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Abstract

Many people in communities around the world are facing homelessness due to housing short-
ages. The San Francisco Bay Area has struggled to provide housing for thousands of people who
are unsheltered. Permanent housing is the ideal solution for most people entering the system,
but temporary shelter is also critical. Investment in housing and shelter is paramount to pro-
viding a long-term solution to serve the current and future homeless population. We construct
a queueing model for tracking the flow of single adults through shelter and housing based on
Alameda County’s coordinated entry system. In contrast to routing or allocation policies, we
optimize the system through increasing shelter and housing server capacities. We formulate
optimization problems to reduce the size of the unsheltered population given cost constraints by
varying investment in housing and shelter over time. Additionally, we impose policy-based shape
constraints to reflect the time-dependence and feasibility constraints associated with planning
decisions. We thus show how resources can be allocated between housing and shelter over time.
While this joint optimization approach can be used to analyze homeless populations outside of
Alameda County, it also can be broadly applied to capacity investment decisions for tandem
queueing systems, for example, in healthcare settings.

Keywords: homelessness, capacity planning, fluid flow model, shape-constrained optimization,
queueing systems.

1 Introduction

In the San Francisco Bay Area, there are many communities which are struggling with unprece-
dented levels of homelessness. Directly east of San Francisco, Alameda County contains the cities
of Berkeley and Oakland with over 1.6 million residents. There are high levels of homelessness,
with approximately 8,000 people experiencing homelessness each night. In 2020, Alameda County
formed an Office of Homeless Care and Coordination to conduct leadership and strategic planning
with regards to the Continuum of Care (CoC) (Alameda Countyl, [2022]). The CoC is defined by

the Office of Housing and Urban Development (HUD) as “designed to assist individuals (including



unaccompanied youth) and families experiencing homelessness and provide the services needed to
help such individuals move into transitional and permanent housing, with the goal of long-term
stability” (Office of Housing and Urban Development, 2024)). Counties are responsible for imple-
menting support for the CoC within their geographical areas according to federal guidance from
HUD, but may adjust their specific plan depending on the needs of their populations.

Alameda County has developed a particular focus on racial equity to drive their efforts. This
is because a thorough examination of population data determined that some racial groups were
overrepresented in the homeless populations. Details on the population analysis are contained in
Oakland-Berkeley-Alameda County CoC| (2020). The result of the analysis is that investment into
certain types of housing is critical to alleviating homelessness, and also reducing racial disparity
that exists in the housing market. This paper will address the critical problem of determining how
to best invest in housing resources to address homelessness, and our approach will contribute to
the general literature on capacity planning problems.

There are two main types of resources in Alameda County to support people experiencing
homelessness. The first resource is access to permanent housing, which is defined as “community-
based housing without a designated length of stay in which formerly homeless individuals and
families live as independently as possible” (Office of Housing and Urban Development, 2024). This
can take many forms, for example, permanent supportive housing provides affordable housing in
tandem with social services to allow the client to maintain successful housing. Dedicated affordable
housing may be used to support households with extremely low incomes without the potential for
salary increases. Rapid rehousing subsidies may allow clients to afford rent to remain in their
current homes when the client has the potential to increase their income within an expected time
period (Oakland-Berkeley-Alameda County CoC, [2020).

The second main type of resource is transitional housing, or emergency shelter, which is “de-
signed to provide homeless individuals and families with the interim stability and support to suc-
cessfully move to and maintain permanent housing” (Office of Housing and Urban Development,
2024)). In the absence of a permanent housing solution, emergency shelter can provide temporary
accommodations until a permanent housing solution can be established. While emergency shelter
is an important part of a county’s infrastructure, it should not be relied on as a sole substitute
for housing. Shelter is often congregate, in that many people will be grouped together in a shared
space. Permanent housing may include social services like drug rehabilitation, mental health sup-

port, and other health and medical services. This makes it more expensive than shelter, but also



more desirable because it is more likely to lead to long-term success in terms of clients remaining
successfully housed and having better health outcomes. The goal is to successfully house clients as
quickly as possible, with shelter serving as a backstop when housing is limited.

In the rest of this paper, we will refer to permanent housing as “housing” and transitional
housing or emergency shelter as “shelter”. Our goal will be to optimize the choice of investment
into building/acquiring these resources. Let h; be the inventory of housing at time ¢, and s; be
the amount of shelter at time ¢. The decision variables h; and s; will be the key focus of our
optimization model.

