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Abstract

Superfluid helium-3 bolometers can be utilised for dark matter direct detection
searches. The extremely low heat capacity of the B phase of the superfluid helium-3
at ultra-low temperatures offers the potential to reach world leading sensitivity to
spin-dependent interactions of dark matter in the sub-GeV/c?> mass range. Here, we
describe the development of bolometry using both micron scale and sub-micron
diameter vibrating wire resonators, with a SQUID amplifier-based readout scheme.
Characterisation of the resonators and bolometer measurements are shown, includ-
ing the use of nonlinear operation and the corresponding corrections. The bolom-
eter contains two vibrating wire resonators, enabling heat injection calibration and
simultaneous bolometer tracking measurements. Coincident events measured on
both vibrating wire resonators verify their response. We also demonstrate proof of
concept frequency multiplexed readout. Development of these measurement tech-
niques lays the foundations for the use of superfluid helium-3 bolometers, instru-
mented with vibrating nanomechanical resonators, for future low-threshold dark
matter searches.

Keywords Helium-3 - Dark matter - Nanomechanical resonators

1 Introduction

The QUEST-DMC programme uses a superfluid helium-3 bolometer for dark matter
direct detection searches. This detection scheme, described in Ref. [1], offers low-
energy threshold detection which is well suited to sub-GeV/c?> dark matter masses
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and has the potential to reach world leading sensitivity to dark matter interactions in
this mass range [2, 3].

The bolometer measures production of thermal excitations in the form of qua-
siparticles, resulting from energy deposition in the superfluid target. This exploits
the extremely low heat capacity of the B phase of superfluid helium-3 at ultra-low
temperatures below 0.4 mK, where most quasiparticles are bound into Cooper pairs.
Vibrating wire resonators are utilised primarily to measure the strongly temperature-
dependent quasiparticle density and secondly as heaters for calibration. This tech-
nique was originally developed by the ULTIMA collaboration [4]. In QUEST-DMC,
we expect several orders of magnitude improvement in sensitivity as a result of two
key developments: novel vibrating wire resonators with sub-micron diameter and
superconducting quantum interference device (SQUID) readout. Both are expected
to significantly improve the bolometer resolution [1].

We demonstrate the reliable SQUID readout of the bolometer, with the readout
scheme outlined in Sect. 3. Characterisation of the resonators and operation in the
nonlinear regime close to the critical velocity is shown in Sect. 4. This section out-
lines the measurements necessary to correct for the nonlinear effects in the reso-
nance width. In order to infer the energy deposit, a calibration is required. For this
purpose, Sect. 6 shows the use of a second vibrating wire as a heater, with low-
power heat injection reaching the energies of interest for the dark matter search.
Having two vibrating wires also allows for simultaneous tracking measurements, as
shown in Sect. 6.2. We measure coincident bolometer events on both wires, verify-
ing their response. The energy calibration with low-energy gamma rays and a study
of noise performance of the bolometer will be subject of a separate report.

Our circuit contains no additional cryogenic components apart from the vibrating
wire and integrated SQUID current sensor [5], in comparison with more complex
schemes developed previously [6, 7]. This simplicity lends itself to scaling up by
running an array of bolometers in parallel. Furthermore, we demonstrate multiplex-
ing in Sect. 6.3 by reading out two resonances with one SQUID simultaneously.

2 Experimental Set-up

The experimental assembly is illustrated in Fig. 1. A wet commercial dilution refrig-
erator was extended with a large copper nuclear demagnetisation stage. The bolom-
eter is situated inside a mostly metallic cell filled with helium-3, mounted on top
of the demagnetisation stage. Helium-3 in the main reservoir of roughly 2 cm? is
cooled by a silver sinter heat exchanger of estimated surface area 20 m”.

