

1 Widening global variability in grassland biomass since the 1980s

2 **Author list:** Andrew MacDougall^{1,2}, Ellen Esch¹, Qingqing Chen³, Oliver Carroll¹, Colin
3 Bonner¹, Timothy Ohlert⁴, Matthias Siewert², John Sulik⁵, Anna Schweiger⁶, Elizabeth T.
4 Borer⁷, Dilip Naidu⁸, Sumanta Bagchi⁸, Yann Hautier⁹, Peter Wilfahrt⁷, Keith Larson²,
5 Johan Olofsson², Elsa Cleland¹⁰, Ranjan Muthukrishnan¹¹, Lydia O'Halloran¹², Juan
6 Alberti¹³, T. Michael Anderson¹⁴, Carlos A. Arnillas¹⁵, Jonathan D. Bakker¹⁶, Isabel C
7 Barrio¹⁷, Lori Biederman¹⁸, Elizabeth H. Boughton¹⁹, Lars A. Brudvig²⁰, Martin
8 Bruschetti¹³, Yvonne Buckley²¹, Miguel N. Bugalho²², Marc W. Cadotte²³, Maria C.
9 Caldeira²⁴, Jane A. Catford²⁵, Carla D'Antonio²⁶, Kendi Davies²⁷, Pedro Daleo¹³,
10 Christopher R. Dickman²⁸, Ian Donohue²¹, Mary Ellyn DuPre²⁹, Kenneth Elgersma³⁰,
11 Nico Eisenhauer^{31,32}, Anu Eskelinen^{31,33,34}, Catalina Estrada³⁵, Philip A. Fay³⁶, Yanhao
12 Feng³⁷, Daniel S. Gruner³⁸, Nicole Hagenah³⁹, Sylvia Haider⁴⁰, Stan Harpole^{31,33,41},
13 Erika Hersch-Green⁴², Anke Jentsch⁴³, Kevin Kirkman⁴⁴, Johannes M H Knops⁴⁵, Lauri
14 Laanisto⁴⁶, Lucíola S. Lannes⁴⁷, Ramesh Laungani⁴⁸, Ariuntsetseg Lkhagva⁴⁹, Petr
15 Macek⁵⁰, Jason P. Martina⁵¹, Rebecca L. McCulley⁵², Brett Melbourne²⁷, Rachel
16 Mitchell⁵³, Joslin L. Moore⁵⁴, John W. Morgan⁵⁵, Taofeek O. Muraina⁵⁶, Yujie Niu^{42,57},
17 Meelis Pärtel⁵⁸, Pablo L. Peri⁵⁹, Sally A. Power⁶⁰, Jodi N. Price⁶¹, Suzanne M. Prober⁶²,
18 Zhengwei Ren⁶³, Anita C. Risch⁶⁴, Nicholas G. Smith⁶⁵, Grégory Sonnier¹⁹, Rachel J.
19 Standish⁶⁶, Carly J. Stevens⁶⁷, Michelle Tedder⁴³, Pedro Tognetti⁶⁸, G.F. (Ciska)
20 Veen⁶⁹, Risto Virtanen³⁴, Glenda M. Wardle²⁸, Elizabeth Waring⁷⁰, Amelia A Wolf⁷¹,
21 Laura Yahdjian⁶⁸, Eric W. Seabloom⁷

22
23 **Affiliations**

25 ¹Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada

27 ²Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden

29 ³Institute of Ecology, College of Urban and Environmental Science, Peking University,
30 Beijing, China

32 ⁴Department of Biology, University of New Mexico, Albuquerque, NM

34 ⁵Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada

36 ⁶Land Resources and Environmental Sciences, Montana State University, Bozeman,
37 Montana, USA

39 ⁷Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul,
40 MN USA

42 ⁸Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India

44 ⁹Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht,
45 The Netherlands

47 ¹⁰Division of Biological Sciences, University of California - San Diego, San Diego,
48 California, USA

50 ¹¹Department of Biology, Boston University, Boston, MA, USA
51

52 ¹²Baruch Institute of Coastal Ecology and Forest Science, Clemson University, South
53 Carolina, USA

54
55 ¹³Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET,
56 Mar del Plata, Argentina

57
58 ¹⁴Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
59

60
61 ¹⁵Department of Physical and Environmental Sciences, University of Toronto -
Scarborough, Toronto, Canada

62
63 ¹⁶School of Environmental and Forest Sciences, University of Washington, Seattle, WA,
64 USA

65
66 ¹⁷Faculty of Environmental and Forest Sciences, Agricultural University of Iceland,
Reykjavik, Iceland

67
68 ¹⁸Department of Ecology, Evolution, and Organismal Biology, Iowa State University,
Iowa, USA

69
70 ¹⁹Archbold Biological Station, Venus, FL, USA

71
72 ²⁰Department of Plant Biology and Program in Ecology, Evolution, and Behavior,
Michigan State University, East Lansing, Michigan, USA

73
74 ²¹Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin,
Ireland

75
76 ²²Centre for Applied Ecology, School of Agriculture, University of Lisbon, Lisboa,
Portugal

77
78 ²³Department of Biological Sciences, University of Toronto - Scarborough, Toronto,
Canada

79
80 ²⁴Forest Research Centre, School of Agriculture, University of Lisbon, Lisboa, Portugal

81
82 ²⁵Department of Geography, King's College London, London, UK

83
84 ²⁶Department of Ecology, Evolution, and Marine Biology, University of California Santa
Barbara, California, USA

85
86 ²⁷Department of Ecology and Evolutionary Biology, University of Colorado, Colorado,
USA

87
88 ²⁸School of Life and Environmental Sciences, University of Sydney, NSW, Australia

89
90 ²⁹MPG Ranch, Missoula, MT USA

100 ³⁰University of Northern Iowa, Cedar Falls, IA, USA
101

102 ³¹German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig,
103 Leipzig, Germany

104
105 ³²Leipzig University, Institute of Biology, Leipzig, Germany

106
107 ³³Department of Physiological Diversity, Helmholtz Centre for Environmental Research -
UFZ, Leipzig, Germany

108 ³⁴Department of Ecology and Genetics, University of Oulu, Oulu, Finland

109 ³⁵Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot,
110 UK

111
112 ³⁶USDA-ARS Grassland, Soil, and Water Research Lab, Temple, TX. USA

113
114 ³⁷College of Pastoral Agriculture Science and Technology, Lanzhou University,
115 Lanzhou, China

116
117 ³⁸Department of Entomology, University of Maryland, College Park, MD

118
119 ³⁹Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa

120
121 ⁴⁰Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany.

122
123 ⁴¹Martin Luther University Halle-Wittenberg, am Kirchtor 1, 06108 Halle (Saale),
124 Germany.

125
126 ⁴²Dept of Biological Sciences, Michigan Technological University, Houghton MI USA

127
128 ⁴³Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental
129 Research, University of Bayreuth, Germany

130
131 ⁴⁴School of Life Sciences, College of Agriculture, Engineering and Science, University of
132 KwaZulu-Natal, South Africa

133
134 ⁴⁵Department of Health and Environmental Sciences, Jiatong-Liverpool University,
135 Suzhou, China

136
137 ⁴⁶Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, Tartu,
138 Estonia

139
140 ⁴⁷Department of Biology and Animal Sciences, Sao Paulo State University UNESP, Ilha
141 Solteira, Brazil

142
143 ⁴⁸Department of Environmental Science and Policy, Marist College, Poughkeepsie, NY
144 USA

145
146 ⁴⁹Department of Biology, National University of Mongolia

147
148 50Institute of Hydrobiology, Biology Centre of Czech Academy of Sciences, Ceske
149 Budejovice, Czech Republic
150
151 51Department of Biology, Texas State University, San Marcos, TX USA 78666
152
153 52Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, USA
154
155 53School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
156
157 54Arthur Rylah Institute for Environment Research, Department of Energy, Environment
158 and Climate Action, Heidelberg, Victoria 3084, Australia; School of Biological Sciences,
159 Monash University, Clayton VIC 3800, Australia; School of Agriculture, Food and
160 Ecosystem Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
161
162 55Department of Environment and Genetics, La Trobe University, Bundoora, Victoria,
163 Australia
164
165 56Department of Animal Health and Production, Oyo State College of Agriculture and
166 Technology, Oyo State, Nigeria; current address: Department of Biology, Texas State
167 University, San Marcos, TX USA 78666
168
169 57College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry
170 of Education, Gansu Agricultural University, Lanzhou, China.
171
172 58Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
173
174 59INTA-UNPA-CONICET, Universidad Nacional de la Patagonia, Santa Cruz, Argentina
175
176 60Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New
177 South Wales, Australia
178
179 61Gulbali Institute, Charles Sturt University, Albury, New South Wales, 2640, Australia.
180
181 62CSIRO Environment, Canberra Australian Capital Territory, Australia
182
183 63College of Ecology, Lanzhou University, Lanzhou, China
184
185 64Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf,
186 Switzerland
187
188 65Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
189
190 66Murdoch University, Perth, Western Australia, Australia
191
192 67Lancaster Environment Centre, Lancaster University, Lancaster, UK
193
194 68IFEVA Facultad de Agronomía, Universidad de Buenos Aires - CONICET,
195 Buenos Aires, Argentina
196

197 ⁶⁹Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, the
198 Netherlands

199
200 ⁷⁰Department of Natural Sciences, Northeastern State University, Tahlequah, OK, US

201
202 ⁷¹Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA

203
204 *Corresponding author. asm@uoguelph.ca

205

206 **Abstract:** Global change is associated with variable shifts in the annual production of
207 aboveground plant biomass, suggesting localized sensitivities with unclear causal
208 origins. Combining remotely sensed NDVI data since the 1980s with contemporary field
209 data from 84 grasslands on six continents, we demonstrate a widening divergence in
210 site-level biomass ranging from +51% to -34% globally. Biomass generally increased in
211 warmer, wetter and species-rich sites with longer growing seasons while declining in
212 species-poor arid areas. Phenological changes were widespread, revealing substantive
213 transitions in grassland seasonal cycling. Grazing, nitrogen deposition, and plant
214 invasion were prevalent in some regions but did not predict overall trends. Grasslands
215 are undergoing sizable changes in production, with implications for food security,
216 biodiversity, and carbon storage especially in arid regions where declines are
217 accelerating.

