Such

behaviour is clear evidence of the Fermi acceleration phenomenon.
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