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Abstract: Global change is associated with variable shifts in the annual production of
aboveground plant biomass, suggesting localized sensitivities with unclear causal
origins. Combining remotely sensed NDVI data since the 1980s with contemporary field
data from 84 grasslands on six continents, we demonstrate a widening divergence in
site-level biomass ranging from +51% to -34% globally. Biomass generally increased in
warmer, wetter and species-rich sites with longer growing seasons while declining in
species-poor arid areas. Phenological changes were widespread, revealing substantive
transitions in grassland seasonal cycling. Grazing, nitrogen deposition, and plant
invasion were prevalent in some regions but did not predict overall trends. Grasslands
are undergoing sizable changes in production, with implications for food security,
biodiversity, and carbon storage especially in arid regions where declines are

accelerating.
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Main Text

Shifting annual production of aboveground peak biomass by vascular plants
(hereafter ‘biomass’) has been observed worldwide in response to global environmental
change'®. These shifts differ in magnitude and direction including positive responses
(i.e., ‘winners and losers’®) suggesting localized sensitivities that have been difficult to
simultaneously measure and test’-''. Given the importance of biomass to humanity for
food and fuel and the likelihood of intensifying consumption going forward, there is an
urgent need to assess its vulnerability to global change especially in areas where yield
declines could intensify1213,

Analyses to date on biomass shifts'3'> have mostly relied on remotely sensed data
that can be prone to estimation bias and an inability to discern underlying fine-scale
drivers®16. This is problematic because plant biomass often varies with combinations of
coarse- and fine-scale factors whose interactions can be expressed uniquely by
location, even when vegetation structure and climate may seem similar®'6. For
example, anthropogenic nitrogen (N) deposition and plant invasion can sometimes
dramatically increase biomass especially with warming'’-'® yet some global regions are
largely unaffected by one or both factors.

To date, hypothesized drivers of biomass variability have emphasized
combinations of climate change, phenological shifts, N deposition, or local-scale biotic
interactions. Climate impacts on biomass can vary based on regional differences in the
magnitude of temperature change relative to historic baselines (e.g., greater warming at
higher latitudes), shifts in seasonality within and across years (e.g., longer, hotter
summers), the magnitude of temperature change relative to the tolerance thresholds of
local taxa, and interactions between temperature and precipitation including whether

warming sites become wetter or more arid?%2'. Phenologically, shifts in the timing of
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seasonal growth can have variable impacts on plant biomass®15 - earlier emergence
can increase biomass if plants are biologically active for longer periods or reduce it by
accelerating seasonal cycling such that growing seasons shorten?2. The impacts of
anthropogenic N deposition on plant biomass and diversity sometimes exceed those of
climate and vary by proximity to centers of industry and agriculture®. Nitrogen
deposition often interacts strongly with climate, given linkages among moisture
availability, growing period, and N demand by plants'®23. Finally, a multitude of biotic
factors can affect biomass differently by location, including among-site variation in plant
species richness?4, the diversity of plant traits?°, levels of plant invasion'’, and over-
grazing?%2’. Given these diverse and often scale-dependent drivers of biomass change,
it is unsurprising that their effects have been difficult to disentangle. Doing so will
require a global-level systematic assessment of biomass regulation both within and
among continents?8.2°,

Here, we link long-term remotely sensed NDVI data with more contemporary plot
data from 84 grasslands on six continents to test drivers of biomass variability in
response to global change. These grasslands span a latitudinal gradient from -52° to
+78° (four within tropical latitudes), and capture ~1.6% of the world’s total non-woody
vascular flora including ~5% of all Poaceae and ~3% of Cyperaceae (Table S1).
Seventy percent of our sites are arid (PET>annual rainfall — Table S1) matching the
ratio of arid-to-mesic grasslands globally®°, with the highest number of sites in North
America (41 sites), followed by Europe (17) Australia (13), South America (6), Africa (4),
and Asia (3) (Fig. S1). We classify “grasslands” as low-statured non-forested plant
communities. Functionally, grasslands occupy a climatically and edaphically determined
tension zone between forest and desert?®-3, regulated by climate seasonality, extreme

weather, fire, and human-managed and natural grazing with its total area covering ~53
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million km? globally (excluding Antarctica and Greenland). These regulating processes
are associated with variability in grassland production, especially relating to climate32-34,
These same processes are being fundamentally re-shaped by global environmental
change, resulting in grasslands becoming a bellwether of resilience (or vulnerability) to
anthropogenic transformation including shifts in biomass.

Our remotely sensed data track changes in annual peak biomass from as early as
1986 based on Landsat-derived peak NDVI. Our primary analyses focused on
identifying drivers of change in peak NDVI using temporal factors measured during the
same interval (1986-2020). These included changes in the timing of three NDVI-based
phenophases that can affect peak biomass: vegetation emergence (i.e., start-of-season
spectral greening), senescence (i.e., end-of-season spectral browning), and growing
season length (duration from greening to browning), as well as inter-annual and inter-
seasonal changes in temperature, precipitation, and potential evapotranspiration
(PET)3®. We also tested NDVI trends in relation to site-level baseline factors calculated
from different durations including mean annual precipitation (MAP) and mean annual
temperature (MAT) based on hourly modelled temperature data from 1970-2020, and
site aridity (the ratio of annual PET: precipitation - 1970-2020). Other baseline factors
were anthropogenic N deposition based on modelled data from 2014-20163¢, the
number of plant species per site based on the net total of all species detected in the first
five years of sampling starting as early as 2007, the percentage of exotic taxa found in
each site-level species pool over five years of sampling?®, grazing impacts by large
mammals determined using offtake comparisons with exclosures at a subset of 46
grasslands, and composite community-level measures of plant traits for the species
present at each site3’. Using annually sampled aboveground biomass of plants (i.e.,

combined live, litter, and non-vascular) starting as early as 2007, we examined the
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accuracy of satellite-derived NDVI for predicting grassland biomass, given that there
can be estimation biases relating to latitude, elevation, or species richness®16.
Analytically, we tested drivers of remotely sensed peak grassland NDVI by evaluating a
series of regression and multivariate models that isolate localized differences based on
our various explanatory factors (Table 1).