218

219

220

221 **Main Text**

222 Shifting annual production of aboveground peak biomass by vascular plants
223 (hereafter 'biomass') has been observed worldwide in response to global environmental
224 change¹⁻⁵. These shifts differ in magnitude and direction including positive responses
225 (i.e., 'winners and losers'⁶) suggesting localized sensitivities that have been difficult to
226 simultaneously measure and test⁷⁻¹¹. Given the importance of biomass to humanity for
227 food and fuel and the likelihood of intensifying consumption going forward, there is an
228 urgent need to assess its vulnerability to global change especially in areas where yield
229 declines could intensify^{12,13}.

230 Analyses to date on biomass shifts¹³⁻¹⁵ have mostly relied on remotely sensed data
231 that can be prone to estimation bias and an inability to discern underlying fine-scale
232 drivers⁹⁻¹⁶. This is problematic because plant biomass often varies with combinations of
233 coarse- and fine-scale factors whose interactions can be expressed uniquely by
234 location, even when vegetation structure and climate may seem similar^{8,16}. For
235 example, anthropogenic nitrogen (N) deposition and plant invasion can sometimes
236 dramatically increase biomass especially with warming¹⁷⁻¹⁹ yet some global regions are
237 largely unaffected by one or both factors.

238 To date, hypothesized drivers of biomass variability have emphasized
239 combinations of climate change, phenological shifts, N deposition, or local-scale biotic
240 interactions. Climate impacts on biomass can vary based on regional differences in the
241 magnitude of temperature change relative to historic baselines (e.g., greater warming at
242 higher latitudes), shifts in seasonality within and across years (e.g., longer, hotter
243 summers), the magnitude of temperature change relative to the tolerance thresholds of
244 local taxa, and interactions between temperature and precipitation including whether
245 warming sites become wetter or more arid^{20,21}. Phenologically, shifts in the timing of

246 seasonal growth can have variable impacts on plant biomass^{8,9,15} - earlier emergence
247 can increase biomass if plants are biologically active for longer periods or reduce it by
248 accelerating seasonal cycling such that growing seasons shorten²². The impacts of
249 anthropogenic N deposition on plant biomass and diversity sometimes exceed those of
250 climate and vary by proximity to centers of industry and agriculture¹⁹. Nitrogen
251 deposition often interacts strongly with climate, given linkages among moisture
252 availability, growing period, and N demand by plants^{19,23}. Finally, a multitude of biotic
253 factors can affect biomass differently by location, including among-site variation in plant
254 species richness²⁴, the diversity of plant traits²⁵, levels of plant invasion¹⁷, and over-
255 grazing^{26,27}. Given these diverse and often scale-dependent drivers of biomass change,
256 it is unsurprising that their effects have been difficult to disentangle. Doing so will
257 require a global-level systematic assessment of biomass regulation both within and
258 among continents^{28,29}.

259 Here, we link long-term remotely sensed NDVI data with more contemporary plot
260 data from 84 grasslands on six continents to test drivers of biomass variability in
261 response to global change. These grasslands span a latitudinal gradient from -52° to
262 +78° (four within tropical latitudes), and capture ~1.6% of the world's total non-woody
263 vascular flora including ~5% of all Poaceae and ~3% of Cyperaceae (Table S1).
264 Seventy percent of our sites are arid (PET>annual rainfall – Table S1) matching the
265 ratio of arid-to-mesic grasslands globally³⁰, with the highest number of sites in North
266 America (41 sites), followed by Europe (17) Australia (13), South America (6), Africa (4),
267 and Asia (3) (Fig. S1). We classify “grasslands” as low-statured non-forested plant
268 communities. Functionally, grasslands occupy a climatically and edaphically determined
269 tension zone between forest and desert²⁹⁻³¹, regulated by climate seasonality, extreme
270 weather, fire, and human-managed and natural grazing with its total area covering ~53

271 million km² globally (excluding Antarctica and Greenland). These regulating processes
272 are associated with variability in grassland production, especially relating to climate³²⁻³⁴.
273 These same processes are being fundamentally re-shaped by global environmental
274 change, resulting in grasslands becoming a bellwether of resilience (or vulnerability) to
275 anthropogenic transformation including shifts in biomass.

276 Our remotely sensed data track changes in annual peak biomass from as early as
277 1986 based on Landsat-derived peak NDVI. Our primary analyses focused on
278 identifying drivers of change in peak NDVI using temporal factors measured during the
279 same interval (1986-2020). These included changes in the timing of three NDVI-based
280 phenophases that can affect peak biomass: vegetation emergence (i.e., start-of-season
281 spectral greening), senescence (i.e., end-of-season spectral browning), and growing
282 season length (duration from greening to browning), as well as inter-annual and inter-
283 seasonal changes in temperature, precipitation, and potential evapotranspiration
284 (PET)³⁵. We also tested NDVI trends in relation to site-level baseline factors calculated
285 from different durations including mean annual precipitation (MAP) and mean annual
286 temperature (MAT) based on hourly modelled temperature data from 1970-2020, and
287 site aridity (the ratio of annual PET: precipitation - 1970-2020). Other baseline factors
288 were anthropogenic N deposition based on modelled data from 2014-2016³⁶, the
289 number of plant species per site based on the net total of all species detected in the first
290 five years of sampling starting as early as 2007, the percentage of exotic taxa found in
291 each site-level species pool over five years of sampling²⁹, grazing impacts by large
292 mammals determined using offtake comparisons with exclosures at a subset of 46
293 grasslands, and composite community-level measures of plant traits for the species
294 present at each site³⁷. Using annually sampled aboveground biomass of plants (i.e.,
295 combined live, litter, and non-vascular) starting as early as 2007, we examined the

accuracy of satellite-derived NDVI for predicting grassland biomass, given that there can be estimation biases relating to latitude, elevation, or species richness^{9,16}. Analytically, we tested drivers of remotely sensed peak grassland NDVI by evaluating a series of regression and multivariate models that isolate localized differences based on our various explanatory factors (Table 1).

301 *Results and Discussion*

302 We observed a four-fold divergence in the slope of change in annual NDVI-
303 estimated biomass over the past several decades (Fig. 1). This amounted to biomass
304 shifts ranging from a maximum gain of 51% to a 34% decline (Figs. 1, S1). Overall, 56%
305 of sites increased significantly, especially in the Arctic, the Pacific Northwest of North
306 America, and western Europe. Other sites from both hemispheres declined, all of which
307 were arid, including grasslands in Australia, Argentina, and parts of central and
308 southwestern North America especially California. 36% of grasslands showed no
309 significant shift in biomass, regardless of phenological change, warming, altered
310 precipitation, N deposition, or plant invasion. Such geographically variable long-term
311 changes in non-woody NDVI-estimated grassland biomass, including both sizeable
312 increases^{14,38-42} and declines even within the same continent (Figs. S1, S2), are
313 consistent with previous observations especially from the Arctic^{9,10,15}. We report this
314 variability to be a global phenomenon affecting many grasslands.

315 We found that variability in shifting NDVI-estimated biomass was primarily
316 explained by increases in growing season length, especially in combination with
317 warming (Figs. 2, S2, S3; Table 1). Between the late 1980s and the late 2010s, growing
318 seasons increased by an average of nine days (1986-90: $\bar{x} = 157$ days [SE = 3]; 2016-
319 20: $\bar{x} = 166$ days [SE = 2]). In total, 87% of sites had significant changes in the timing of
320 the onset of greening, the onset of browning, and/or the length of the growing season

321 since 1986 (e.g. Fig S4), indicating that many grasslands globally are undergoing
322 substantive shifts in seasonal cycling. Longer growing seasons have been implicated as
323 a warming response in grasslands and some cropping systems, and a causal factor of
324 increased biomass based on the assumption that plants are active for longer periods²².
325 Conversely, advancing greening, elevated production, or moisture limitation in arid
326 environments can sometimes accelerate leaf physiological processes relating to
327 photosynthesis that, in turn, shorten the growing season by triggering earlier
328 senescence^{22,23}. In total, 39% of sites had both earlier emergence and delayed
329 senescence thereby creating longer growing seasons (Fig. S4) – it was these
330 grasslands with the longest growing seasons that tended to experience the largest
331 increases in NDVI-estimated biomass. However, many other sites responded differently
332 such that there was no consistent global relationship between changes to the timing of
333 emergence and senescence (i.e., starting earlier does not predict the timing of
334 senescence: $F_{1,83} = 0.95$, $p = 0.33$; Fig. S4). For example, 19% of sites with earlier
335 emergence in spring experienced earlier spectral browning thereby shortening the
336 growing season, which has been observed previously in arid areas²³ and parts of the
337 Arctic^{45,46} including sites analyzed in this study. In total, variability in the connection
338 between shifting phenology and changes in peak biomass reinforce that there can be
339 powerful global trends in grassland responses to environmental change (e.g., longer
340 growing seasons at many sites), but also localized and divergent outcomes sometimes
341 regulated by different factors.