The superfluid helium-3 bolometer is a 7 X 5 X 5 mm cuboid open to the main
reservoir via a 0.3-mm-diameter orifice, which provides the cooling of the super-
fluid helium-3 target. A well-defined bolometer volume is essential to establishing a
reliable energy calibration. To this end, the bolometer cavity was machined out of a
solid copper puck, with the upper and lower walls constructed from flat copper foils.
This essentially metallic construction ensures no heating of the bolometer due to
heat release in disordered materials such as paper and epoxies, traditionally used in
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construction of helium-3 bolometers. Minimal amounts of Stycast 1266 and Araldite
epoxies were used to seal the joints between the puck and foils and for the vibrat-
ing wire feedthroughs. The main materials used have been screened in the Boulby
Underground Germanium Screening facility to ensure acceptable levels of radiopu-
rity [8].

The bolometer contains NbTi vibrating wires of two diameters: the 4500 nm
wires were obtained commercially as filaments of a multifilament superconducting
cable in copper matrix; the 400 nm nanowires (Fig. 2) were produced by drawing
such cable through a series of dies, similar to the procedure described in Ref. [9].
Sections of complete cable at both ends of the vibrating wires served as “legs” and
were mounted in the bolometer wall using Araldite epoxy.

The vibrating wires are connected to SQUID current sensors, installed on the
1 K pot plate of the dilution refrigerator. Transformers integrated into the SQUIDs
were used to drive the vibrating wires [5]. The electrical connections to the cell are
minimal: a single NbTi twisted pair shielded inside a Nb tube per vibrating wire.
This electrical circuit and its performance are discussed in Sect. 3.

The magnetic field for electrical excitation and readout of the mechanical res-
onators is provided by a small superconducting magnet suspended off the mixing
chamber plate of the dilution refrigerator. The nuclear stage is also rigidly attached
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Fig.2 A 400 nm nanowire
photographed through an optical
microscope. Araldite epoxy
beads stabilises the extruded
superconducting cable at both
ends of the wire. In the section
between the beads, all filaments
but one were removed after
etching away the copper matrix

to this plate, minimising relative motion of the bolometer and the magnet. In the
earlier Lancaster-style design [1], the bolometer is embedded inside an assembly of
sintered nuclear stages, to reach exceptionally low helium temperatures. In contrast,
here we can alter the sample field independent of the demagnetisation field, in order
to investigate the performance of the SQUID readout.

In addition to direct heat injection, our approach to energy calibration will use
low-energy deposition from a well-characterised >>Fe source. The standard packag-
ing of commercial radioactive sources is too bulky to incorporate these inside the
cell; thus, the cell and bolometer walls have windows with reduced gamma photon
attenuation. Our Fe source has a low nominal activity ensuring no prohibitive heat
release in any part of the set-up and making the handling of the source safe. The
1-mm-thick Stycast 1266 epoxy window in the cell lid and 5 pm copper foil window
in the bolometer were selected to have sufficient strength and appropriate gamma
attenuation.

Important properties of the superfluid helium-3 target can be tuned with pres-
sure [10]; therefore, we designed the cell capable to withstand tens of bars. The
wire feedthroughs and the outer gamma window are positioned on the inside of
the cell, so that the helium under pressure squeezes epoxy around metal tubes.
The cell has been successfully leak tested up to 20 bar. While the pressure inside
the bolometer is normally the same as in the main reservoir, transient pressure
gradients are unavoidable when loading or emptying the cell. To prevent deforma-
tion or damage to the 5 pm copper window in the bolometer wall, this was rein-
forced with a ~ 100 pm film of Stycast 1266 with negligible gamma attenuation.

All measurements presented in this paper were obtained at a cell pressure of
18.5 bar, stabilised to 1 mbar using a quartz pressure transducer and a heated
gas volume operated by a proportional-integral controller. At this pressure, the
superfluid transition is at 7, = 2.2 mK and the lowest temperature reached in the
bolometer was 0.135T.
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3 SQUID Readout Scheme

The scheme for reading out the voltage-driven vibrating wire, using a two-stage
SQUID current sensor [5], is shown in Fig. 3. Voltage V, = 2izfM, I, is applied
inductively by driving the current /, at frequency f, via the transformer with
mutual inductance M,. This current is generated by a voltage oscillator via a
resistor R, = 1-100 kQ. The SQUID detects the current /; flowing through the
loop comprised of the wire of impedance Z, SQUID input coil of inductance L;
(including inductance of the twisted pair between the wire and the SQUID, and
self-inductance of the secondary of the drive transformer) and series resistance R
of the contacts/wire,

V V

X X

T 7. T Z+R+ 2l M

Here, Zs = Z + R + 2infL; is the total impedance of the loop. This gives flux
¢ = M,I; in the SQUID, which is read out using flux-locked loop electronics [11].
Note that all alternating currents, voltages, forces, velocities and powers are rms
throughout.