Results and Discussion

We observed a four-fold divergence in the slope of change in annual NDVI-
estimated biomass over the past several decades (Fig. 1). This amounted to biomass
shifts ranging from a maximum gain of 51% to a 34% decline (Figs. 1, S1). Overall, 56%
of sites increased significantly, especially in the Arctic, the Pacific Northwest of North
America, and western Europe. Other sites from both hemispheres declined, all of which
were arid, including grasslands in Australia, Argentina, and parts of central and
southwestern North America especially California. 36% of grasslands showed no
significant shift in biomass, regardless of phenological change, warming, altered
precipitation, N deposition, or plant invasion. Such geographically variable long-term
changes in non-woody NDVI-estimated grassland biomass, including both sizeable
increases'#38-42 and declines even within the same continent (Figs. S1. S2), are
consistent with previous observations especially from the Arctic®'%15. We report this
variability to be a global phenomenon affecting many grasslands.

We found that variability in shifting NDVI-estimated biomass was primarily
explained by increases in growing season length, especially in combination with
warming (Figs. 2, S2, S3; Table 1). Between the late 1980s and the late 2010s, growing
seasons increased by an average of nine days (1986-90: x = 157 days [SE = 3]; 2016-
20: x = 166 days [SE = 2]). In total, 87% of sites had significant changes in the timing of

the onset of greening, the onset of browning, and/or the length of the growing season

9
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since 1986 (e.g. Fig S4), indicating that many grasslands globally are undergoing
substantive shifts in seasonal cycling. Longer growing seasons have been implicated as
a warming response in grasslands and some cropping systems, and a causal factor of
increased biomass based on the assumption that plants are active for longer periods®?.
Conversely, advancing greening, elevated production, or moisture limitation in arid
environments can sometimes accelerate leaf physiological processes relating to
photosynthesis that, in turn, shorten the growing season by triggering earlier
senescence?223. In total, 39% of sites had both earlier emergence and delayed
senescence thereby creating longer growing seasons (Fig. S4) — it was these
grasslands with the longest growing seasons that tended in experience that largest
increases in NDVI-estimated biomass. However, many other sites responded differently
such that there was no consistent global relationship between changes to the timing of
emergence and senescence (i.e., starting earlier does not predict the timing of
senescence: F1,83=0.95, p = 0.33; Fig. S4). For example, 19% of sites with earlier
emergence in spring experienced earlier spectral browning thereby shortening the
growing season, which has been observed previously in arid areas?® and parts of the
Arctic*®46 including sites analyzed in this study. In total, variability in the connection
between shifting phenology and changes in peak biomass reinforce that there can be
powerful global trends in grassland responses to environmental change (e.g., longer
growing seasons at many sites), but also localized and divergent outcomes sometimes
regulated by different factors.

All sites showed temperature increases since the mid-1980s (i.e., all 84 temporal
slopes for temperature were positive - Fig. S5, S6). However, the impacts of warming
on growing season length were not universal, instead depending on the distinction

between sites with the highest temperature increases but relatively low MATs (e.g., the
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Arctic, Patagonia, and the alpine steppes of the Mongolian and Tibetan Plateaus)
versus those with the highest MATs but less overall warming (e.g., arid grasslands of
Australia, southwestern North America, Africa, and South America). (Figs. S2-S6). The
former were more often in the Northern Hemisphere, in line with observations that
global warming to date has been more pronounced north of the equator (i.e.,
interhemispheric temperature asymmetry*’) (Figs. 3, S6). These sites with the highest
warming also tended to be characterized by both high MAP and large increases in
annual rainfall - the wettest sites generally are becoming both wetter and warmer. This
is consistent with the ability of warmer air to support more moisture, as has been
observed with increasing snowfall in a warming Arctic*®. Conversely, sites with higher
baseline MATS, less warming, and reduced NDVI were all arid grasslands that tended to
undergo a shortening of growing season length, usually relating to an earlier onset of
spectral browning in summer (Figs. S6, S7). Not all arid sites experienced declining
biomass - only 32% of 59 arid sites had negative temporal slopes in NDVI even though
58% of all sites had less precipitation, increases in PET, or both (Figs. S1, S6, S7).