People in the system may occupy housing or shelter, or they may be unsheltered while waiting
for county resources. The large number of unsheltered people in the Bay Area is what has driven
increased attention and visibility around this crisis. The quality of the CoC performance will be
driven by an objective function that depends in part on the number of unsheltered people in the
system over time, u;. The value of u; is not a decision variable, but is calculated as an output of
a queueing model. Increasing h; and s; will decrease u;. Figure [1| shows how one might model this
system as a sequence of servers. A client arrives to the system, and if there is no housing or shelter
available, they wait in the unsheltered queue. Shelter serves as a resource, but people only occupy
shelter if housing is not available. Thus, people do not leave shelter until housing is available, so

there exists a blocking mechanism between the servers with zero buffer.
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Figure 1: Tandem queue model of housing and shelter.

The lack of a defined service time at shelter combined with a blocking dynamic between shelter
and housing means we can simplify the model to the setup in Figure Thus, people in shelter
are still in a queue for housing, they are just in a potentially better situation than those who are
unsheltered by the county and are often (but not always) prioritized for limited housing resources.
This means we can treat the decision variable s; as an allocation of resources to shelter part of the
queue, with housing being the sole server system. While housing is considered a permanent solution

for those who are able to remain successfully housed, there may be a turnover rate of approximately



8% per year (Oakland-Berkeley-Alameda County CoC\ |[2020). This allows us to model the system

as an M;/G/h; queue, given a non-homogeneous Poisson arrival process and general service time

distribution.
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Figure 2: M;/G/h; model of housing and shelter.

In reality, people may move in and out of shelter while waiting for housing. However, because
Alameda County faces a high unsheltered population, we model the shelters as always full using a
fluid flow model and the effect of individual transfers in and out of shelter is negligible. Because
shelter does not have its own service time distribution and simply holds clients until housing is
available, the setup in Figure [2] is an equivalent model to Figure This paper will construct a
fluid flow model for the flow of clients through this system, and optimize the values of s; and h;
over time to reduce the value of u;, subject to budgetary and policy constraints.

We next describe some background that motivates our formulation. There are multiple actions
that federal and local governments can take to address homelessness. At the federal level, the Office
of Housing and Urban Development has established that each county must operate a Coordinated
Entry system to ensure a standardized series of access points for clients experiencing homelessness to
seek support (HUD Exchangel [2022)). However, each county has flexibility to adjust their approach
to prioritizing and allocating resources based on the particular needs of their constituents. Thus,
different policies and procedures may be employed by different locations.

One goal of Alameda County is to reach “functional zero” in five years. The system is at func-
tional zero when there is effectively no unmet need, meaning that the “expected” waiting time for
housing is under 90 days (Alameda Countyl, 2022). In queueing terms, this means that the prob-
ability that someone experiencing homelessness must wait in the queue (sheltered or unsheltered)
more than 90 days for housing is small or close to zero. There are multiple strategies for achieving
functional zero, including prevention of homelessness through early intervention, and investment in
building housing and shelter to address the unique needs of the community. While building tempo-
rary shelter does not directly decrease the time until a client receives housing, a secondary goal is to

provide shelter to those seeking health and safety benefits. Additionally, it may be easier to locate



and provide resources to clients who are sheltered, compared to those who may be unsheltered.

The problem of limited financial and physical resources to address this crisis is obvious. Another
constraint is time: it can take time for housing to be obtained or shelter to be constructed. Thus,
a one-shot optimization may not be feasible to implement in a single time period. This motivates
us to consider investment over time, with the state of the queueing system improving as housing
and shelter inventory increases. It is better to invest early when possible since there is a human
suffering cost to waiting years for shelter. Thus, one major way our model differs from other
capacity sizing problems is that we allow the capacity variables s; and h; to change over time.
Similarly, our objective function will integrate over time to penalize delays in obtaining housing for
the unsheltered population.

Alameda County undertook a system’s modeling effort to model the flow of clients through
the system and test the effects of different levels of investment in housing and shelter each year
(Alameda Countyl, 2022)). This allowed the stakeholders to determine an approximate cost needed to
operate enough housing to reach functional zero. While the past efforts by the county delivered an
excellent feasibility and cost analysis to an otherwise highly uncertain problem, they did not include
queueing, uncertainty, or optimization directly. Singham et al.| (2023) improved the county’s efforts
by developing a simulation of a queueing model with uncertainty. However, the lack of tractability
around this highly complex simulation model made determining an optimal solution difficult.

The present paper aims to address the problem of capacity sizing over time by constructing and
optimizing a tractable fluid flow queueing model. To the best of our knowledge, this would be the
first way capacity investment over time would be addressed. These results would allow Alameda
County to determine the best allocation of resources between housing and shelter given a limited
budget. The complexity in this approach stems from the fact that we optimize the capacity of
the system over time, so we are effectively estimating optimal service capacity functions over time.
We accomplish this by discretizing time and adopting a fluid flow model which tracks queueing
as capacity is added to the system. This model returns the number of housed, sheltered, and
unsheltered people over time. We then formulate objective functions which model the performance
of a given capacity plan using the fluid flow model.