342 All sites showed temperature increases since the mid-1980s (i.e., all 84 temporal
343 slopes for temperature were positive - Fig. S5, S6). However, the impacts of warming
344 on growing season length were not universal, instead depending on the distinction
345 between sites with the highest temperature increases but relatively low MATs (e.g., the

346 Arctic, Patagonia, and the alpine steppes of the Mongolian and Tibetan Plateaus)
347 versus those with the highest MATs but less overall warming (e.g., arid grasslands of
348 Australia, southwestern North America, Africa, and South America). (Figs. S2-S6). The
349 former were more often in the Northern Hemisphere, in line with observations that
350 global warming to date has been more pronounced north of the equator (i.e.,
351 interhemispheric temperature asymmetry⁴⁷) (Figs. 3, S6). These sites with the highest
352 warming also tended to be characterized by both high MAP and large increases in
353 annual rainfall - the wettest sites generally are becoming both wetter and warmer. This
354 is consistent with the ability of warmer air to support more moisture, as has been
355 observed with increasing snowfall in a warming Arctic⁴⁵. Conversely, sites with higher
356 baseline MATs, less warming, and reduced NDVI were all arid grasslands that tended to
357 undergo a shortening of growing season length, usually relating to an earlier onset of
358 spectral browning in summer (Figs. S6, S7). Not all arid sites experienced declining
359 biomass - only 32% of 59 arid sites had negative temporal slopes in NDVI even though
360 58% of all sites had less precipitation, increases in PET, or both (Figs. S1, S6, S7).

361 Our observed warming trends were more seasonal than annual, especially in the
362 spring and summer months – this contributed to the tight connection between growing
363 season length and temperature (Fig. S2). We examined changes to seasonal and
364 annual temperatures by site from 1986, which is near the beginning of Landsat data
365 collection while also capturing the onset of accelerating contemporary planetary
366 warming that continues to the present day^{34,45}. In testing the magnitude of seasonal and
367 annual changes, we found that seasonal changes were more prevalent with 37% of
368 sites having significantly warmer spring temperatures and 47% having warmer summers
369 (e.g., Fig. S8). In contrast, only a subset of sites had significant increases in annual
370 warming despite all slopes being positive. This decoupling of frequent seasonal

371 warming from less common significant annual warming suggests an intensification of
372 within-year inter-seasonal differences as has been reported previously in grasslands,
373 with periods of increasing temperature in some seasons being muted or offset by
374 cooling at other times of the year^{6,48}. For example, we observed cooling spring
375 temperatures in numerous mid-latitude grasslands of central North America and
376 western Europe (Fig. S8) – many of these sites had increasing NDVI.

377 We also saw significant influences of species richness on changes in peak NDVI,
378 although always interacting with phenology or climate (Table 1). Among sites with
379 lengthening growing seasons or warming temperatures, species-rich grasslands
380 generally displayed greater increases in NDVI than species-poor sites (Table 1; Figs.
381 S2, S9). Conversely, for grasslands with shortened growing seasons or less warming
382 (e.g., high MAT sites from the Southern Hemisphere and California), those with below-
383 average richness were predicted to show reduced or less pronounced NDVI increases.
384 These outcomes imply some form of context-dependent functional complementarity,
385 which would be consistent with the intertwined causal factors known to regulate
386 diversity and biomass in grasslands⁴⁹⁻⁵¹. They also reveal an absence of any
387 independent relationship of richness (Fig. 2, S9), and indeed sites with the highest
388 numbers of species (e.g., the African Serengeti) did not necessarily demonstrate
389 increasing NDVI. Such complexities on how richness affects biomass are illustrated
390 when considering the numbers of invasive grassland plants at our sites. Invasion is
391 sometimes linked with large increases in community-level biomass and site-level
392 richness⁵², yet we observed the opposite responses - invaded grasslands were more
393 likely to have declining biomass and fewer species. This likely reflects climatic factors –
394 most invaded sites were in arid regions where biomass trends since the 1980s were

395 non-significant or negative. It also likely reflects lower numbers of species – sites
396 dominated by invasive plants had significantly fewer plant taxa ($F_{1,63} = 9.2$, $P = 0.004$).

397 Several of our non-temporal hypothesized factors had no detectable effects on
398 changes to grassland NDVI despite often having sizable impacts on biomass at some
399 sites (Table 1). Sites with high levels of N deposition, especially in eastern North
400 America, higher elevation areas of western Europe, and areas of China (Fig. 3), did not
401 show significant changes in NDVI despite the well-described impacts of anthropogenic
402 N increasing grassland biomass¹⁹. Similarly, there was a lack of detectable association
403 between sites with high grazing offtake and changes to NDVI (Table S2). As with N
404 deposition, grazing can significant affect grassland biomass²⁶ and indeed some of our
405 grasslands have substantive differences in biomass between grazed and fenced areas
406 including mesic grasslands of the Northern Hemisphere (sheep meadows in the UK,
407 reindeer barrens in Finland) and arid regions of Australia^{53,54}. However, variation in
408 levels of offtake estimated by our exclosures were unable to predict the likelihood of
409 NDVI change relative to the global-scale impacts of phenology, climate, or species
410 richness (Table S2). Finally, we also failed to detect associations between site-level
411 biomass change and variability in community-wide aggregate measures of plant size
412 (e.g., leaf area index [LAI], height) or foliar nutrients despite a wider spectrum of
413 resource-foraging strategies in plants sometimes being connected to higher biomass³⁷
414 (Table S3). Of particular note in our study was a lack of association between biomass
415 change and LAI. Remotely estimated LAI is often used to model plant production given
416 the strong connection between canopy density, light capture, and biomass^{55,56}.
417 However, we observed no predictive relationship between community-level LAI and
418 long-term shifts in NDVI despite 90-fold differences in canopy density ranging from

419 sparse arid grasslands of Australia and the American southwest to dense high-elevation
420 mesic grasslands of the European Alps (Table S3).

421 Combined, the prevalence of grasslands with trends towards higher site-level
422 biomass created a net 13.6% increase among our 84 sites since the 1980s (Fig. 1; $F_{1,83}$
423 = 91.6, $p < 0.0001$). Longer-term increases in biomass were also detected using our
424 field-measured data (Figs. 4, S10), and aligned with other reports of increasing overall
425 plant biomass with global environmental change³⁸⁻⁴². That being said, this magnitude of
426 increase could be viewed with caution. In total, 61 of our 84 sites occur in the Northern
427 Hemisphere, especially North America and Europe, where increases in precipitation and
428 biomass are known to be especially pronounced^{43,44}. Furthermore, there is evidence of
429 a threshold of ~500 mm per year in precipitation below which sensitivity to climatic
430 variability intensifies⁴⁴. Although most of our sites are arid (PET>MAP), their annual
431 precipitation averages 790 mm (SE = 43) with only 25% falling below 500 mm. We
432 tested the potential impacts of these factors on the subset of sites that are arid or have
433 MAP levels < 500 mm, and still observed net increases in biomass (arid sites: +12.2%
434 [SE 2.6%]; MAP < 500 mm: +15.6% [SE 5.7%]). Nonetheless, we might still anticipate
435 that mean site-level increases in biomass would be lower if more of our sites occurred in
436 areas where declining precipitation is especially pronounced.

437 Biomass variability is not unexpected in grasslands, given its regulation by
438 combinations of factors whose relative importance can change by locale including
439 supply rates of limiting nutrients, grazing pressure, and whether warming increases or
440 suppresses plant growth depending on precipitation³¹⁻³⁴. Indeed, localized responses in
441 biomass depending on whether warming sites are getting wetter or drier also occurs in
442 annual crops⁶, which is unsurprising given that large percentages of the world's
443 croplands were once grassland^{11,57}. Additionally, previous work on global-scale shifts in

444 NDVI-derived estimates of biomass, including in grasslands, has demonstrated both
445 increases and decreases since the 1980s without a consistently clear mechanistic
446 understanding given the challenges of testing fine-scale processes^{1,2,14,58}. Here, we
447 consolidate the disparate findings of previous work by showing that localized differences
448 emerge because the dominant regulatory processes appear to vary widely. These
449 findings are evident even though our results likely underestimate the full extent of
450 shifting grassland biomass with global change since the 1980s. For example, we do not
451 account for increased biomass caused by the invasion of trees and high-statured shrubs
452 into grassland – an increasingly prevalent phenomenon^{9,59}. We also did not account for
453 shifts in root biomass, with root:shoot ratios at 2:1 or more in grasslands⁶⁰. Finally, there
454 may be an influence of rising atmospheric CO₂ on biomass, although global trends in
455 CO₂ – a ~20% increase since the 1980s – tend to be expressed similarly by region⁶¹.