Our observed warming trends were more seasonal than annual, especially in the
spring and summer months — this contributed to the tight connection between growing
season length and temperature (Fig. S2). We examined changes to seasonal and
annual temperatures by site from 1986, which is near the beginning of Landsat data
collection while also capturing the onset of accelerating contemporary planetary
warming that continues to the present day3*4°. In testing the magnitude of seasonal and
annual changes, we found that seasonal changes were more prevalent with 37% of
sites having significantly warmer spring temperatures and 47% having warmer summers
(e.g., Fig. S8). In contrast, only a subset of sites had significant increases in annual

warming despite all slopes being positive. This decoupling of frequent seasonal
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warming from less common significant annual warming suggests an intensification of
within-year inter-seasonal differences as has been reported previously in grasslands,
with periods of increasing temperature in some seasons being muted or offset by
cooling at other times of the year®48. For example, we observed cooling spring
temperatures in numerous mid-latitude grasslands of central North America and
western Europe (Fig. S8) — many of these sites had increasing NDVI.

We also saw significant influences of species richness on changes in peak NDVI,
although always interacting with phenology or climate (Table 1). Among sites with
lengthening growing seasons or warming temperatures, species-rich grasslands
generally displayed greater increases in NDVI than species-poor sites (Table 1; Figs.
S2, S9). Conversely, for grasslands with shortened growing seasons or less warming
(e.g., high MAT sites from the Southern Hemisphere and California), those with below-
average richness were predicted to show reduced or less pronounced NDVI increases.
These outcomes imply some form of context-dependent functional complementarity,
which would be consistent with the intertwined causal factors known to regulate
diversity and biomass in grasslands*®-°'. They also reveal an absence of any
independent relationship of richness (Fig. 2, S9), and indeed sites with the highest
numbers of species (e.g., the African Serengeti) did not necessarily demonstrate
increasing NDVI. Such complexities on how richness affects biomass are illustrated
when considering the numbers of invasive grassland plants at our sites. Invasion is
sometimes linked with large increases in community-level biomass and site-level
richness®?, yet we observed the opposite responses - invaded grasslands were more
likely to have declining biomass and fewer species. This likely reflects climatic factors —

most invaded sites were in arid regions where biomass trends since the 1980s were
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non-significant or negative. It also likely reflects lower numbers of species — sites
dominated by invasive plants had significantly fewer plant taxa (F1,63 = 9.2, P = 0.004).
Several of our non-temporal hypothesized factors had no detectable effects on
changes to grassland NDVI despite often having sizable impacts on biomass at some
sites (Table 1). Sites with high levels of N deposition, especially in eastern North
America, higher elevation areas of western Europe, and areas of China (Fig. 3), did not
show significant changes in NDVI despite the well-described impacts of anthropogenic
N increasing grassland biomass'®. Similarly, there was a lack of detectable association
between sites with high grazing offtake and changes to NDVI (Table S2). As with N
deposition, grazing can significant affect grassland biomass?® and indeed some of our
grasslands have substantive differences in biomass between grazed and fenced areas
including mesic grasslands of the Northern Hemisphere (sheep meadows in the UK,
reindeer barrens in Finland) and arid regions of Australia®®%4. However, variation in
levels of offtake estimated by our exclosures were unable to predict the likelihood of
NDVI change relative to the global-scale impacts of phenology, climate, or species
richness (Table S2). Finally, we also failed to detect associations between site-level
biomass change and variability in community-wide aggregate measures of plant size
(e.g., leaf area index [LAI], height) or foliar nutrients despite a wider spectrum of
resource-foraging strategies in plants sometimes being connected to higher biomass?’
(Table S3). Of particular note in our study was a lack of association between biomass
change and LAI. Remotely estimated LAl is often used to model plant production given
the strong connection between canopy density, light capture, and biomass®%%6,
However, we observed no predictive relationship between community-level LAl and

long-term shifts in NDVI despite 90-fold differences in canopy density ranging from
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sparse arid grasslands of Australia and the American southwest to dense high-elevation
mesic grasslands of the European Alps (Table S3).

Combined, the prevalence of grasslands with trends towards higher site-level
biomass created a net 13.6% increase among our 84 sites since the 1980s (Fig. 1; F1,83
= 91.6, p <0.0001). Longer-term increases in biomass were also detected using our
field-measured data (Figs. 4, S10), and aligned with other reports of increasing overall
plant biomass with global environmental change38-42. That being said, this magnitude of
increase could be viewed with caution. In total, 61 of our 84 sites occur in the Northern
Hemisphere, especially North America and Europe, where increases in precipitation and
biomass are known to be especially pronounced*3#4. Furthermore, there is evidence of
a threshold of ~500 mm per year in precipitation below which sensitivity to climatic
variability intensifies**. Although most of our sites are arid (PET>MAP), their annual
precipitation averages 790 mm (SE = 43) with only 25% falling below 500 mm. We
tested the potential impacts of these factors on the subset of sites that are arid or have
MAP levels < 500 mm, and still observed net increases in biomass (arid sites: +12.2%
[SE 2.6%]; MAP < 500 mm: +15.6% [SE 5.7%]). Nonetheless, we might still anticipate
that mean site-level increases in biomass would be lower if more of our sites occurred in
areas where declining precipitation is especially pronounced.