We infer J, from the real and imaginary components, X and Y, of the voltage meas-
ured by the lock-in at the output of the flux-locked loop,

[ X+iY )
b (Re/Mp) x My @
Here, R; is resistance of the feedback resistor, M; is the mutual inductance between

the feedback coil and the SQUID, and M is the mutual inductance between the input
coil and the SQUID. This is used to calculate the impedance of the wire,

7 2infM,
Ii/Ix

= R = 2irfL;. 3)

M k
M
Z(f)|®B L g R FLL — LA
A2 A
R M

Fig. 3 SQUID readout circuit. The vibrating wire forms part of an input loop of a SQUID current sensor
together with contact resistance R, input coil ; of the SQUID and drive transformer with mutual induct-
ance M,. The wire is excited by voltage V,, applied by driving a current, I, via the transformer with
mutual inductance M,. The SQUID operated in flux-locked loop (FLL) detects the current /; in the loop.
The FLL gain is determined by R; and M;. A phase-sensitive lock-in amplifier (LIA) detects the compo-
nent of /; at the frequency of the drive
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3.1 Broad Frequency Sweeps

The propagation of the signal through the measurement circuit leads to a correction that
we model by,

I - <1 - ?) exp (—ia — ibf ) ;. 4)

Here, the first term describes the AC input coupling of the lock-in, which acts as a
first-order high-pass filter with cut-off frequency f, = 80 Hz. The second term rep-
resents the rest of the circuit, where a simple phenomenological expression a + bf
for the phase shift proves adequate. This correction is applied to the measured
prior to evaluation of the impedance according to Eq. (3).

The values of a and b as well as circuit parameters R and L; are obtained from broad
(5 Hz-10 kHz) frequency sweeps carried out at zero magnetic field, where there is no
contribution to the total impedance of the SQUID input loop from the vibrating wire
resonators, and the data can be fitted to Eq. (3) with Z = 0. The fit was verified by
checking that Im Zy (f) is a straight line with zero intercept. The procedure was repeated
when changes were made to the resistors in the SQUID readout circuit.

4 Resonator Characterisation
4.1 Narrow Frequency Sweeps

In order to characterise the vibrating wire resonances, narrow frequency sweeps
were carried out at constant /, in a range of magnetic fields, illustrated in Fig. 4.
The impedance obtained from Eq. (3) was fitted to a Lorentzian,

ifA
fo-r+iy

with resonance amplitude A and resonance frequency f,. The resonance width Af
includes contributions from both the intrinsic (as observed in vacuum) and quasipar-
ticle damping. The latter is a direct measure of the bolometer temperature, enabling
the tracking measurements described in Sect. 5.

In the simple approximation of a rigid beam moving rectilinearly perpendicular
to the magnetic field, the resonance amplitude A = #B%/2zxm can be parametrised
by effective length # and mass per unit length m of the vibrating wire [7]. We find

Z(f) = ©)
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Fig.4 Frequency sweeps for the a 4500 nm nanowire at 5.2 mT field, b 400 nm wire at 5.2 mT field
and ¢ 400 nm at 0.3 mT—in all cases at 18.5 bar and 0.27 mK. The top panel shows the ratio of meas-
ured current to drive current and resonance-like behaviour depends on the relationship between them.
The middle panel shows the impedance of the wire. The lower panel shows the derived voltage across
the wire and estimated velocity of the wire. The strong field dependence of the wire impedance Z B2
manifests in very different shape of the raw data /;(f)/I, and hence v(f) for the same wire at fields where
Z(fy) > 2xfyL; (b) and Z(f,) ~ 2xf,L; (¢)

¢ = 1.0 mm for the 1.4-mm-long 400 nm nanowire and £ = 0.9 mm for the 1.9-mm-
long 4500 nm wire. The discrepancy between £ and the actual wire length, more
pronounced for the arched 4500 nm wire, arises from the distribution of velocity and
displacement along the wire.