456 Our analyses integrated remotely sensed and field measured levels of annual
457 peak grassland biomass, demonstrating a strong positive relationship despite a ten-fold
458 difference in species richness among sites and a hundred-fold difference in standing
459 biomass. This indicates that NDVI can capture overall trends in aboveground standing
460 biomass at our sites. Nonetheless, there was widening predictive error as NDVI
461 exceeded 0.6 (Fig. 4). NDVI has been previously shown to accurately predict
462 aboveground plant biomass in uncultivated grasslands⁶². Indeed, we found similar
463 trends of an overall mean biomass increase among our 84 sites for both NDVI and plot-
464 level biomass (Fig. S10). However, NDVI can be prone to estimation bias with
465 increasing spatial scale, across years, at higher latitudes, and with increasing canopy
466 density and structure^{8,55,63} – factors that can characterize some of our data. A
467 fundamental practical question for using NDVI is whether the ability to predict biomass
468 can be improved with widely available ancillary data such as latitude and climate, or

whether improvement requires detailed field calibration that may be impossible¹⁶. Our field data gave us a unique opportunity to test drivers of unexplained variation including fine-scale biotic factors (see Methods), revealing two primary sources of bias: high latitude and low elevation. Adding these widely available data to our models improved the predictive accuracy of NDVI for ground measured biomass by 21% (Table S4). Estimation bias at high latitude for NDVI is especially common, relating to methodological and biophysical factors including the potential underestimation of non-photosynthetically active vegetation (which we sampled)⁹. Although our fit between NDVI and aboveground biomass remained strong at higher latitudes, our work supports the need for caution when extrapolating trends in phenological change including the timing and magnitude of peak biomass. The same caution appears to apply to extrapolating connections among remotely sensed estimates of biomass and species richness^{16,64}, as we also detected a smaller but significant estimation bias between NDVI and field biomass as the numbers of species site⁻¹ increased (Table S4).

Our work describes a substantial divergence of peak biomass by location within many grasslands globally. These results were obtained from non-cultivated permanent-cover grassland, a habitat type under long-standing and intensifying conversion pressure^{55,65}. Despite grassland losses exceeding 99% in some regions⁶⁶, uncultivated areas still cover ~25% of Earth's terrestrial surface, store ~25% of its carbon, and support thousands of obligate flora and fauna⁶⁷. Many of the global-scale ecological benefits of uncultivated grassland center on the annual production of biomass, including litter inputs that contribute to soil C cycling, providing forage for much of the world's remaining megafauna and half of all domesticated livestock, and regulating fire cycling given that grasslands account for most of Earth's annual burning⁶⁷. Our documentation of shifts in the direction and magnitude of biomass in our grasslands suggests that there

494 will be far-ranging implications for the planet moving forward, which will be experienced
495 differently by location.

496 **Methods**

497 *Study area and experimental design*

498 Our study sites span a latitudinal gradient from Patagonia (-52°) to the high Arctic
499 of Norway (+78°) and range in elevation from 0 m to 4241 m, with wide differences
500 in potential evapotranspiration (0.79 – 6.49 mm day⁻¹), atmospheric N deposition (66.9
501 to 2162.1 mg N m⁻² year⁻¹), and long-term (1970-2020) mean annual precipitation (MAP:
502 192 to 2224 mm) and mean annual temperature (MAT: -7.5 to 27.2°C) (Fig. S11, Table
503 S1). There is wide variation in the total number of species per site (“species richness”),
504 ranging from 13 to 176 species, summed together for all non-treated control plots based
505 on five years of sampling in case there were cryptic taxa not visible in some years.
506 Percent exotic flora ranges from 0 to 100% of all species per site (Table S1) with
507 multiple species occurring at sites within both their ancestral and non-native ranges⁶⁸.
508 There were 421 non-native plant taxa in total, but with twenty of the 84 sites having no
509 exotic species (all sites in Europe, Asia, and Africa). Levels of grazer offtake at the 46
510 sites with exclosures range from none to ~85% of total annual plot-level
511 biomass^{53,54}. We classify “grasslands” as low-statured non-forested plant communities,
512 including treed savanna, prairie, planted permanent-cover pasture, montane meadows,
513 and arctic-alpine tundra. Our sites cover a wide range of “Whittaker biomes” defined by
514 the ratio of MAP to MAT (Fig S1). They also have some degree of geographic
515 clustering, with an average minimum distance globally of 379.3 km (range: 1 to 3,087
516 km). This means that several sites have identical estimates of N-deposition given the
517 spatial resolution of those data (2° × 2.5°). Our ratio of arid-to-mesic grasslands
518 (71%:29% - Table S1) matches the global ratio³⁰ but the continental distribution of our

519 sites is not proportional to the global range of grasslands. Almost half of our sites are
520 from North America even though its continental coverage of grassland is only 13%
521 globally. Australia and South America have similar ratios between number of our sites
522 versus their global coverage (14:13%; 10:9% respectively), while Asia and Africa are
523 under-represented (Fig. S1). For our invaded sites, there could be a concern that our
524 data misrepresent invasion impacts on NDVI change because of the gap between the
525 start of the remote sensing data (mid-1980s) and the field sampling (2007). Although we
526 cannot definitively eliminate this possibility (e.g., an uninvaded site becoming heavily
527 invaded after 1986), the odds are low as all sites occur in regions of the world with long
528 legacies of invasion dating back a century or more⁶⁸. Our study began with 127 sites but
529 was ultimately reduced to 84 based on screening for extreme outliers, poor image
530 resolution especially due to cloud cover, and confounding site factors such as tree cover
531 (see below).

532 Our analyses combined NDVI calculated from Landsat images starting no earlier
533 than 1986, climate data including PET³⁵, modelled N deposition data³⁶, and field data
534 collected from 84 grassland sites from the Nutrient Network (NutNet), a globally
535 distributed experiment²⁹. All NDVI satellite data were extracted from unmodified areas
536 adjacent to plots associated with NutNet (Fig. S12). All NutNet plot data were collected
537 by local site scientists, starting in 2007 or later depending on when the site joined the
538 network. Field sampling occurred within thirty permanently marked 5 x 5 m plots laid out
539 in a grid (Fig S12). We used data from the year prior to the application of any
540 experimental treatment (i.e., “Year 0” pre-treatment data, when all plots were
541 unmodified) and from subsequent years (Years 1, 2, etc.) in the subset of plots that
542 were untreated (i.e., all data in this study only come from unmodified control plots). Plot
543 data were collected annually at peak biomass and included total aboveground biomass,

544 clipped to ground level from two 10 cm x 100 cm strips within a larger 5 m x 5 m plot,
545 with the clipping locations differing each year²⁹. Clipped biomass was sorted to live,
546 non-vascular, and litter, and then dried to a constant mass at 60° C and weighed.
547 Differentiating biomass into live vascular, live non-vascular, and litter is one of several
548 important novelties of our study, given the NDVI estimations of standing plant biomass
549 can sometimes be insensitive to, or biased by, the latter two factors. Indeed, 53% of all
550 Nutnet grasslands globally have been found to support non-vascular plant growth, with
551 standing biomass as high as 635 g m⁻² (Virtanen et al. submitted).

552 Our 84 sites captured a wide variation in the relative abundance of major
553 functional groups, including graminoids (e.g., grasses and sedges), forbs, and, to a
554 lesser degree and mostly in the Arctic, low-statured woody plants, lichens, and
555 bryophytes. There was a wide range in the percentage of non-native flora per site. Many
556 sites in Europe, Africa, and Asia had few or no non-natives, while some grasslands in
557 North America, South America, and Australia were >90% exotic taxa⁶⁸. Species
558 composition data were used to calculate two measures of community-level trait
559 variation, functional diversity (FD) and community weighted mean (CWM)³⁷. FD, an
560 estimate of trait variability, relates to degrees of trait converge or divergence within plots
561 based on Rao's index of quadratic entropy. CWM (also referred to as Fl³⁷), an estimate
562 of trait averages, is based on the community weighted mean for each trait in each plot.
563 Trait data were compiled from TRY (public version), AusTraits (version1.1.0), BIEN
564 (version 1.2.5), and NutNet (leaf traits), for six continuous traits (height, leaf surface
565 area (LAI), specific leaf area (SLA – the ratio of leaf area to leaf mass), leaf N, leaf P,
566 leaf C), that have relatively high coverage for species recorded in NutNet (93, 95, 87,
567 91, 86, 75, 81% for each trait, respectively). For species that do not have trait values,
568 we used the mean values from their genus (see Table S3)

569 The only Nutnet treatment data were for grazer offtake, derived from fenced but
570 unfertilized plots^{53,54}. Grazing effects were expressed as the log response ratio of
571 differences in clipped biomass between control plots in fenced and unfenced areas at a
572 subset of 46 sites (the remaining 38 sites did not have exclosures). Typically, there
573 were three fenced plots per site, and the fences were ~2.3 m tall with the lower 90 cm
574 being 1 cm steel mesh and the upper portion surrounded by strands of barbless wire²⁹.
575 These grazing offtake data were calculated only in the first year after the exclosures
576 were constructed (Year 1), given that longer-term exclosure effects can be confounded
577 by shifts in plant species richness and relative abundance⁵¹. Levels of grazer offtake
578 ranged from very low or nil with some sites lacking detectable grazing, to very high
579 especially in parts of Australia, Africa, and western Europe (e.g., sheep grazing in
580 Lancaster UK, domesticated reindeer grazing in Kilpisjarvi, Finland)^{53,54}.

581 For our analyses, we used single composite (non-temporal) site-level measures
582 of species richness, exotic cover, traits, and grazing for each site – this allowed us to
583 test, for example, whether background levels of site richness and invasion were
584 associated with 36-year shifts in NDVI-estimated production.