An additional feature that we incorporate to improve real-world feasibility is to include policy-
based shape constraints on the decision variables. For example, it may be more feasible from a tax-
raising standpoint to increase investment slowly over time, rather than requiring a large one-time

investment up front, even though that may be the fastest resolution. Additionally, while shelter is



critical to reducing unsheltered homelessness, communities may not want a large long-term reliance
on shelter. One idea is to ramp up shelter in the short term while housing is still being built, and
convert some of the shelter to housing in later years. This means that s; would be unimodal over
time with a peak partway through the model timeframe. Our flexible framework would allow for
optimal solutions meeting feasibility constraints on what could be reasonably implemented.

Our modeling choices are motivated by numerous discussions with leadership of the Alameda
Office of Homeless Care and Coordination, and the San Francisco Department of Homelessness and
Supportive Housing. One author joined bi-weekly virtual data analysis meetings with Alameda
County during 2022. The group was analyzing the results of survey work performed with stakehold-
ers across housing organizations and focus groups including people with lived homeless experience.
Two authors met in person in 2023 with the now-Director of Alameda County’s Office of Home-
less Care and Coordination, as well as leadership and analysts in San Francisco’s Homelessness
and Supportive Housing Office. Our desire to find optimal capacity functions over time using a
queueing model is directly motivated by planning needs faced by both counties.

Section [2| will briefly review the literature and place our contributions relative to past work.
Section [3] describes the fluid flow queueing model, while Section [4] presents the optimization formu-
lations and the corresponding numerical results are displayed in Section [l Section 6 presents the

results of sensitivity analysis for the optimal results, while Section [7| concludes.

2 Literature Review

This section will briefly review the literature related to our approach. We will first consider the
capacity sizing problem for queueing systems. Much of this research operates in a healthcare setting
and support for people experiencing homelessness often involves aligning homeless services closely
with healthcare resources. Next, we will discuss research that approaches resolving homelessness
from a healthcare perspective. Finally, we will conclude this section by discussing key simulation
and optimization literature related to modeling of homelessness systems, including those related to
runaway youths.

There are traditional tradeoffs between a quality driven regime, where the focus is on reducing
the customer’s waiting time, and an efficiency driven regime, where the focus is on having the
servers always busy. In an efficiency driven regime, the probability that the customer must wait

for a server converges to one. A balance between these regimes is the quality and efficiency driven



(QED) regime. The well-known square root safety (SRS) rule determines a capacity that will
achieve a QED regime. The SRS capacity is the sum of a base level to handle the mean arrival
rate, plus a square root safety factor to accommodate variability. The effectiveness of the SRS
hedging factor is measured relative to input parameter variability in Bassamboo et al.| (2010).
Besbes et al.| (2022) also determine capacity planning rules for spatial contexts, whereby the SRS
rule is insufficient to achieve a QED balance.

There has been much work in capacity planning for healthcare settings. Queueing models
have been used to determine how many appointment slots to allow, for example, in planning for
specialty clinics (Izady, [2015). Our approach is concerned with capacity planning over longer
time horizons, with thousands of clients spending years in the system. Additionally, it can take
years to build enough housing and shelter, so this type of capacity planning requires large-scale
modeling compared to many healthcare models which seek to plan daily appointment schedules.
Optimal capacity planning in queueing systems is often performed by varying the arrival and
service rates of a system (Bretthauer, 1995; Stidham Jr, [2009). In the context of homelessness, we
cannot necessarily control the arrival and service rates, but we can potentially control the levels
of housing and shelter. This motivates us to consider varying server capacities over time. |Liu
et al. (2011) combine analytical queueing methods and simulation modeling to determine capacity
expansion plans for a semiconductor production manufacturing system. [Izady and Worthington
(2012) develop an approach for determining staffing of emergency departments over time subject
to changing arrival rates and a probabilistic requirement on the sojourn time. Konrad and Liu
(2023)) use a simulation-based learning approach to balance exploration and exploitation in staffing
models that seek a probabilistic tail delay limit.

To the best of our knowledge, there are very few examples of long-term capacity planning
studies which strive for not only an optimal future capacity, but also optimal intermediate steps.
Mohammadi Bidhandi et al.| (2019) optimize future capacity across a network of community health
services but only model the change from the status-quo to the optimal capacity, rather than optimize
it. [Zhang et al.| (2012) propose the use of a simulation optimization approach called bisection search
for setting long-term capacity for beds in care facilities. From year to year they find the minimum
number of beds required to have a high probability of meeting set service levels. Each search step
requires multiple runs of a discrete-event simulation model. Lin et al.| (2024) use this approach to
optimize annual care capacity over a twenty year planning horizon for an elderly care system in

China. In contrast to simulation optimization, we aim to use a fast deterministic model to optimize



long-term capacity plans.