Extracting £ from A enables us to estimate the velocity,

_ v _ 2]

Y=7B~ 7B’ ©)

from the voltage V across the wire, also shown in Fig. 4. Note that the raw data
L(f) /I, look drastically different depending on the relative scale of the on-resonance
wire impedance Z(f,) and the impedance of the input coil of the SQUID 2izf,L;.
Consequently, in the Z(f) < 2xf,L; regime the wire velocity is nearly constant
when sweeping the resonance (Fig. 4b), while at Z(f;,) 2 2xf,L; there is a well-pro-
nounced velocity maximum at a frequency where Im Z(f) + 2izf,L; = O (Fig. 4a,c).
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4.2 Drive Amplitude Sweeps

The velocity dependence of the wire response can be characterised with drive ampli-
tude sweeps at a fixed frequency, typically on resonance. To a geometrical factor of
order unity, we estimate the force on the wire as,

F=|I¢B|. (7)

On-resonance drive sweeps on 400 nm nanowire are shown in Fig. 5. When
oscillating at small velocities the response of the wire is linear, with a linear
damping force F; « v. However, as velocity increases beyond a few mm/s the
damping becomes nonlinear. The onset of the nonlinearity is expected around
v =kgT/pp ~ 4 mm/s [12].

As velocity is increased further, emission of bound quasiparticles into the bulk
superfluid leads to an increase in dissipation [13, 14], giving a sharp rise in Fy(v)
observed at v = 32 mm/s, of order Landau critical velocity v, = A/pp ~ 60 mm/s.
For a macroscopic wire of circular cross section with diameter d much greater than
the coherence length &, = 22 nm (at 18.5 bar), this phenomenon is predicted to onset
at rms velocity v / 3\/5 = 14 mm/s. Here, the discrepancy may reflect neglecting
the velocity distribution along the wire in Eq. (6) and/or the mesoscopic character
(d ~ 10&) of the 400 nm nanowire.

Velocity [mm/s]

0.4 0.6 0.8 1.0
Drive current, /x [mA]

Force [pN]
N
°
I
x

-
x

XXX XXX XXX X X
0 5 10 15 20 25 30 35 40
Velocity [mm/s]

Fig.5 Drive amplitude sweep for the 400 nm nanowire at the resonant frequency of 799 Hz. Upper plot
shows rms velocity versus drive current, with dotted grey and dashed black lines indicating the selected
tracking drive and critical velocity, respectively. Lower plot shows the corresponding drive force vs
velocity, demonstrating characteristic regions of quasiparticle injection and nonlinearity

@ Springer



Journal of Low Temperature Physics (2026) 222:39 Page90f20 39

4.3 Nonlinearity Correction

The operating velocity is below the critical velocity, but above the linear response
regime. The nonlinearity manifests via a velocity-dependent resonance width Af(v)
and can be taken into account following Ref. [15]. From Eq. (5), this width can be
obtained as,

Z(f,v)

from a single impedance measurement Z(f, v) at a frequency f and velocity v. The
resonance amplitude A is determined by fitting Eq. (5) to a low-drive frequency
sweep, typically at sub-mm/s velocity. In principle, Eq. (8) is valid at any measure-
ment frequency, but practically the high-resolution determination of Af(v) is limited
to the vicinity of the resonance where Z is predominantly real.

The measured width can be written as the sum of intrinsic and quasiparticle
damping terms,

Af(V)=Re< A ) ®)

A () = B + AS(rv/ve)- 9)

Here, the intrinsic damping is characterised by the width 4f; = 0.15 Hz measured for
both resonators in vacuum prior to filling the cell with helium-3. The second term is
the width due to quasiparticle damping only. Following Ref. [15], we express it as a
product of the width Af; at v — 0 and a correction factor,

S(e) = §<Il<c)—L_1(c)+ %) (10)

determined by the reduced velocity ¢ = yv/v,. Here, y is a dimensionless adjustable
parameter of order unity that encodes the velocity profile, /, is the modified Bessel
function of the first kind of order 1 and L_; is the modified Struve function of order
—1. Thus, we extract Af, = (Af(v) - Afl) / S(yv/vy), simplifying further analysis of
the bolometer response. The performance of this correction procedure up to veloci-
ties of tens of mm/s is illustrated in Fig. 6. Here we note again that the 400 nm oscil-
lator is mesoscopic (d > &, does not hold); therefore, departures from Egs. (9, 10)
are expected [16]. To improve the nonlinearity correction the distribution of velocity
along the wire can be considered, this will be the subject of future work.