585 *NDVI measurements and phenological dates*

586 We used images from Landsat missions 4, 5, 7, and 8, to calculate the normalized
587 difference vegetation index (NDVI) at each site starting as far back as 1986 (depending
588 on image quality) and extending annually to 2020 at a resolution of 30 m in an
589 unmodified circular area selected near the Nutnet plots (Fig. S12). In these plots, we
590 extracted a series of phenological NDVI measures within each growing season,
591 modified from Buitenwerf et al.⁸ given that we only targeted a single vegetation type
592 (i.e., grasslands): off-season ‘trough’ when plants are inactive, start-of-season
593 “emergence”, peak NDVI, end-of-season “senescence”, and “growing season length”

594 derived from the number of days from emergence to senescence each year (Fig. S13).
595 Elsewhere, NDVI has been used to detect trends in phenology and related biomass
596 responses^{9,16}, including in grasslands where it has been shown to strongly align with
597 live biomass⁶². Our work supports this significant relationship, albeit with increasing
598 variation beyond NDVI values of 0.6 (Fig. 4). We conducted a series of analyses to
599 identify sources of error for NDVI including tests for influences by outliers, the influences
600 of regional-scale factors relating to latitude and elevation, and local-scale factors
601 including non-vascular flora (described below – Table S4). We removed two sites that
602 failed uniformity tests when conducting linear fits between annual peak NDVI and time,
603 based on comparisons with a Theil-Sen median regressor and trend-filtering using a
604 Mann-Kendall Trend Test – both were sparsely vegetated sites of the Icelandic tundra
605 and arid grassland of central North America.

606 Location of the circular “NDVI plots” was done visually using Google Earth
607 images. We located a central point in an area adjacent to the NutNet experiment, given
608 that the Nutnet plots are readily detectable from the images (Fig. S12). This adjacent
609 area was selected to contain vegetation identical to the vegetation within the
610 experiment, in consultation with each Nutnet site PI. It was positioned at least 50 m from
611 the closest NutNet plot to avoid the influence of any experimental treatments associated
612 with the NutNet manipulations, while leveraging the site-specific vegetation and soil
613 information derived from the experiment. There is always potential risk of positioning
614 error using Google Earth – a global analysis of high-resolution Google Earth imagery
615 has estimated an overall horizontal geo-registration accuracy of 39.7 m RMSE with an
616 accuracy of 24 m RMSE in some countries⁶⁹ and subsequent studies demonstrate
617 improved horizontal accuracy of 10.5 m RMSE⁷⁰. We explicitly tested RSME error for
618 eight of our sites, contrasting plot-level coordinate data generated using a hand-held

619 GPS at each of 30 plots per site versus coordinate data for those same 30 locations
620 generated from Google Earth engine (Fig. S12, Table S5). Our calculated RSME error
621 was always <5 m (Table S5).

622 In each circular plot per site, we extracted reflectance data from within a circular
623 buffer within 30 m around this point (Fig. S12). This was done using images from top-of-
624 atmosphere (TOA) reflectance collections in Google Earth Engine. The images were
625 taken between 1982 and 2020, although the specific date ranges and sampling
626 frequency varies at each site. All of our analyses using remote sensed data that start no
627 earlier than 1986 as site data prior to this was found to be too sporadic (Fig. S13). In all
628 cases, the spatial resolution of each image is 30 m. We used all available images from
629 both Tier 1 and Tier 2 quality, which were aggregated and processed using Google
630 Earth Engine. Tier 2 data were essential for obtaining images taken during the snow-
631 covered “trough” portion of the year. The horizontal geo-registration accuracy of Tier 1
632 scenes is \leq 12-meter root mean square error (RMSE) whereas the Tier 2 accuracy is $>$
633 12 m RMSE⁷¹. Landsat Collection 1 was used, although Collection 2 is the only
634 collection currently available for download but both collections have the same published
635 geo-registration accuracies⁷¹. For each image, we calculated NDVI using the
636 corresponding near-infra red and red bands 4 and 3 for Landsat 4, 5, and 6, and bands
637 5 and 4 for Landsat 8. We also extracted information about image quality (BQA band)
638 containing statistics from the image data and post-processing information⁶⁹. BQA values
639 were used to filter images to exclude any pixels that had a high likelihood of including
640 clouds or cloud shadows. Using manual inspection, we included only pixels associated
641 with clear, cloud-free imagery (Landsat 4, 5, and 7 BQA = 672, 680, 676, 680, 684;
642 Landsat 8 BQA = 2720) or imagery over snow (Landsat 4, 5, and 7 BQA = 1696, 1700,

643 1704, 1708; Landsat 8 BQA = 3744). We discarded images where resolution was
644 uncertain (e.g., clouds versus snow - <0.5% of all images).

645 We screened our initial pool of sites, reducing the final number of sites to 84
646 (Table S1). Exclusion of sites typically occurred for sites lacking (i) Nutnet field data for
647 at least three years (ii) extreme outliers for one or data factors, whose origins could not
648 be determined, or (iii) those for which only a minimal amount NDVI phenological data
649 could be extracted. Reasons for the latter include poor satellite coverage by location
650 (especially problematic for Landsat data from the early 1980s), persistent cloud cover
651 (preventing fitting a trend), or for sites that rarely or never crossed an identifiable
652 “greened-up” threshold in multiple years. In cases where established Nutnet plots could
653 not be located on Google Earth (e.g., Fig S12) or any other issues inhibiting image
654 processing (e.g., canopy cover by trees), we reached out to site PIs for guidance.

655 Once the time series of NDVI values was obtained for each site, we extracted
656 key phenological and growing season information by post-processing the data in R
657 version 3.6.1 (Fig. S13). First, we smoothed the data to reduce error by fitting cubic
658 splines to the NDVI data at each site, and then determined the average date where
659 NDVI was the lowest across all years (“trough date”). Then we created site-specific
660 “growing season windows” consisting of 545 days (365 + 2*90). This window started 90
661 days before the trough date in each year, and then 365 days following the trough date
662 plus an extra 90-day buffer at the end. We processed all dates initially as radians, which
663 allowed flexibility in defining growing seasons particularly for sites with Mediterranean
664 climates (e.g., California, western Australia) or located in the southern hemisphere
665 where the period of vegetation activity spans multiple calendar years (e.g., green-up
666 can be November of year x, senescence in April of year x + 1).

667 From our growing season windows for each site*year combination, we weighted
668 data points so that the maximum NDVI value in each growing season window had a
669 weight of 1, while all other points had a weight of 0.5, to better preserve the NDVI trends
670 at sites with rapid green-ups and short growing seasons. We used a smoothing
671 parameter (spar) of 0.5 to preserve these trends. From these annual cubic splines, we
672 extracted green-up and senescence dates as the first and last dates, respectively, that
673 NDVI was above a 50% NDVI range threshold (green threshold) according to the
674 equation:

675

$$676 \text{ Threshold} = \left(0.5 \times \left(\overline{\text{MaximumNDVI}} \right. \right. \\ 677 \left. \left. - \overline{\text{MinimumNDVI}} \right) \right) + \overline{\text{MinimumNDVI}}$$

678

679 where the average maximum and minimum NDVI values were calculated across all
680 years at each site. This green threshold allowed for flexibility to include sites with
681 different minimum NDVI values (e.g., sites which become snow-covered and sites which
682 do not) as well as different maximum NDVI values. In using a threshold, we were also
683 able to ensure that a green-up or senescence date was biologically comparable across
684 all years (indicating the same NDVI).

685 In all cases of fitting cubic splines, we forced a minimum NDVI value of 0 (if
686 measured NDVI was < 0, we re-assigned the value to 0), as our smoothing and post-
687 processing was dependent on consistency during the growing season troughs when
688 data were typically sparse. During the growing season troughs, band quality information
689 often indicated that pixels were cloud covered when visual analysis of images revealed
690 snow cover (both cloud and snow cover containing water). We excluded pixels
691 indicating cloud cover in this analysis. To overcome sparse data points during these

692 periods in Tier 1 datasets we additionally used Tier 2 data. Given that data from both
693 tiers were required and the radiometric calibration was top-of-atmosphere reflectance,
694 alternative variations of NDVI that adjust for noise due to soil brightness and
695 atmospheric light scattering, such as the enhanced vegetation index (EVI)^{72,73}, were not
696 employed - indices with numerical constants can be inconsistent due to atmospheric
697 noise⁶⁹. Furthermore, snow cover decreases NDVI values but increases EVI values⁷⁰
698 and such sensitivity would confound the phenological analysis.

699 We approximated the relationship between NDVI and plot level aboveground
700 biomass using sites with at least 3 years of harvested biomass and corresponding
701 annual peak NDVI data from the same site (Figs. 4, S10). A log-transformed model
702 provided the best fit between NDVI and average plot biomass site⁻¹ year⁻¹, which we
703 used to translate NDVI to an average biomass across all sites from 1986 to 2020.

704 *Climate and N-deposition trends*

705 Monthly long-term temperature (MAT) and precipitation (MAP) averages per site
706 were obtained from the WorldClim database, from 1970-2020. MAT and MAP served to
707 describe baseline levels of temperature and precipitation among sites. To determine
708 annual deviations in temperature and precipitation from baseline MAP and MAT, we
709 calculated a monthly time series for temperature and precipitation during the study
710 period (1986-2020), with data obtained at the site level using the Climatic Research Unit
711 (CRU) time-series (TS) version 4.03 data³⁵. These annual deviations were calculated as
712 slopes of change over time. Estimates of potential evapotranspiration (PET) were also
713 obtained from the CRU time series³⁵, which calculates PET using mean, maximum, and
714 minimum monthly temperatures, vapor pressure, and cloud cover (1970-2020).