The notion of tandem queues is widely present in healthcare settings, and is relevent to our
modeling of housing and shelter systems. For example, emergency departments feed into hospitals,
or acute term care facilities feed into long-term care facilities (Patrick), 2011} Patrick et al., [2015)).
In many of these cases, if there is an issue with downstream capacity in the second server system,
there will be long waiting times for the first server system. This is especially true if blocking exists
between servers, so patients cannot leave the first server system until there is a spot available in
the second server system. Methods for allocating resources across servers in zero-buffer systems
for the purposes of optimizing throughput are studied in [Yarmand and Down| (2013, [2015). While
the homeless housing system can be thought of as a tandem queue (as in Figure , because clients
only stay in shelter if housing is not available, we are able to reformulate the tandem queue to the
format in Figure

The application of operations research approaches to modeling specific homelessness solutions
is an active area of research. The combination of healthcare modeling with homeless resource
planning has become an important area of research for solving critical issues affecting the homeless
population (Higgs et al., 2007; Reynolds et al., 2010; Ingle et al., 2021)). There has also been
research invested into determining the right level of detail or specification of a portfolio of services
for homeless populations (Arora et al., 2021). |[Rahmattalabi et al.| (2022) create a queueing system
to study the effect of matching a client with resources according to an eligibility structure while
taking fairness constraints into consideration. Optimization of equity in food redistribution for
soup kitchens and homeless shelters is considered in Balcik et al.| (2014)).

In particular, there have been recent efforts to model homelessness as a queueing problem.
There is a stream of research related to shortages of shelter beds for runaway youths in New
York. Miller et al.| (2022)) analyzes alternatives by comparing improvements from increasing shelter
capacity by optimizing benefit to cost ratios. |[Kaya and Maass (2022)) develop a queueing model
with abandonment to improve equitable access to youths with different types of shelter needs and
priorities. Their formulation minimizes the number of servers needed subject to some constraints
on the quality of service. Homelessness may also be tied to a higher risk of human trafficking, and
optimization has been used to determine the allocation of shelters and the impact on societal value
(Maass et al.l [2020). Kaya et al.| (2024) develop a complex optimization model to determine how to
assign youth to shelter resources given particular profiles of the individual and the specific services

offered by the shelters.



Singham et al.| (2023) modeled the homeless system in Alameda County as a sequence of se-
rial and parallel queues and used simulation to provide in-depth feasibility and cost analysis of
different strategies under reasonable levels of uncertainty. While this simulation model provides
a first approach to county-level modeling as a queue, it is not amenable to optimization given its
complexity, high levels of uncertainty, and long runtimes. However, [Singham! (2023) does attempt
to determine the appropriate long-term level of shelter using a batching-based quantile estimation
method applied to highly dependent simulation output. Coordinated entry has also emerged as
an important federally-mandated mechanism for streamlining client entry into county managed
homeless systems to enable efficient matching with available resources, and tracking wait-lists for
various types of shelter and housing. Clients experiencing homelessness can enter the system at
coordinated entry access points, where their needs will be managed as part of a centralized system
to avoid attempting to find housing at separate individually managed facilities (U.S. Department
of Housing and Urban Development)|, [2024). Managing routing of clients through a queueing sys-
tem using coordinated entry in San Francisco is simulated in |Singham et al.| (2025). While these
papers attempt to model specific policies and system behaviors, we are motivated to construct a
simplified model that can directly be optimized to suggest long-term planning solutions to guide
policymakers.

Finally, we discuss recent function estimation methods that can incorporate shape information
as constraints. The ability to incorporate shape information into function estimation problems is
an important area of research. While the literature on these types of models span a broad range
of statistical literature that we omit here, we note shape constraints are an important part of
structuring distributionally robust optimization problems over function spaces. In particular, a
focus on unimodal functions may lead to tractable formulations (Lam et al., 2021} 2024)), and we
will employ unimodal shape constraints in our formulations. In particular, we will suggest that
investment into housing increases monotonically over time to encourage increased investment into
the system. Additionally, we will test the effects of a unimodal shelter function, whereby shelter
will initially increase to serve the current unsheltered population, but is allowed decrease after

additional permanent housing has been constructed.