5 Bolometer Measurements

To operate the cell as a bolometer, the resonator is interrogated at the resonant fre-
quency and a constant drive level, below the onset of pair breaking and low enough
for the nonlinearity correction to work, see Sects. 4.2 and 4.3. From the measured
wire impedance Z, we obtain the resonance width 4, (corrected for finite veloc-
ity and intrinsic damping) according to Egs. (8)—(10). This procedure takes the
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Fig.6 Demonstration of the nonlinearity correction for the 400 nm nanowire. Upper left: frequency
sweeps at different values of drive current /,. Upper right: corresponding velocity across the sweep.
Lower left: width inferred from Eq. (8) before and after correction to the linear regime using Eq. (9).
Lower right: correction factor S(v) as a function of velocity, the triangles represent the correction applied
on resonance

resonance amplitude A as an input parameter, so the tracking is paused every few
hours for low-drive frequency sweeps. The conversion of width to temperature is
based on Ref. [17].

Figure 7 illustrates tracking measurements. The bolometer response to a heating
event at #, can be described as a function of time,

th—1t th—1
A1) = g’“e+®(z—to)H—T[exp<°T >—exp<OT )] (11)

Ty
Ty — Tw b w

where Afé’ase is the baseline width, O(r) is the Heaviside step function and H is the
maximum (instantaneous) increase in width corrected for the response time of the
bolometer [4]. Two time constants determine the pulse shape, the bolometer time
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Fig.7 Example tracking data from 400 nm nanowire, driven on resonance in a 5.2 mT field at 0.3 mK.
Example bolometer pulse shape shown in the lower panel

constant 7, and the wire time constant 7,,. These four parameters are determined by
fitting the pulses found in the tracking mode data. The amplitude H reflects the mag-
nitude of heating (or energy) causing the event. The baseline width Afé’ase and wire
time constant 7,, ~ 1/ EAI%’HSC depend on bolometer temperature for a given dataset.
The bolometer time constant 7, depends on the bolometer geometry and remains
constant across all datasets for a given bolometer.

Most of the instantaneous heating events in the bolometer result from particles
such as cosmic rays or radioactive decay products interacting with the superfluid
helium [1, 8]. An example bolometer pulse is shown in Fig. 7 and large pulses such
as this one most likely originate from cosmic ray interactions.

6 Two-Wire Operation

6.1 Heat Injection Calibration

The bolometric technique relies on conversion of the resonance width change,
observed in the tracking measurements, to temperature change or energy. Width of

the resonance is proportional to the damping force, F;, from momentum transfer in
quasiparticle collisions with the wire [18],
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Fig.8 Stepped heat injection using the 4500 nm wire driven above critical velocity (upper) and the
measured width response of the 400 nm nanowire (lower)

Fd /dpl%(nvg) /Sdpg
o = =
2amy 2xmkg T -

Ny = exp(—A/kgT). (12)
Here, d is the wire diameter, pg is the Fermi momentum, (nv,) is the density of
quasiparticle or quasihole excitations n multiplied by the appropriate group velocity
v, and A is the superfluid gap at the operating temperature and pressure. Dimen-
sionless constants @ and y’ depend on wire geometry and details of the scattering
process. This enables conversion of measured widths to temperature and energy,
once bolometer calibration has determined the value of y’. One calibration method,
demonstrated in Refs. [4, 18, 19], is to inject heat into the system by mechanical
dissipation.