715 Given predictions of increased interannual seasonal variability in climate, with the
716 potential to affect phenology and peak biomass, we calculated slopes of 36-year trends

717 in temperature and precipitation seasonality at each site. We targeted these calculations
718 for two phenophases: (i) green-up based on a two-month window around the date of
719 typical site-specific green-up date (the typical month of green-up, plus one month
720 before), and (ii) maximum NDVI as a five-month window around the date of typical site-
721 specific maximum NDVI (the typical month of NDVI max, plus two months before and
722 after). These seasonal calculations allowed us to test more detailed climatic drivers of
723 phenological change, which may not be detected by overall annual trends including the
724 possibility of warmer springs, warmer and drier summers, and even seasonal cooling as
725 is sometimes observed (e.g., Fig. S8)⁴⁸.

726 Atmospheric nitrogen (N) deposition was estimated for each of the sites using the
727 GEOS-Chem Chemical Transport Model³⁶. The model estimates wet and dry deposition
728 of inorganic N using models of atmospheric chemistry together with meteorological data
729 and emissions data. Outputs are at a $2^\circ \times 2.5^\circ$ resolution averaged across the years
730 2014, 2015, and 2016. Although the N deposition model uses metrological data, there
731 were weak and non-significant correlations between precipitation and estimates of N
732 deposition ($r^2 = 0.009$).

733 *Analysis*

734 Our primary analysis tested drivers of change in maximum NDVI over the period
735 starting from 1986 to 2020, based on site-specific slopes of biomass change over time
736 (Fig. 1). We used a multi-model selection approach to evaluate the relative importance
737 of variables associated with our four interacting hypotheses: (i) changes in climate
738 including temperature, precipitation, and PET, (ii) changes in phenology including the
739 timing of emergence, the timing of senescence, and growing season length, (iii) levels
740 of atmospheric N deposition, and (iv) biotic factors of species richness, grazing
741 intensity, traits, and exotic (non-native) species. We simplified our analytical models by

removing factors that were tightly correlated, using principal coordinate analysis (e.g., Figs. S2, S3). For example, we found that overall changes in temperature and precipitation (the 36-year temporal trends based on slope) were tightly correlated with seasonal changes in spring and summer temperature and precipitation – we thus used the former in our models. Similarly, sites differed widely in changes to emergence and senescence over time, but we excluded both for our main models as their effects were significantly captured by trends in growing season length – sites that started earlier often had longer growing seasons, as did sites that senesced later (although only 39% of sites had both earlier emergence and later senescence – see Main Text).

Accordingly, we built a maximal linear model in R⁷⁴ that assessed the response of site-level biomass slopes (change in NDVI from as early as 1986 to 2020, depending on the site – Fig. 1) to all independent effects and pairwise interactions of a subset of factors: latitude, elevation, N deposition, species richness, growing season length, aridity, percent exotic species, overall annual temperature slope (warming since 1986), and overall annual precipitation slope (changes in precipitation since 1986). We included grazing in a separate model for these factors, for the 46 sites that had exclosures (Table. S2). All of these variables included in the final maximal model had low collinearity, as indicated by assessment of variance inflation factors⁷⁵. These factors also met assumptions of normality (or were log transformed to aid this – e.g., N deposition), and were standardized to a mean of zero and standard deviation of 0.5 using the ‘arm’ package⁷⁶, as required for model comparison⁷⁷. Further we adjusted our regression models using the inverse of the standard error of the slope from each site, so as to down-weight parameters estimated with larger error (e.g., Seabloom et al.⁷⁸). We evaluated the fit of subsets of this model using the MuMIn package⁷⁴ and conducted a model averaging procedure for all candidate models within two AIC of the best model.

767 We present the full averages of parameter estimates from our final model (e.g., Tables
768 1, S2)⁷⁵⁻⁷⁷.

769
770 **Data and materials availability:** Data and coding associated with this study are freely
771 available from the Environmental Data Initiative.

772
773 **Acknowledgments:** We thank each of the researchers who have contributed data and
774 ideas to the Nutrient Network (<http://www.nutnet.org>), Grants to A.S.M., E.E., C.B. and
775 O.C. came from the University of Guelph's Canada First Research Excellence Fund
776 project 'Food from Thought'. Thank you to Shanice Rodrigues for technical support on
777 data extraction from Google Earth, and Dr. Anne Bjorkman for manuscript comments.

778 Field work was funded at the site-scale by individual researchers. Coordination and data
779 management in the Nutrient Network have been supported by funding to E.T.B. and
780 E.W.S. from the National Science Foundation Research Coordination Network (NSF-
781 DEB-1042132) and Long-Term Ecological Research (NSF-DEB-1234162 to Cedar
782 Creek LTER) programs, and the Institute on the Environment (DG-0001-13). We also
783 thank the Minnesota Supercomputer Institute for hosting project data and the Institute
784 on the Environment for hosting Network meetings.

785 .

786 **Funding:**

787 Canada First Research Excellence Fund – University of Guelph ("Food From Thought")

788 Natural Sciences and Engineering Research Council of Canada (MacDougall)

789 National Science Foundation Research Coordination Network (NSF-DEB-1042132)

790 Long Term Ecological Research (NSF-DEB-1234162 to Cedar Creek LTER)

791 **Author contributions:**

792 Conceptualization: ASM, EE with MS, CB, KL, JO

793 Methodology: EE with ASM, OC, CB, QC, EWS, TO, ETB

794 Investigation: EE, ASM

795 Visualization: ASM, EE

796 Analyses: ASM, with OC, CB, EE, TO, ES, and QC

797 Funding acquisition: ASM, with ETB and EWS

798 Project administration: ASM

799 Supervision: ASM

800 Writing – original draft: ASM with EE

801 Writing – review & editing: ASM, EE and all co-authors

802 Data collection and contribution: all co-authors

803

804 **Competing interests:** Authors declare that they have no competing interests.

805

806 **Tables**

807 **808 Table 1. Major factors associated with changing mean in peak NDVI in 84**

809 **grasslands 1986-2020.** The table shows all variables highlighted to be significant

810 drivers of changing NDVI (bold) and the remaining non-significant variables that were

811 retained in the model selection process. Hypothesized factors that are not listed (e.g., N

812 deposition) were not detected as influential, even non-significantly, during model

813 selection.

Parameter	Estimate	Standard Error	Z-Score	P-value
Intercept	0.0018	0.0002	11.48	<0.0001
Growing season length (GSL)	0.0021	0.0003	6.13	<0.0001
GSL*temperature change	-0.0037	0.0008	4.5	<0.0001
Aridity*temperature change	-0.0024	0.0007	3.14	0.002
Temperature change	0.0010	0.0004	2.50	0.013
GSL*species richness	0.0018	0.0008	2.38	0.018
Temperature change*species richness	0.0020	0.0009	2.17	0.03
Aridity	-0.0007	0.0003	2.14	0.033
Species richness	-0.0004	0.0003	1.27	0.2
% exotic species	-0.0002	0.0003	0.54	0.59
Aridity*species richness	0.0003	0.0007	0.41	0.68
Precipitation change	0.0001	0.0002	0.33	0.74
Precipitation change*temperature change	-0.0002	0.0007	0.31	0.76
Elevation	0.00000	0.0002	0.25	0.80

815

816

817 **Figure Captions**

818 **Fig. 1. Temporal change in mean peak NDVI.** *Fitted trend lines for 84 grasslands, with*
 819 *the red dashed line indicating no temporal change. The open circles are the peak NDVI*
 820 *measures for each grassland over time (n=2,856). In total, 56% of sites have significant*
 821 *positive increases while 5% have significant declines, resulting in a four-fold difference*
 822 *in mean peak NDVI change. Given the wide spread of points and the risk of outlier bias,*
 823 *our fitted trends derive from a linear model using a Theil-Sen median regressor. Plotted*
 824 *trendlines were obtained from this model and filtered based on p-values from a Mann-*
 825 *Kendall Trend Test (see Methods).*

826

827 **Fig. 2. Relationship between changes in major explanatory factors and maximum**
 828 **NDVI.** (A) The figure emphasizes the significant impact of changes in growing season –
 829 shortening (left) or lengthening (right) - on shifts in grassland biomass declines (bottom)
 830 or increases (top) estimated with remote-sensed NDVI ($F_{1,83} = 31.8$; $p <0.0001$). There

831 are also significant relationships between (B) increasing NDVI and the slope of
832 temperature increase by site ($F_{1,83} = 6.6$; $p=0.012$; note: all sites warmed) and (C)
833 increasing NDVI and the slope of changes in annual precipitation ($F_{1,83} = 5.3$; $p=0.023$).
834 For species richness (D), there was no univariate impact on changing NDVI ($F_{1,83} = 0.34$;
835 $p = 0.56$), although it interacted significantly with growing season length and warming
836 (Table 1, Fig. S9). The inserted dashed lines in Figs. 2A-C indicate areas of no net
837 change. All tests are linear regressions among the 84 sites of this study.