3 Queueing model for a homeless care system

The previous section discussed many papers that model and simulate the specific movements of
people through the homeless system (Kaya and Maass, 2022; Kaya et al., 2024; Singham et al.,
2023), 2025). In contrast to this work, we develop a simplified queueing model that will allow
us to optimize long-term planning investments in housing and shelter. This analysis will enable
Alameda County to estimate the overall level of investment needed to reduce the unsheltered queue,
and will help determine the relative allocation of investment into housing versus shelter over time.
Because there are thousands of people in the system, a fast model that considers the general flow
of clients through the system as in Figure |2| could approximate aggregate behavior effectively. A
corresponding optimization formulation could then suggest an optimal capacity plan that could
then be applied to a more detailed simulation model, such as the one in (Singham et al., [2023]).
Given the current limits on homeless resources in Alameda County relative to demand, the
system operates in an efficiency driven regime where the servers are always occupied due to queueing
instability in the system. In the status quo the servers are not able to house people as quickly as
needed because the arrivals to the system outpace the service rate, and there exists a large queue of
people waiting from previous years. Not only are there not enough housing slots, but turnover may
be low because people are staying in the system for long periods of time, and possibly permanently
in some cases. This assumption that there is always a queue motivates the use of a fluid flow model,

described next.

3.1 Fluid flow model

The overloaded state of this efficiency driven regime motivates our use of a fluid low model. Since
servers are always occupied, the outflow from the system is independent of the inflow. The mean
queue length can then be easily approximated using fluid flow equations. This involves modeling
a continuous-valued number of people which is reasonable when the numbers are large. Because
the assumption of an efficiency driven regime with a large inflow of customers relative to system
outflow is realistic for many homeless systems in California, we employ a fluid flow model to allow
for tractable optimization. This optimization is fast in part due to the low computational cost of our
fluid flow model. We use the terms fluid flow model and fluid flow queueing model interchangeably.
Fluid flow models can be useful for evaluating waiting times in healthcare systems (Worthington,

1991)), for establishing the limits of complex queueing systems (Nov et all [2022), and as a basis
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for understanding preliminary aspects of a simulation optimization (Jian and Henderson, [2015).
Background on the development of fluid flow models as the limits of queueing systems using the
functional strong law of large numbers is available in Chapter 5 of |(Chen and Yao (2001)).

This section introduces a fluid flow queueing model which tracks the number of housed, shel-
tered, and unsheltered clients over time. The two main inputs to the model are a changing arrival
rate over time, and a housing service rate which changes as housing is built. Additionally, the
amount of shelter space available to support the queue for housing may change over time. This
models the dynamics in Figure [2l Due to the current large queue for housing and continued inabil-
ity for housing rates to keep up with arrivals to the system, the assumption that the servers will
always be busy is not only reasonable, but significant enough to negate the usual assumptions of
steady-state queueing behavior where the servers are idle with some positive probability.

In our fluid flow model we ignore the randomness in the arrival process and the service process
for homeless people entering and leaving the homeless care system. Instead we assume that “fluid”
flows into the system continuously at a rate A(f) and flows out at rate u(t) = poh(t) where pg is
the service rate of a single housing unit and h(t) is the continuous-valued number of houses at time
t. Given the initial number of people in the system X, at time ¢ we can calculate the subsequent

number of people in the system, X (t), as

t

X(t) = X0+/0 A(v)dv —/0 poh(v)dv.

We split the queue for housing into an unsheltered and a sheltered part. We denote by s(t) the

continuous-valued number of shelters at time ¢. The size of the unsheltered queue wu(t) is then

u(t) = X(t) — h(t) — s(t)

t t
= Xp +/0 A(v)dv — /0 poh(v)dv — h(t) — s(t), (3.1)

where we assume that capacities h(t) and s(t) are sufficiently small compared to the given arrival
rate A(t) so that these resources are always full, and the use of a fluid flow model remains appro-
priate. In other words, the number of people housed and the number in shelter are the same as the
housing and shelter capacities h(t) and s(t), respectively. In reality, there may be some friction in
the system in that housing may be idle while units are experiencing turnover and the next person

in the queue is being located, but this time can be incorporated into the service time distribution.
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When analyzing the dynamics of the fluid flow model over a modeling horizon, we discretize
time into days. We now let Aq4, th , sg and ug for all d € {1,..., D} be the discretized equivalents
of \(t),h(t),s(t) and wu(t), respectively, where D is the modeling horizon in days and is used as
a superscript where we must later distinguish between daily and annual capacities. In order to

evaluate our various objective functions (which we describe in Section [4f) we typically approximate

(3.1)) with the sum

d d
ug = Xo + Z Adr 6t — Z pohf ot — h? — sD. (3.2)
d'=1 d'=1
where g is the daily service rate of a single housing unit and the stepsize 6t = 1 day. In Figure
[B] we give an illustrative example of the dynamics of ug given by our fluid flow model, calibrated
using realistic estimates for Xg, po and )\d,th , sé) for all d € {1,..., D} based on [Singham et al.
(2023)). The arrival rate first increases and then subsequently decreases as independent prevention
efforts take effect (Alameda County, 2022)). The daily service rate g is equivalent to a service time

of 4 years.
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Figure 3: Dynamics of ug, sfi) and hC]l). Xo = 12000, pp = m, Daily arrival rates Ag in each
year: 12.0,13.2,13.2,11.9,10.7.