For heat injection over timescales longer than the bolometer time
constant the bolometer will reach thermal equilibrium as a result of
quasiparticle-wall and quasiparticle—quasiparticle collisions. This means the
number density of quasiparticles will quickly become constant and resonance width
reaches a new stable value. In this state, the total power entering the bolometer, from
both the heater and wall heat leaks, must balance power carried by the quasiparticles
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Fig.9 Linear relationship
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leaving the orifice, O = Oy, + O,, = Q,. The power transmitted out through the
orifice can be written as [18],

(nvg)

0,=—

(E)A,. 13)

Here, (E) is the average quasiparticle energy and A, is the effective area of the ori-
fice. This can be determined from the bolometer time constant 7, = 4V, /A (v,) for

bolometer volume Vj, and mean quasiparticle group velocity (v,) ~ \/kgT/Avg.
Combining with Eq. (12), the width can be related to total power,

T(E 24 E 14
AV >_y7rkBmAOQT. (14)
Subtracting input power from the walls using the bolometer base width, é’ase, and
substituting (E) = A + kg T allow us to define the width parameter [19],
base A
Wy = (& = 45T (- +T)- (15)

This absorbs the temperature dependence of (E) in Eq. (14) such that the bolometer

response can be related to applied heater power,
2dp? |

W=y —_0,. 16

p=7 whgmA, O (16)

The calibration constant y’ can be determined from the steady-state response

Ny (0y), as shown in Fig. 8. Periods of zero applied power were inserted between

each period of constant heating, in order to correct for any temporal variations in

Af(')”"‘se. The 4-min wait at each power, much longer than 7, ensures the equilib-

rium. Even though the 4500 nm wire as a heater operates in a nonlinear regime, the
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Fig. 10 Energy versus bolometer temperature obtained from the data shown in Fig. 8 and similar meas-
urement at higher temperatures. We compare the heat capacity C derived from a straight line fit to each
dataset to the prediction of the “weak coupling plus” theory [17, 20] for 0.17 cm? of the B phase at
18.5 bar

detected current /;(f) in time domain is nearly sinusoidal. Therefore, we derive the
power applied using the wire as Q), = |I;|> Re(Z).

Bolometer tracking data taken during each of these 4-min periods was used to
measure the width parameter, defined in Eq. (15). These periods also contained
background events, similar to those seen in Fig. 7, so the mean width parameter was
calculated using the quiet periods of data which did not contain any heating pulses.
Figure 9 shows the linear response of the measured width parameter on the 400 nm
nanowire to injected power, which validates our model and assumption of thermal
equilibrium in the bolometer. The linear fit was consistent for different 400 nm drive
amplitudes and tracking measurements times. Once the calibration constant has
been extracted from this fit, Eq. (12) can be used to find energy of individual pulse
events using either the measured pulse amplitude or area.

The increase in bolometer temperature in response to the steady-state applied
power Q, is equivalent to a transient response to a heat pulse E = Q,7,, where
the steady-state power is integrated over the bolometer time constant z,. Thus,
from the heater calibration measurements, we obtain the bolometer heat capacity
C = d(Q,7,)/dT . Figure 10 shows that this measured heat capacity is in good agree-
ment with the heat capacity of the superfluid B phase, calculated [17] using the
value of the energy gap A given by the “weak coupling plus” theory [20]. The devia-
tions may stem from a small error in the value of A we use or reflect the additional
heat capacity of solid helium and Andreev surface-bound states on the bolometer
walls [21].
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6.2 Simultaneous Tracking

Tracking data were acquired on both wires simultaneously, at 2.6 mT field and
0.3 mK bolometer temperature. A lower field was used here to access the criti-
cal velocity of the 400 nm wire, since the velocity peak is offset from the res-
onance occurring at the field-dependent impedance minimum. This measure-
ment involved driving both wires simultaneously at their resonance frequency
and acquiring bolometer tracking data, using the procedure outlined in Sect. 5,
for both wires at the same time. Since the bolometer slowly warms up after a
demagnetisation, the tracking measurements were periodically paused for (1)
low-drive frequency sweeps to recalibrate resonance amplitude A and (2) heater
calibrations.