838

839 **Fig. 3. Global maps showing variation among sites in (A) shifting average annual**
840 **temperature, (B) average annual precipitation, (C) growing season length for**
841 **1986-2020, and (D) levels of atmospheric N deposition modelled for 2014-2016.**

842 *Data for temperature and precipitation came from CRU³⁵. The largest temperature*
843 *increases are mostly in the northern hemisphere – southern hemisphere sites have*
844 *higher mean annual temperatures, but lower levels of warming since the 1980s.*

845 *Growing season length were derived by site and over time based on differences*
846 *between remotely sensed spectral greening and spectral browning each year.*

847 *Atmospheric nitrogen (N) deposition was estimated using the GEOS-Chem Chemical*
848 *Transport Model³⁶, which estimates wet and dry deposition of inorganic N using models*
849 *of atmospheric chemistry together with meteorological data and emissions data – these*
850 *N data have a $2^\circ \times 2.5^\circ$ resolution.*

851

852 **Fig. 4. Relationship between annual remotely sensed maximum NDVI and annual**
853 **live aboveground biomass. The best-fit curvilinear regression line ($F_{2,410} = 72.7$; p**
854 **<0.0001) derives from sites with three or more years of live biomass, with the red shaded**
855 **area (confidence curves for the fitted line) showing how estimation bias begins to widen**

856 as annual maximum NDVI becomes higher (especially > 0.6). Analysis of the residuals
857 indicates that this bias is strongly affected by higher latitude and lower elevation, with a
858 contribution also from species richness (see Methods; Table S4).

859

860 References

861 1.Nemani, R. R. et al. (2003). Climate-driven increases in global terrestrial net primary
862 production from 1982 to 1999. *Science* 300, 1560-63.

863 2.Ciais, P. et al. (2005). Europe-wide reduction in primary productivity caused by the
864 heat and drought in 2003. *Nature* 437, 529-533.

865 3.Zhao, M. & Running, S.W. (2010). Drought-induced reduction in global terrestrial net
866 primary production from 2000 through 2009. *Science* 329, 940-943.

867
868 4.Zhu, et al, (2016). Greening of the Earth and its drivers. *Nature Climate Change* 6,
869 791–795.

870
871 5. Running, S. W. et al. A continuous satellite-derived measure of global terrestrial
872 primary production. *Bioscience* 54, 547-560,

873
874 6. Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global
875 crop production since 1980. *Science*, 333 616-620.

876
877 7. Tylianakis, J. M. et al. (2008). Global change and species interactions in terrestrial
878 ecosystems. *Ecology Letters* 11, 1351-1363.

879 8.Buitenwerf, R., Rose, L., & Higgins, S. I. (2015). Three decades of multi-dimensional
880 change in global leaf phenology. *Nature Climate Change*, 5, 364-368.

881 9.Myers-Smith, I. H., et al. (2020). Complexity revealed in the greening of the
882 Arctic. *Nature Climate Change*, 10, 106-117.

883 10.Berner, L. T., et al. (2020). Summer warming explains widespread but not uniform
884 greening in the Arctic tundra biome. *Nature Communications*, 11, 1-12.

885 11. Huang, J., Ji, M., Xie, Y., Wang, S., He, Y., & Ran, J. (2016). Global semi-arid
886 climate change over last 60 years. *Climate Dynamics*, 46(3), 1131-1150.

887 12. Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., & Smith, D. L. (2021). Biomass
888 for a sustainable bioeconomy: An overview of world biomass production and
889 utilization. *Renewable and Sustainable Energy Reviews*, 139, 110691.

890 13. Krausmann, F., Erb, K. H., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., ... &
891 Searchinger, T. D. (2013). Global human appropriation of net primary production
892 doubled in the 20th century. *Proceedings of the national academy of sciences*, 110(25),
893 10324-10329.

894 14. Gao, Q., Zhu, W., Schwartz, M. W., Ganjurjav, H., Wan, Y., Qin, X., ... & Li, Y.
895 (2016). Climatic change controls productivity variation in global grasslands. *Scientific
896 reports*, 6(1), 1-10

897

898 15. Miles, V. V., & Esau, I. (2016). Spatial heterogeneity of greening and browning
899 between and within bioclimatic zones in northern West Siberia. *Environmental Research
900 Letters*, 11, 115002.

901 16. Cavender-Bares, J., et al. (2022). Integrating remote sensing with ecology and
902 evolution to advance biodiversity conservation. *Nature Ecology & Evolution*, 6, 506-519.

903 17. Liao, C., et al. (2008). Altered ecosystem carbon and nitrogen cycles by plant
904 invasion: a meta-analysis. *New Phytologist*, 177, 706-714.

905

906 18. Turbelin, A. J., Malamud, B. D., & Francis, R. A. (2017). Mapping the global state of
907 invasive alien species: patterns of invasion and policy responses. *Global Ecology and*
908 *Biogeography*, 26, 78-92.

909 19. Borer, E. T., & Stevens, C. J. (2022). Nitrogen deposition and climate: an integrated
910 synthesis. *Trends in Ecology & Evolution*, 6, 541-552.

911 20. Knapp, A. K., Ciais, P., & Smith, M. D. (2017). Reconciling inconsistencies in
912 precipitation–productivity relationships: implications for climate change. *New*
913 *Phytologist*, 214, 41-47.

914

915 21. Teng, M., et al. (2020). The impacts of climate changes and human activities on net
916 primary productivity vary across an ecotone zone in Northwest China. *Science of The*
917 *Total Environment* 714, 136691.

918

919 22. Zani, D. et al. (2020). Increased growing-season productivity drives earlier autumn
920 leaf senescence in temperate trees. *Science*, 370, 1066-1071.

921 23. Luo, Y., El-Madany, T., Ma, X., Nair, R., Jung, M., Weber, U., ... & Migliavacca, M.
922 (2020). Nutrients and water availability constrain the seasonality of vegetation activity in
923 a Mediterranean ecosystem. *Global Change Biology*, 26, 4379-4400.

924 24. Walker, M. D., et al. (2006). Plant community responses to experimental warming
925 across the tundra biome. *Proceedings of the National Academy of Sciences*, 103. 1342-
926 1346.

927

928 25. Parmesan, C., & Hanley, M. E. (2015). Plants and climate change: complexities and
929 surprises. *Annals of Botany*, 106, 849-864.

930

931 26. Olofsson, J., et al. (2009). Herbivores inhibit climate-driven shrub expansion on the
932 tundra. *Global Change Biology* 15, 2681-2693.

933

934 27. Maestre, F. T., Le Bagousse-Pinguet, Y., Delgado-Baquerizo, M., Eldridge, D. J.,
935 Saiz, H., Berdugo, M., ... & Gross, N. (2022). Grazing and ecosystem service delivery in
936 global drylands. *Science*, 378(6622), 915-920.

937 28. Yahdjian, L., Sala, O. E., Piñero-Guerra, J. M., Knapp, A. K., Collins, S. L., Phillips,
938 R. P., & Smith, M. D. (2021). Why coordinated distributed experiments should go
939 global. *BioScience*, 71, 918-927.

940 29. Borer, E. T., et al. (2014). Finding generality in ecology: a model for globally
941 distributed experiments. *Methods in Ecology and Evolution* 5, 65-73.

942 30. White, R. P., Murray, S., Rohweder, M., Prince, S. D., & Thompson, K. M.
943 (2000). *Grassland ecosystems* (p. 81). Washington, DC, USA: World Resources
944 Institute.

945

946 31. Axelrod, D. I. (1985). Rise of the grassland biome, central North America. *The
947 Botanical Review* 51, 163-201.

948

949 32. Sala, O. E., et al. (1988). Primary production of the central grassland region of the
950 United States. *Ecology* 69, 40-45.

951

952 33. Knapp, A. K., & Smith, M. D. (2001). Variation among biomes in temporal dynamics
953 of aboveground primary production. *Science* 291, 481-484.

954

955 34. Gilbert, B., et al. (2020). Climate and local environment structure asynchrony and
956 the stability of primary production in grasslands. *Global Ecology and Biogeography* 7,
957 1177-1188.

958

959 35. Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS
960 monthly high-resolution gridded multivariate climate dataset. *Scientific data* 7, 1-18.

961

962 36. Ackerman, D. E., Chen, X., & Millet, D. B. (2018). Global nitrogen deposition (2°×
963 2.5° grid resolution) simulated with GEOS-Chem for 1984-1986, 1994-1996, 2004-2006,
964 and 2014-2016.

965

966 37. van der Plas, F. et al. (2020) Plant traits alone are poor predictors of ecosystem
967 properties and long-term ecosystem functioning. *Nature Ecology Evolution* 4, 1602–
968 1611.

969

970 38. Heisler-White, J. L., Knapp, A. K., & Kelly, E. F. (2008). Increasing precipitation
971 event size increases aboveground net primary productivity in a semi-arid
972 grassland. *Oecologia*, 158, 129-140.

973 39. Xia, J., Liu, S., Liang, S., Chen, Y., Xu, W., & Yuan, W. (2014). Spatio-temporal
974 patterns and climate variables controlling of biomass carbon stock of global grassland
975 ecosystems from 1982 to 2006. *Remote Sensing*, 6, 1783-1802.

976 40. Orndahl, K. M., Macander, M. J., Berner, L. T., & Goetz, S. J. (2022). Plant
977 functional type aboveground biomass change within Alaska and northwest Canada
978 mapped using a 35-year satellite time series from 1985 to 2020. *Environmental*
979 *Research Letters*, 17, 115010.