Figure 3] shows an example of how one might come close to reaching functional zero in five
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years. The level of housing investment steadily increases over time. There is some initial increase
in shelter, though in general there is less investment in shelter over the long term than in housing.
The unsheltered population is stabilized and then eventually decreases approaching zero. We em-
phasize that Figure [3| displays the results for optimistic current estimates which cannot necessarily
be extrapolated to future years. The user may use our optimization model to recompute the fig-
ure using adjusted arrival and service rates representing actual conditions in future years if more
information becomes available.

In Section {4 we will evaluate using annual housing and shelter capacity vectors h =
{htVt € 0,...,T} and s = {s; Vt € 0,...,T} where T is a time horizon in years. In this case we

assume that any annual increase or decrease in capacity is spread evenly throughout the year, and

(13.2) becomes

d d
ug(h,s) = Xo+ Y _ Ag6t— > pohl(h)st — h (k) — sF(s), (3.3)
d'=1 d'=1
where
d d
D — = _
hi(h) =hy o)+ (365 L365J> (hragy = Pigs)) (34)
and

d d

D P —_— — — p—

Sa(8) = s+ <365 {365D (sr381 = 8158 ))- (3.5)
3.2 Modeling Assumptions and Extensions

This section describes the assumptions required for our model, and also the ways in which our
model can be extended to other settings by changing the inputs to our code.

3.2.1 Queue structure

The main assumption motivating the use of a fluid flow model is that the housing servers are always
busy and there exists a queue. This motivates the use of an aggregate model, with which we are
looking to optimize a capacity plan for the entire system. In the aggregate model we consider a single
queue for the entire system, which does not necessarily represent an actual physical list of clients

waiting for housing, but rather the county-wide count of unsheltered people that require resources.
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We do not consider individual needs of clients for differentiated types of housing services. We do
allow for a non-homogeneous arrival process, but assume the service rate for each housing unit
stays constant for the duration of the model run (the overall service rate will change with changing
levels of housing). We also assume that the housing and shelter capacity changes occurring in a
given year are spread equally throughout the year.

Additionally, we do not consider abandonment from the queue. In reality, there will be a lot of
friction in the system preventing a simple first-in-first-out execution. For example, clients need to
be eligible sobriety-wise for some types of housing, or priority will be given to clients with certain
physical or mental health needs. Since our model considers planning at an aggregate scale which
assumes there will always be clients available to fill empty housing spots, we can absorb friction from
abandonment and other implementation issues into the service time at housing. These simplifying
assumptions are all directly in-line with Alameda County’s Home Together Plan (Alameda County,

2022|) which attempts to assess the overall costs and housing needs for the coming year.

3.2.2 Client type

The model is designed to treat clients arriving to the system as homogeneous. The homeless
population in Alameda County consists largely of single adults, with 91% of clients falling into this
category (Oakland-Berkeley-Alameda County CoC| 2020). Alameda County has developed parallel
modeling analyses for single adults, families and youths, by using the same modeling approach but
varying the data inputs. In this paper, we focus on a model for individual homelessness so that one
person should be allocated one housing unit. However, by adjusting the arrival rates and service
rates for a different type of customer (i.e., families, couples, or youths) the same formulations could
be applied as long as there was a one-to-one matching between a client and a type of housing
unit. We calibrate our numerical results using the single adult category which has greatest amount
of housing need in Alameda County and supports the assumptions required for using a fluid flow

model.

3.2.3 Numerical results and extensions

We make certain assumptions in our displayed numerical results that are not required to extend the
model and formulations to other settings. For example, our numerical results will show a particular
sequence of arrival rates over time. The arrival rates can be modified for each year by changing the

input files to the optimization, while we assume the service rate for a housing unit stays constant
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(though this constant value can be varied by the user). Section |§| will demonstrate the optimal
objective sensitivity from varying the arrival and service rate inputs. Finally, while our numerical
formulations contain constraints requiring housing capacity to increase over time, this constraint
can be removed allowing housing capacity to decrease. We suggest some shape constraints in the
formulations to be presented in Section [4, and additional shape constraints may be included as

desired.

4 Optimization formulations

The fluid flow model represents a new approach for quickly assessing the feasibility and effectiveness
of different investment plans h¢, s;. High levels of investment earlier in our horizon will more quickly
decrease the unsheltered queue. However, there are obvious cost and implementation limitations,
which motivates a constrained optimization approach.