In this dataset, simultaneous heating events can be observed on the two wires.
Figure 11 shows an example of simultaneous pulses, fit with the expected bolom-
eter heating pulse shape from Eq. (11). Here, higher baseline noise is seen in the
4500 nm tracking data due to the lower field. The pulse shape fits for this dataset
show consistent bolometer time constant of 3 s for both wires and rise times of
0.2 s and 0.6 s for the 400 nm and 4500 nm wire, respectively. There was a factor
of 10 difference observed in the width change for the two wires. This is roughly
consistent with the ratio of the wire diameters; however, it may not be exact due
to mesoscopic character of the thinner wire. This effect demonstrates the benefits

—— 400nm —— 4500nm [0-315

r0.310

r0.305

r0.300

dth [Hz]

inewi

r0.295,

r0.290

400nm linewidth [Hz]

4500nm |

r0.285

r0.280

0.275
0 2 4 6 8 10 12 14 16

Time [s]

Fig. 11 Coincident bolometer pulses observed when tracking on both wires simultaneously, solid line
shows data and dashed line shows the fit to Eq. (11)
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Fig. 12 Circuit diagram for readout of multiple vibrating wires with one SQUID sensor. All vibrating
wires represented by the impedances Z, (f), ..., Z,(f) must resonate at sufficiently different frequencies. A
single multichannel lock-in amplifier can drive and detect multiple resonances simultaneously

of sub-micron wires: faster bolometer rise and lower temperature, where the
width is dominated by intrinsic damping [1].

6.3 Multiplexing

Figure 12 shows how several vibrating wires can be simultaneously read out by
a single SQUID sensor. Provided the resonances are sufficiently separated in fre-
quency ([fé* —f§| > Af* + Af® for wires A and B, higher harmonics must also
be separated), the wires make negligible contributions to the total impedance of
the input loop near each other’s resonance. Here, we demonstrate this concept, in
a different bolometer, using a 400 nm nanowire, that exhibits an additional low-
frequency vibrational mode due to fabrication/mounting issues. This wire has a
main mechanical resonance at 1170.9 Hz and an additional resonance, with much
lower amplitude, at 814.6 Hz. Figure 13(a) shows frequency sweeps across both
resonances, with and without a simultaneous drive applied to the other resonance.
Low drive amplitudes were chosen to ensure no significant coupling between the
modes due to nonlinear effects, allowing independent bolometer tracking meas-
urements at both resonances. The simultaneous readout of the two vibrational
modes with a single SQUID is illustrated in Fig. 13(b). This proof of concept
demonstrates than the readout scheme can reliably track multiple frequencies,
which can be engineered to be well separated for different vibrating wires using
geometry or mounting stress.
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Fig. 13 Measurements of two frequency modes using the multiplexed readout scheme. a Narrow fre-
quency sweeps on two modes of the same 400 nm nanowire, in both the absence and presence of drive
on the other mode, with velocity of the second mode indicated in the legend. b Bolometer pulse meas-
ured with simultaneous tracking measurements on both modes, with velocity of each mode indicated in
the legend

7 Conclusions and Outlook
We have demonstrated the operation of a superfluid helium-3 bolometer at sub-

millikelvin temperatures, using nanomechanical resonators with SQUID readout.
Using a second wire for calibration in this scheme allows for injection of much
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lower heat power than has been done previously, reaching the energy region of
interest for a low-mass particle dark matter search.

This lays the foundation for detection of energy deposits from particle interac-
tions in the superfluid, forming the basis of a dark matter direct detection search.
The next development will be a comparison of energy deposits from particle cali-
bration sources with the energy injection using a heater wire, together with char-
acterisation and optimisation of the energy resolution. This will inform the energy
partition model used in the dark matter search analysis outlined in Ref. [1]. Pre-
vious energy calibration measurements were taken in Lancaster [22] and later by
the ULTIMA collaboration, as reported in Ref. [4, 23]. We aim to compare with
these heating measurements, in particular the dependence on source particle type
and energy. Further studies will also focus on detailed understanding of the noise
performance and its relation to the resonator geometry. The resonator design will be
optimised for minimising energy threshold, reliability and multiplexing. Ultimately
the resonator characterisation, bolometer calibration and tracking measurements
described here will be optimised for a low-threshold dark matter search and utilised
to perform this over a long exposure.
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