980 41. Boone R B, Conant R T, Sircely J, Thornton PK and Herrero M (2018). Climate
981 change impacts on selected global rangeland ecosystem services. *Glob. Change Biol.*
982 24 1382–93

983 42. Andresen, L. C., Yuan, N., Seibert, R., Moser, G., Kammann, C. I., Luterbacher, J.,
984 ... & Müller, C. (2018). Biomass responses in a temperate European grassland through
985 17 years of elevated CO₂. *Global Change Biology*, 24(9), 3875-3885.

986 43. Donat, M. G., Lowry, A. L., Alexander, L. V., O'Gorman, P. A., & Maher, N. (2016).
987 More extreme precipitation in the world's dry and wet regions. *Nature Climate
988 Change*, 6(5), 508-513.

989 44. Zeng, X., Hu, Z., Chen, A., Yuan, W., Hou, G., Han, D., ... & Luo, D. (2022). The
990 global decline in the sensitivity of vegetation productivity to precipitation from 2001 to
991 2018. *Global Change Biology*, 28(22), 6823-6833.

992 45. MacDougall, A. S., et al. (2021). Comparison of the distribution and phenology of
993 Arctic Mountain plants between the early 20th and 21st centuries. *Global Change
994 Biology* 27, 5070-5083.

995

996 46. Möhl, P., von Büren, R. S., & Hiltbrunner, E. (2022). Growth of alpine grassland will
997 start and stop earlier under climate warming. *Nature communications*, 13(1), 1-10.

998

999 47. Friedman, A. R., et al. (2013). Interhemispheric temperature asymmetry over the
1000 twentieth century and in future projections. *Journal of Climate* 26, 5419-5433.

1001

1002 48. MacDougall, A. S., Wilson, S. D., & Bakker, J. D. (2008). Climatic variability alters
1003 the outcome of long-term community assembly. *Journal of Ecology* 96, 346-354.

1004

1005 49. Grace, J. B., et al. (2016). Integrative modelling reveals mechanisms linking
1006 productivity and plant species richness. *Nature* 529, 390-393.

1007

1008 50. Anderson, T. M., Griffith, D. M., Grace, J. B., Lind, E. M., Adler, P. B., Biederman, L.
1009 A., ... & Borer, E. T. (2018). Herbivory and eutrophication mediate grassland plant
1010 nutrient responses across a global climatic gradient. *Ecology*, 99, 822-831.

1011

1012 51. Dee, L. E., Ferraro, P. J., Severen, C. N., Kimmel, K. A., Borer, E. T., Byrnes, J. E.,
1013 ... & Loreau, M. (2023). Clarifying the effect of biodiversity on productivity in natural
1014 ecosystems with longitudinal data and methods for causal inference. *Nature
1015 Communications*, 14, 2607.

1016

1017 52. Seabloom, E. W., Borer, E. T., Buckley, Y. M., Cleland, E. E., Davies, K. F., Firn, J.,
1018 ... & Yang, L. (2015). Plant species' origin predicts dominance and response to nutrient
1019 enrichment and herbivores in global grasslands. *Nature communications*, 6, 7710.

1020

1021 53. Borer, E. T., Seabloom, E. W., Gruner, D. S., Harpole, W. S., Hillebrand, H., Lind, E.
1022 M., ... & Yang, L. H. (2014). Herbivores and nutrients control grassland plant diversity
1023 via light limitation. *Nature*, 508, 517-520.

1024

1025 54. Borer, E. T., Harpole, W. S., Adler, P. B., Arnillas, C. A., Bugalho, M. N., Cadotte, M.
1026 W., ... & Seabloom, E. W. (2020). Nutrients cause grassland biomass to outpace
1027 herbivory. *Nature communications*, 11(1), 1-8.

1028

1029 55. Delegido, J. et al. (2013) A red-edge spectral index for remote sensing estimation of
1030 green LAI over agroecosystems. *European Journal of Agronomy* 46, 42-52,
doi:10.1016/j.eja.2012.12.001 (2013).

1031

1032 56. Eisfelder, C. et al. (2017). Above-ground biomass estimation based on NPP time-
1033 series - A novel approach for biomass estimation in semi-arid Kazakhstan. *Ecol. Indic.*
1034 72, 13-22.

1035

1036 57. Clay, D. E., et al. (2014). Does the conversion of grasslands to row crop in semi-arid
areas threaten global food supplies? *Global Food Security* 3, 22-30.

1037

1038 58. Godde, C. M. et al. Global rangeland production systems and livelihoods at threat
under climate change and variability. *Environ. Res. Lett.* 15,

1039

1040 59. Jackson, R. B., Banner, J. L., Jobbágy, E. G., Pockman, W.T., & Wall, D. H. (2002).
Ecosystem carbon loss with woody plant invasion of grasslands. *Nature*, 418, 623-626.

1041 60. Cleland, E. E., et al. (2019). Belowground biomass response to nutrient enrichment
1042 depends on light limitation across globally distributed grasslands. *Ecosystems* 7, 1466-
1043 1477.

1044

1045 61. Hungate, B. A., Holland, E. A., Jackson, R. B., Chapin III, F. S., Mooney, H. A., &
1046 Field, C. B. (1997). The fate of carbon in grasslands under carbon dioxide
1047 enrichment. *Nature*, 388, 576-579.

1048 62. Chen, M., et al. (2019). Assessing precipitation, evapotranspiration, and NDVI as
1049 controls of US Great Plains plant production. *Ecosphere* 10, e02889.

1050 63. Jiang, Z., et a; (2006). Analysis of NDVI and scaled difference vegetation index
1051 retrievals of vegetation fraction. *Remote Sensing of Environment* 101, 366-378.

1052

1053 64. Rocchini, D., Ricotta, C., & Chiarucci, A. (2007). Using satellite imagery to assess
1054 plant species richness: The role of multispectral systems. *Applied Vegetation Science*
1055 10, 325-331.

1056

1057 65. Kong, L., Wu, T., Xiao, Y., Xu, W., Zhang, X., Daily, G. C., & Ouyang, Z. (2023).
1058 Natural capital investments in China undermined by reclamation for cropland. *Nature
1059 Ecology & Evolution*, 1-7.

1060

1061 66. Goldewijk, K. K. (2001). Estimating global land use change over the past 300 years:
1062 the HYDE database. *Global biogeochemical cycles*, 15(2), 417-433.

1063

1064 67. Lehmann, C. E., et al. (2014). Savanna vegetation-fire-climate relationships differ
1065 among continents. *Science* 343, 548-552.

1066
1067 68. Firn, J., Moore, J. L., MacDougall, A. S., Borer, E. T., Seabloom, E. W.,
1068 HilleRisLambers, J., ... & Buckley, Y. M. (2011). Abundance of introduced species at
1069 home predicts abundance away in herbaceous communities. *Ecology letters*, 14(3),
1070 274-281.

1071
1072 69. Potere, D. (2008). Horizontal Positional Accuracy of Google Earth's High-
1073 Resolution Imagery Archive. *Sensors*, 8, 7973-7981. <https://doi.org/10.3390/s8127973>

1074
1075 70. Salinas-Castillo, W. E., & Paredes-Hernández, C. U. (2014). Horizontal and vertical
1076 accuracy of Google Earth®: comment on “Positional accuracy of the Google Earth
1077 terrain model derived from stratigraphic unconformities in the Big Bend region, Texas,
1078 USA” by S.C. Benker, R.P. Langford and T.L. Pavlis. *Geocarto International*, 29(6),
1079 625–627.

1080
1081 71. Landsat Collection 1, United States Geological Survey (USGS). Accessed April 12,
1082 2023. <https://www.usgs.gov/landsat-missions/landsat-collection-1>

1083
1084 72. Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., Ferreira, L. G. (2002).
1085 Overview of the radiometric and biophysical performance of the MODIS vegetation
1086 indices. *Remote Sensing of Environment* 83, 195-213 doi:10.1016/S0034-
1087 4257(02)00096-2.

1089 73. Young, A.T. (1981). Rayleigh scattering. *Applied Optics*. **20** (4): 533–
1090 5. [doi:10.1364/AO.20.000533](https://doi.org/10.1364/AO.20.000533)

1091

1092 74. R Foundation for Statistical Computing. (n.d.). R: The R Project for Statistical
1093 Computing. Vienna, Austria.

1094

1095 75. Zuur, A.F., Ieno, E.N. & Elphick, C.S. (2010). A protocol for data exploration to avoid
1096 common statistical problems. *Methods in Ecology and Evolution*, 1, 3–14

1097

1098 76. Gelman, A., Su, Y.-S., Yajima, M., Hill, J., Pittau, M.G., Kerman, J. et al. (2009).
1099 arm: data analysis using regression and multi-level/hierarchical models. R package.
1100 Available at: <https://cran.r-project.org/web/packages/arm/index.html>

1101

1102 77. Grueber, C.E., Nakagawa, S., Laws, R.J. & Jamieson, I.G. (2011). Multi-model
1103 inference in ecology and evolution: challenges and solutions. *Journal of Evolutionary
1104 Biology*, 24, 699–711.

1105

1106 78. Seabloom, E. W., Batzer, E., Chase, J. M., Stanley Harpole, W., Adler, P. B.,
1107 Bagchi, S., ... & Borer, E. T. (2021). Species loss due to nutrient addition increases with
1108 spatial scale in global grasslands. *Ecology Letters*, 24, 2100-2112.