Biomass variability is not unexpected in grasslands, given its regulation by
combinations of factors whose relative importance can change by locale including
supply rates of limiting nutrients, grazing pressure, and whether warming increases or
suppresses plant growth depending on precipitation3'-34. Indeed, localized responses in
biomass depending on whether warming sites are getting wetter or drier also occurs in
annual crops®, which is unsurprising given that large percentages of the world’s

croplands were once grassland’"%7. Additionally, previous work on global-scale shifts in
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NDVI-derived estimates of biomass, including in grasslands, has demonstrated both
increases and decreases since the 1980s without a consistently clear mechanistic
understanding given the challenges of testing fine-scale processes'?1458, Here, we
consolidate the disparate findings of previous work by showing that localized differences
emerge because the dominant regulatory processes appear to vary widely. These
findings are evident even though our results likely underestimate the full extent of
shifting grassland biomass with global change since the 1980s. For example, we do not
account for increased biomass caused by the invasion of trees and high-statured shrubs
into grassland — an increasingly prevalent phenomenon®°. We also did not account for
shifts in root biomass, with root:shoot ratios at 2:1 or more in grasslands®. Finally, there
may be an influence of rising atmospheric CO2 on biomass, although global trends in
CO2 — a ~20% increase since the 1980s — tend to be expressed similarly by region®.
Our analyses integrated remotely sensed and field measured levels of annual
peak grassland biomass, demonstrating a strong positive relationship despite a ten-fold
difference in species richness among sites and a hundred-fold difference in standing
biomass. This indicates that NDVI can capture overall trends in aboveground standing
biomass at our sites. Nonetheless, there was widening predictive error as NDVI
exceeded 0.6 (Fig. 4). NDVI has been previously shown to accurately predict
aboveground plant biomass in uncultivated grasslands®?. Indeed, we found similar
trends of an overall mean biomass increase among our 84 sites for both NDVI and plot-
level biomass (Fig. S10). However, NDVI can be prone to estimation bias with
increasing spatial scale, across years, at higher latitudes, and with increasing canopy
density and structure®5%83 — factors that can characterize some of our data. A
fundamental practical question for using NDVI is whether the ability to predict biomass

can be improved with widely available ancillary data such as latitude and climate, or
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whether improvement requires detailed field calibration that may be impossible'®. Our
field data gave us a unique opportunity to test drivers of unexplained variation including
fine-scale biotic factors (see Methods), revealing two primary sources of bias: high
latitude and low elevation. Adding these widely available data to our models improved
the predictive accuracy of NDVI for ground measured biomass by 21% (Table S4).
Estimation bias at high latitude for NDVI is especially common, relating to
methodological and biophysical factors including the potential underestimation of non-
photosynthetically active vegetation (which we sampled)®. Although our fit between
NDVI and aboveground biomass remained strong at higher latitudes, our work supports
the need for caution when extrapolating trends in phenological change including the
timing and magnitude of peak biomass. The same caution appears to apply to
extrapolating connections among remotely sensed estimates of biomass and species
richness'664, as we also detected a smaller but significant estimation bias between
NDVI and field biomass as the numbers of species site”! increased (Table S4).

Our work describes a substantial divergence of peak biomass by location within
many grasslands globally. These results were obtained from non-cultivated permanent-
cover grassland, a habitat type under long-standing and intensifying conversion
pressure®%% Despite grassland losses exceeding 99% in some regions®®, uncultivated
areas still cover ~25% of Earth’s terrestrial surface, store ~25% of its carbon, and
support thousands of obligate flora and fauna®’. Many of the global-scale ecological
benefits of uncultivated grassland center on the annual production of biomass, including
litter inputs that contribute to soil C cycling, providing forage for much of the world’s
remaining megafauna and half of all domesticated livestock, and regulating fire cycling
given that grasslands account for most of Earth’s annual burning®’. Our documentation

of shifts in the direction and magnitude of biomass in our grasslands suggests that there
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will be far-ranging implications for the planet moving forward, which will be experienced
differently by location.
Methods
Study area and experimental design

Our study sites span a latitudinal gradient from Patagonia (-52°) to the high Arctic
of Norway (+78°) and range in elevation from 0 m to 4241 m, with wide differences
in potential evapotranspiration (0.79 — 6.49 mm day™'), atmospheric N deposition (66.9
to 2162.1 mg N m= year'), and long-term (1970-2020) mean annual precipitation (MAP:
192 to 2224 mm) and mean annual temperature (MAT: -7.5 to 27.2°C) (Fig. S11, Table
S1). There is wide variation in the total number of species per site (“species richness”),
ranging from 13 to 176 species, summed together for all non-treated control plots based
on five years of sampling in case there were cryptic taxa not visible in some years.
Percent exotic flora ranges from 0 to 100% of all species per site (Table S1) with
multiple species occurring at sites within both their ancestral and non-native ranges®.
There were 421 non-native plant taxa in total, but with twenty of the 84 sites having no
exotic species (all sites in Europe, Asia, and Africa). Levels of grazer offtake at the 46
sites with exclosures range from none to ~85% of total annual plot-level
biomass®354. We classify “grasslands” as low-statured non-forested plant communities,
including treed savanna, prairie, planted permanent-cover pasture, montane meadows,
and arctic-alpine tundra. Our sites cover a wide range of “Whittaker biomes” defined by
the ratio of MAP to MAT (Fig S1). They also have some degree of geographic
clustering, with an average minimum distance globally of 379.3 km (range: 1 to 3,087
km). This means that several sites have identical estimates of N-deposition given the
spatial resolution of those data (2° x 2.5°). Our ratio of arid-to-mesic grasslands

(71%:29% - Table S1) matches the global ratio3® but the continental distribution of our
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sites is not proportional to the global range of grasslands. Almost half of our sites are
from North America even though its continental coverage of grassland is only 13%
globally. Australia and South America have similar ratios between number of our sites
versus their global coverage (14:13%; 10:9% respectively), while Asia and Africa are
under-represented (Fig. S1). For our invaded sites, there could be a concern that our
data misrepresent invasion impacts on NDVI change because of the gap between the
start of the remote sensing data (mid-1980s) and the field sampling (2007). Although we
cannot definitively eliminate this possibility (e.g., an uninvaded site becoming heavily
invaded after 1986), the odds are low as all sites occur in regions of the world with long
legacies of invasion dating back a century or more®®. Our study began with 127 sites but
was ultimately reduced to 84 based on screening for extreme outliers, poor image
resolution especially due to cloud cover, and confounding site factors such as tree cover
(see below).