In this section, we will present different optimization formulations applied to our fluid flow
queueing model. These formulations will optimize the levels of housing and shelter to be built over
time, and the objective functions will attempt to minimize the unsheltered and sheltered population
according to different metrics. First, we present the basic notation associated with the terms in our
formulation. Section will present a linear formulation, while Sections and [4.3] will present
more complex nonlinear formulations. The associated numerical results will be presented in Section

with sensitivity analysis in Section [6] We define the following terms:

e Let subscript d denote time in days and subscript ¢ denote time in years.

e Let T, be the horizon (in years) over which we model the dynamics of the system while
altering housing and shelter capacities, where T, € N.

e Let T}, be the additional horizon (in years) over which we continue to model the dynamics of
the system without altering housing or shelter capacities, where T;, € N. We do this in order
to allow increased housing capacity to have a meaningful effect on the system over a long
period of time beyond a finite investment period.

e Let D = (T, + Tp) x 365 be the total modeling horizon in days.

e The vectors h = {h; ¥Vt € 0,...., T +Tp} and s = {s; Vt € 0, ..., T + T} are the model decision
variables which contain continuous-valued annual housing and shelter capacities, respectively.

The fluid flow model spreads annual changes in capacity equally over each day in the year,

as detailed in equations (3.4]) and (3.5)).
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C is the total budget for building housing and shelter.

Let ¢, and ¢, be the costs of increasing h; and sg, respectively, by 1, at any time.

Let Hy and Sy be the initial housing and shelter capacities, respectively.

Let B" and B® be baseline minimum annual housing and shelter build rates, respectively,

where B" B > 0.

Define w € (0,1) as a weight between two objective terms which ensures that a sheltered

queue is not penalized more than an unsheltered queue of the same size.

4.1 Linear formulation/objective 1

Our first formulation ®g minimizes a linear combination of the unsheltered and sheltered queues
subject to minimum build constraints and a total budget constraint. Recall that ug and s; are
the output of the fluid flow model reporting the unsheltered and sheltered populations each day,

respectively. Let yo(h, s) be a deterministic linear objective function, evaluated using the fluid flow

model equations (3.3)), (3.4) and (3.5):

D
1
yo(h,s) = ) ;ud(h, s) +

ol e

D
Z s (s). (4.1)
d=1

The following linear formulation ®q is

®y = min yo(h, s) (4.2)
h,s

Ta

s.t. Z cnlhe — hi—1] + cs[st — si—1] < C (4.3)
t=1

ho = Hy (4.4)

he > hy_y + B" vt e {1,...,T.} (4.5)

ht = hr, Vie {To+1,..,T, + T} (4.6)

S0 = So (47)

s¢ > 81+ B* vt e {1,..,T,} (4.8)

s = sr, Ve {T,+1,..,T, + T} (4.9)

Constraint (4.3)) ensures the total budget is not exceeded. Constraints (4.4)) and (4.7]) enforce
the initial housing and shelter capacities. Constraints (4.5) and (4.8) ensure levels of capacity
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are always increasing by a baseline amount, needed to ensure a sensible amount of building takes
place throughout the horizon T,. This equates to a shape constraint that says s; and h; must be
monotonically increasing over time. This constraint is needed to ensure the optimization does not
allocate all resources towards building in time 0, which would not be feasible from a long-term
implementation planning perspective since continual investment is easier to budget and justify to
stakeholders. Finally, constraints and fix hy and s; during the horizon T; after the

building horizon has occurred.

4.2 Nonlinear formulation/objective 2

Here we introduce a quadratic objective function to reflect the fact that neither the unsheltered nor
the sheltered queue should become excessively long. Finding this balance involves a careful trade-
off between building shelter (which quickly reduces the unsheltered queue) and building housing
(which gives long-term relief to the system, at the expense of initially large unsheltered queues).
Furthermore, as seen in Alameda County, long waiting times can increase subsequent service times
as people’s situations may deteriorate (though we do not model state-dependent service times here).
This further motivates the quadratic penalty on both parts of the queue. We keep the same budget
constraint and constraints on increasing capacity by some minimum amount. Let y;(h,s) be a

deterministic quadratic objective function, evaluated using the fluid flow model:

pi(hs) = = ug(h, s + 23 sD(s)2 (4.10)

d=1 1

>
ol e

D D
d=
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Our first nonlinear formulation ®; has objective (4.10) with the same constraints as in the linear

formulation:
®; = min y(h, s) (4.11)
h,s
Ta
st Y enlhe — hia] 4 cslse — si-1] < C (4.12)
t=1
ho = Hy (4.13)
hi > hy_1 + B" vie{1,..,T,} (4.14)
hi = hr, Vie{T,+1,...,To+ Ty} (4.15)
50 = S0 (4.16)
St 2 St—1 + BS Vi S {1, ...,Ta} (417)
St = ST, Ve {To+1,..., T, + Tp}. (4.18)