Our analyses combined NDVI calculated from Landsat images starting no earlier
than 1986, climate data including PET?%, modelled N deposition data3®, and field data
collected from 84 grassland sites from the Nutrient Network (NutNet), a globally
distributed experiment?. All NDVI satellite data were extracted from unmodified areas
adjacent to plots associated with NutNet (Fig. S12). All NutNet plot data were collected
by local site scientists, starting in 2007 or later depending on when the site joined the
network. Field sampling occurred within thirty permanently marked 5 x 5 m plots laid out
in a grid (Fig S12). We used data from the year prior to the application of any
experimental treatment (i.e., “Year 0” pre-treatment data, when all plots were
unmodified) and from subsequent years (Years 1, 2, etc.) in the subset of plots that
were untreated (i.e., all data in this study only come from unmodified control plots). Plot

data were collected annually at peak biomass and included total aboveground biomass,
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clipped to ground level from two 10 cm x 100 cm strips within a larger 5 m x 5 m plot,
with the clipping locations differing each year?®. Clipped biomass was sorted to live,
non-vascular, and litter, and then dried to a constant mass at 60° C and weighed.
Differentiating biomass into live vascular, live non-vascular, and litter is one of several
important novelties of our study, given the NDVI estimations of standing plant biomass
can sometimes be insensitive to, or biased by, the latter two factors. Indeed, 53% of all
Nutnet grasslands globally have been found to support non-vascular plant growth, with
standing biomass as high as 635 g m (Virtanen et al. submitted).

Our 84 sites captured a wide variation in the relative abundance of major
functional groups, including graminoids (e.g., grasses and sedges), forbs, and, to a
lesser degree and mostly in the Arctic, low-statured woody plants, lichens, and
bryophytes. There was a wide range in the percentage of non-native flora per site. Many
sites in Europe, Africa, and Asia had few or no non-natives, while some grasslands in
North America, South America, and Australia were >90% exotic taxa®8. Species
composition data were used to calculate two measures of community-level trait
variation, functional diversity (FD) and community weighted mean (CWM)3’. FD, an
estimate of trait variability, relates to degrees of trait converge or divergence within plots
based on Rao’s index of quadratic entropy. CWM (also referred to as FI3’), an estimate
of trait averages, is based on the community weighted mean for each trait in each plot.
Trait data were compiled from TRY (public version), AusTraits (version1.1.0), BIEN
(version 1.2.5), and NutNet (leaf traits), for six continuous traits (height, leaf surface
area (LAI), specific leaf area (SLA — the ratio of leaf area to leaf mass), leaf N, leaf P,
leaf C), that have relatively high coverage for species recorded in NutNet (93, 95, 87,
91, 86, 75, 81% for each trait, respectively). For species that do not have trait values,

we used the mean values from their genus (see Table S3)
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The only Nutnet treatment data were for grazer offtake, derived from fenced but
unfertilized plots®3%4. Grazing effects were expressed as the log response ratio of
differences in clipped biomass between control plots in fenced and unfenced areas at a
subset of 46 sites (the remaining 38 sites did not have exclosures). Typically, there
were three fenced plots per site, and the fences were ~2.3 m tall with the lower 90 cm
being 1 cm steel mesh and the upper portion surrounded by strands of barbless wire?°.
These grazing offtake data were calculated only in the first year after the exclosures
were constructed (Year 1), given that longer-term exclosure effects can be confounded
by shifts in plant species richness and relative abundance®'. Levels of grazer offtake
ranged from very low or nil with some sites lacking detectable grazing, to very high
especially in parts of Australia, Africa, and western Europe (e.g., sheep grazing in
Lancaster UK, domesticated reindeer grazing in Kilpisjarvi, Finland)3354,

For our analyses, we used single composite (non-temporal) site-level measures
of species richness, exotic cover, traits, and grazing for each site — this allowed us to
test, for example, whether background levels of site richness and invasion were
associated with 36-year shifts in NDVI-estimated production.

NDVI measurements and phenological dates

We used images from Landsat missions 4, 5, 7, and 8, to calculate the normalized
difference vegetation index (NDVI) at each site starting as far back as 1986 (depending
on image quality) and extending annually to 2020 at a resolution of 30 m in an
unmodified circular area selected near the Nutnet plots (Fig. S12). In these plots, we
extracted a series of phenological NDVI measures within each growing season,
modified from Buitenwerf et al.8 given that we only targeted a single vegetation type
(i.e., grasslands): off-season ‘trough’ when plants are inactive, start-of-season

‘emergence”, peak NDVI, end-of-season “senescence”, and “growing season length”
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derived from the number of days from emergence to senescence each year (Fig. S13).
Elsewhere, NDVI has been used to detect trends in phenology and related biomass
responses®'8, including in grasslands where it has been shown to strongly align with
live biomass®?. Our work supports this significant relationship, albeit with increasing
variation beyond NDVI values of 0.6 (Fig. 4). We conducted a series of analyses to
identify sources of error for NDVI including tests for influences by outliers, the influences
of regional-scale factors relating to latitude and elevation, and local-scale factors
including non-vascular flora (described below — Table S4). We removed two sites that
failed uniformity tests when conducting linear fits between annual peak NDVI and time,
based on comparisons with a Theil-Sen median regressor and trend-filtering using a
Mann-Kendall Trend Test — both were sparsely vegetated sites of the Icelandic tundra
and arid grassland of central North America.

Location of the circular “NDVI plots” was done visually using Google Earth
images. We located a central point in an area adjacent to the NutNet experiment, given
that the Nutnet plots are readily detectable from the images (Fig. S12). This adjacent
area was selected to contain vegetation identical to the vegetation within the
experiment, in consultation with each Nutnet site PI. It was positioned at least 50 m from
the closet NutNet plot to avoid the influence of any experimental treatments associated
with the NutNet manipulations, while leveraging the site-specific vegetation and soil
information derived from the experiment. There is always potential risk of positioning
error using Google Earth — a global analysis of high-resolution Google Earth imagery
has estimated an overall horizontal geo-registration accuracy of 39.7 m RMSE with an
accuracy of 24 m RMSE in some countries®® and subsequent studies demonstrate
improved horizontal accuracy of 10.5 m RMSE’?. We explicitly tested RSME error for

eight of our sites, contrasting plot-level coordinate data generated using a hand-held
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GPS at each of 30 plots per site versus coordinate data for those same 30 locations
generated from Google Earth engine (Fig. S12, Table S5). Our calculated RSME error
was always <5 m (Table S5).

In each circular plot per site, we extracted reflectance data from within a circular
buffer within 30 m around this point (Fig. S12). This was done using images from top-of-
atmosphere (TOA) reflectance collections in Google Earth Engine. The images were
taken between 1982 and 2020, although the specific date ranges and sampling
frequency varies at each site. All of our analyses using remote sensed data that start no
earlier than 1986 as site data prior to this was found to be too sporadic (Fig. S13). In all
cases, the spatial resolution of each image is 30 m. We used all available images from
both Tier 1 and Tier 2 quality, which were aggregated and processed using Google
Earth Engine. Tier 2 data were essential for obtaining images taken during the snow-
covered “trough” portion of the year. The horizontal geo-registration accuracy of Tier 1
scenes is = 12-meter root mean square error (RMSE) whereas the Tier 2 accuracy is >
12 m RMSE"". Landsat Collection 1 was used, although Collection 2 is the only
collection currently available for download but both collections have the same published
geo-registration accuracies’". For each image, we calculated NDVI using the
corresponding near-infra red and red bands 4 and 3 for Landsat 4, 5, and 6, and bands
5 and 4 for Landsat 8. We also extracted information about image quality (BQA band)
containing statistics from the image data and post-processing information®®. BQA values
were used to filter images to exclude any pixels that had a high likelihood of including
clouds or cloud shadows. Using manual inspection, we included only pixels associated
with clear, cloud-free imagery (Landsat 4, 5, and 7 BQA = 672, 680, 676, 680, 684;

Landsat 8 BQA = 2720) or imagery over snow (Landsat 4, 5, and 7 BQA = 1696, 1700,
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1704, 1708; Landsat 8 BQA = 3744). We discarded images where resolution was
uncertain (e.g., clouds versus snow - <0.5% of all images).

We screened our initial pool of sites, reducing the final number of sites to 84
(Table S1). Exclusion of sites typically occurred for sites lacking (i) Nutnet field data for
at least three years (ii) extreme outliers for one or data factors, whose origins could not
be determined, or (iii) those for which only a minimal amount NDVI phenological data
could be extracted. Reasons for the latter include poor satellite coverage by location
(especially problematic for Landsat data from the early 1980s), persistent cloud cover
(preventing fitting a trend), or for sites that rarely or never crossed an identifiable
“greened-up” threshold in multiple years. In cases where established Nutnet plots could
not be located on Google Earth (e.g., Fig S12) or any other issues inhibiting image
processing (e.g., canopy cover by trees), we reached out to site Pls for guidance.

Once the time series of NDVI values was obtained for each site, we extracted
key phenological and growing season information by post-processing the data in R
version 3.6.1 (Fig. S13). First, we smoothed the data to reduce error by fitting cubic
splines to the NDVI data at each site, and then determined the average date where
NDVI was the lowest across all years (“trough date”). Then we created site-specific
“growing season windows” consisting of 545 days (365 + 2*90). This window started 90
days before the trough date in each year, and then 365 days following the trough date
plus an extra 90-day buffer at the end. We processed all dates initially as radians, which
allowed flexibility in defining growing seasons particularly for sites with Mediterranean
climates (e.g., California, western Australia) or located in the southern hemisphere
where the period of vegetation activity spans multiple calendar years (e.g., green-up

can be November of year x, senescence in April of year x + 1).
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From our growing season windows for each site*year combination, we weighted
data points so that the maximum NDVI value in each growing season window had a
weight of 1, while all other points had a weight of 0.5, to better preserve the NDVI trends
at sites with rapid green-ups and short growing seasons. We used a smoothing
parameter (spar) of 0.5 to preserve these trends. From these annual cubic splines, we
extracted green-up and senescence dates as the first and last dates, respectively, that
NDVI was above a 50% NDVI range threshold (green threshold) according to the

equation:

Threshold =\left(0.5\times\left(\overline{MaximumNDV I}

—\overline{MinimumNDVI}\right)\right) +\overline{MinimumNDVI}

where the average maximum and minimum NDVI values were calculated across all
years at each site. This green threshold allowed for flexibility to include sites with
different minimum NDVI values (e.g., sites which become snow-covered and sites which
do not) as well as different maximum NDVI values. In using a threshold, we were also
able to ensure that a green-up or senescence date was biologically comparable across
all years (indicating the same NDVI).

In all cases of fitting cubic splines, we forced a minimum NDVI value of O (if
measured NDVI was < 0, we re-assigned the value to 0), as our smoothing and post-
processing was dependent on consistency during the growing season troughs when
data were typically sparse. During the growing season troughs, band quality information
often indicated that pixels were cloud covered when visual analysis of images revealed
snow cover (both cloud and snow cover containing water). We excluded pixels

indicating cloud cover in this analysis. To overcome sparse data points during these
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periods in Tier 1 datasets we additionally used Tier 2 data. Given that data from both
tiers were required and the radiometric calibration was top-of-atmosphere reflectance,
alternative variations of NDVI that adjust for noise due to soil brightness and
atmospheric light scattering, such as the enhanced vegetation index (EVI)’%73, were not
employed - indices with numerical constants can be inconsistent due to atmospheric
noise®. Furthermore, snow cover decreases NDVI values but increases EVI values’™
and such sensitivity would confound the phenological analysis.

We approximated the relationship between NDVI and plot level aboveground
biomass using sites with at least 3 years of harvested biomass and corresponding
annual peak NDVI data from the same site (Figs. 4, S10). A log-transformed model
provided the best fit between NDVI and average plot biomass site”! year', which we
used to translate NDVI to an average biomass across all sites from 1986 to 2020.
Climate and N-deposition trends

Monthly long-term temperature (MAT) and precipitation (MAP) averages per site
were obtained from the WorldClim database, from 1970-2020. MAT and MAP served to
describe baseline levels of temperature and precipitation among sites. To determine
annual deviations in temperature and precipitation from baseline MAP and MAT, we
calculated a monthly time series for temperature and precipitation during the study
period (1986-2020), with data obtained at the site level using the Climatic Research Unit
(CRU) time-series (TS) version 4.03 data®. These annual deviations were calculated as
slopes of change over time. Estimates of potential evapotranspiration (PET) were also
obtained from the CRU time series®®, which calculates PET using mean, maximum, and
minimum monthly temperatures, vapor pressure, and cloud cover (1970-2020).

Given predictions of increased interannual seasonal variability in climate, with the

potential to affect phenology and peak biomass, we calculated slopes of 36-year trends

25



717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

in temperature and precipitation seasonality at each site. We targeted these calculations
for two phenophases: (i) green-up based on a two-month window around the date of
typical site-specific green-up date (the typical month of green-up, plus one month
before), and (ii) maximum NDVI as a five-month window around the date of typical site-
specific maximum NDVI (the typical month of NDVI max, plus two months before and
after). These seasonal calculations allowed us to test more detailed climatic drivers of
phenological change, which may not be detected by overall annual trends including the
possibility of warmer springs, warmer and drier summers, and even seasonal cooling as
is sometimes observed (e.g., Fig. S8)*2.

Atmospheric nitrogen (N) deposition was estimated for each of the sites using the
GEOS-Chem Chemical Transport Model®®. The model estimates wet and dry deposition
of inorganic N using models of atmospheric chemistry together with meteorological data
and emissions data. Outputs are at a 2° x 2.5° resolution averaged across the years
2014, 2015, and 2016. Although the N deposition model uses metrological data, there
were weak and non-significant correlations between precipitation and estimates of N
deposition (r?= 0.009).

Analysis

Our primary analysis tested drivers of change in maximum NDVI over the period
starting from 1986 to 2020, based on site-specific slopes of biomass change over time
(Fig. 1). We used a multi-model selection approach to evaluate the relative importance
of variables associated with our four interacting hypotheses: (i) changes in climate
including temperature, precipitation, and PET, (ii) changes in phenology including the
timing of emergence, the timing of senescence, and growing season length, (iii) levels
of atmospheric N deposition, and (iv) biotic factors of species richness, grazing

intensity, traits, and exotic (non-native) species. We simplified our analytical models by
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removing factors that were tightly correlated, using principal coordinate analysis (e.g.,
Figs. S2, S3). For example, we found that overall changes in temperature and
precipitation (the 36-year temporal trends based on slope) were tightly correlated with
seasonal changes in spring and summer temperature and precipitation — we thus used
the former in our models. Similarly, sites differed widely in changes to emergence and
senescence over time, but we excluded both for our main models as their effects were
significantly captured by trends in growing season length — sites that started earlier
often had longer growing seasons, as did sites that senesced later (although only 39%
of sites had both earlier emergence and later senescence — see Main Text).
Accordingly, we built a maximal linear model in R’ that assessed the response of
site-level biomass slopes (change in NDVI from as early as 1986 to 2020, depending on
the site — Fig. 1) to all independent effects and pairwise interactions of a subset of
factors: latitude, elevation, N deposition, species richness, growing season length,
aridity, percent exotic species, overall annual temperature slope (warming since 1986),
and overall annual precipitation slope (changes in precipitation since 1986). We
included grazing in a separate model for these factors, for the 46 sites that had
exclosures (Table. S2). All of these variables included in the final maximal model had
low collinearity, as indicated by assessment of variance inflation factors’®. These factors
also met assumptions of normality (or were log transformed to aid this — e.g., N
deposition), and were standardized to a mean of zero and standard deviation of 0.5
using the ‘arm’ package’®, as required for model comparison’’. Further we adjusted our
regression models using the inverse of the standard error of the slope from each site, so
as to down-weight parameters estimated with larger error (e.g., Seabloom et al.”8). We
evaluated the fit of subsets of this model using the MuMIn package’ and conducted a

model averaging procedure for all candidate models within two AIC of the best model.
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We present the full averages of parameter estimates from our final model (e.g., Tables

1, 82)75'77.

Data and materials availability: Data and coding associated with this study are freely

available from the Environmental Data Initiative.
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808 Table 1. Major factors associated with changing mean in peak NDVI in 84
809 grasslands 1986-2020. The table shows all variables highlighted to be significant
810 drivers of changing NDVI (bold) and the remaining non-significant variables that were
811 retained in the model selection process. Hypothesized factors that are not listed (e.g., N
812 deposition) were not detected as influential, even non-significantly, during model
813 selection.
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Parameter Estimate | Standard | Z-Score | P-value
Error

Intercept 0.0018 0.0002 11.48 | <0.0001
Growing season length (GSL) 0.0021 0.0003 6.13 <0.0001
GSL*temperature change -0.0037 0.0008 4.5 <0.0001
Aridity*temperature change -0.0024 0.0007 3.14 0.002
Temperature change 0.0010 0.0004 2.50 0.013
GSL*species richness 0.0018 0.0008 2.38 0.018
Temperature change*species richness 0.0020 0.0009 2.17 0.03
Aridity -0.0007 0.0003 2.14 0.033
Species richness -0.0004 0.0003 1.27 0.2
% exotic species -0.0002 0.0003 0.54 0.59
Aridity*species richness 0.0003 0.0007 0.41 0.68
Precipitation change 0.0001 0.0002 0.33 0.74
Precipitation change*temperature change | -0.0002 0.0007 0.31 0.76
Elevation 0.00000 0.0002 0.25 0.80

Figure Captions

Fig. 1. Temporal change in mean peak NDVI. Fitted trend lines for 84 grasslands, with
the red dashed line indicating no temporal change. The open circles are the peak NDVI
measures for each grassland over time (n=2,856). In total, 56% of sites have significant
positive increases while 5% have significant declines, resulting in a four-fold difference
in mean peak NDVI change. Given the wide spread of points and the risk of outlier bias,
our fitted trends derive from a linear model using a Theil-Sen median regressor. Plotted
trendlines were obtained from this model and filtered based on p-values from a Mann-

Kendall Trend Test (see Methods).

Fig. 2. Relationship between changes in major explanatory factors and maximum
NDVI. (A) The figure emphasizes the significant impact of changes in growing season —
shortening (left) or lengthening (right) - on shifts in grassland biomass declines (bottom)

or increases (top) estimated with remote-sensed NDVI (F1,83= 31.8; p <0.0001)). There
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831 are also significant relationships between (B) increasing NDVI and the slope of

832 temperature increase by site (F1,83 = 6.6; p=0.012; note: all sites warmed) and (C)

833 increasing NDVI and the slope of changes in annual precipitation (F1,83 =5.3; p=0.023).
834 For species richness (D), there was no univariate impact on changing NDVI (F1,83= 0.34;
835 p = 0.56), although it interacted significantly with growing season length and warming
836 (Table 1, Fig. S9). The inserted dashed lines in Figs. 2A-C indicate areas of no net

837 change. All tests are linear regressions among the 84 sites of this study.

838

839 Fig. 3. Global maps showing variation among sites in (A) shifting average annual
840 temperature, (B) average annual precipitation, (C) growing season length for

841 1986-2020, and (D) levels of atmospheric N deposition modelled for 2014-2016.
842 Data for temperature and precipitation came from CRU?. The largest temperature

843 increases are mostly in the northern hemisphere — southern hemisphere sites have

844 higher mean annual temperatures, but lower levels of warming since the 1980s.

845 Growing season length were derived by site and over time based on differences

846 between remotely sensed spectral greening and spectral browning each year.

847 Atmospheric nitrogen (N) deposition was estimated using the GEOS-Chem Chemical
848 Transport Model®8, which estimates wet and dry deposition of inorganic N using models
849 of atmospheric chemistry together with meteorological data and emissions data — these
850 N data have a 2° x 2.5° resolution.

851

852 Fig. 4. Relationship between annual remotely sensed maximum NDVI and annual
853 live aboveground biomass. The best-fit curvilinear regression line (F2410=72.7; p

854 <0.0001) derives from sites with three or more years of live biomass, with the red shaded

855 area (confidence curves for the fitted line) showing how estimation bias begins to widen
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as annual maximum NDVI becomes higher (especially > 0.6). Analysis of the residuals
indicates that this bias is strongly affected by higher latitude and lower elevation, with a

contribution also from species richness (see Methods; Table S4).
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