4.3 Nonlinear formulation/objective 3

Here we introduce different shape constraints to show the flexibility of our framework. Instead of
ensuring capacity increases by a minimum amount each year, we ensure that the rate of capacity
increase must stay the same or increase over T, to reflect the fact that the budget available for
housing capacity expansion may typically grow over time and not all be available immediately. This
not only requires housing to increase over time, but the rate of change must not decrease as well,
which amounts to a non-decreasing derivative shape constraint. We note that this assumption is
not realistic in practice, in that planners cannot usually guarantee increasing rates of investment
levels over time due to fluctuating budgets and resource availability. However, planners may wish
to show the effects of an ideal investment situation where there is continually increasing investment
into housing and shelter. Thus, this constraint demonstrates the feasibility of adding custom time-
varying shape constraints to our formulations.

We can also require shelter investment to follow a unimodal function, whereby it increases for
a given time period, and then decreases. This shape constraint has been suggested by Alameda
County as a way of encouraging an initial ramp-up of shelter, but eventually excess shelter could
be converted to housing to avoid permanent large shelters once the queue has been reduced. To
implement this unimodality constraint on s;, we introduce a mode T, for the shelter capacity

function over time, where T, < T, and T, € N. We ensure that the shelter capacity monotonically
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increases before T, and monotonically decreases subsequently. Decreases in the shelter capacity
correspond to shelter being decommissioned, which simply means the objective function shelter
penalty decreases. Furthermore, there is a financial saving when shelter capacity decreases, in
which case the second term in the summation in our budget constraint is negative. The planned
implementation is for excess shelter to be converted to housing, but we don’t model that conversion
explicitly here. The non-linear formulation including this unimodal shape constraint and rate of

change constraint is:

®2 = min yi(h,s) (4.19)
Y

s.t. Zch[ht — he—q] +eslse — si-1] < C vt' e {1,...,T,} (4.20)
t=1

ho = Hy (4.21)

he > hys vt e {1,..,Tu} (4.22)

he = hr, Vte {Ty+1,.., Ty +Tp} (4.23)

hiy1 —he > hy — hy—y vte{l,..,T,— 1} (4.24)

s0 = So (4.25)

S¢ > Sp_1 vt e {1,..,T.} (4.26)

st < sp—1 Ve {T.+1,..,T,} (4.27)

St > 8o Vte {T.+1,...,T,} (4.28)

(4.20)

st = s, Vie {To+1,...,T, + T} 4.29

Constraints ensure the total budget is never exceeded. Here a single budget constraint as in
our previous formulations is not enough, since then the total budget could be exceeded in one year as
long as a saving was subsequently made from decommissioning shelter. With this set of constraints
we ensure that at no point can the total expenditure to that point exceed the total budget, so
any savings from decommissioning shelter cannot be spent before they are made. Constraints
(4.22)) ensure the housing capacity monotonically increases, while constraints ensure the rate
of change of housing capacity also monotonically increases from year to year. Constraints
ensure the shelter capacity monotonically increases up to the mode 7, and constraints ensure
it subsequently decreases monotonically. Finally, constraints ensure the shelter capacity never

drops below its initial capacity.
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5 Numerical Results

In Table [1] we list the model parameters we used when optimizing formulations ¢y, ®; and .
These approximate values are based on |Alameda County| (2022)) and [Singham et al.| (2023]). We
choose B", B® = 500 units in order to allocate half of the budget C' to meeting the minimum build
constraint and allow the remaining half to be spent in an optimal way. We considered a range
of weights w for the quadratic shelter penalty in Equation A higher weight corresponds to
a preference for long-term housing solutions at the expense of a larger unsheltered queue in the
short-term. The choice of weight should in practice be guided by the decision-makers preference
for a long- or short-term solution. We settled on w = 0.3 to give a meaningful penalty to shelter
but without undermining its advantage over an unsheltered queue. We use a current estimate of
the arrival rate of 10/day for the first T, years of the modeling horizon. We anticipate that with
major local prevention efforts (Regional Impact Council, 2021)), which take place independently of
capacity expansion, the arrival rate might potentially drop significantly to an estimate of 6/day
in the long run. However this assumption is based on optimistic predictions from discussions with
Alameda County and so is not well-justified with data. In Section [6] we test a variety of possible
long-term arrival rates to analyze the sensitivity of the optimization results to this updated arrival
rate, including the case where the arrival rate does not change at all.

Our framework is flexible to alternative arrival rate functions, so we recommend planners ad-
just their input values accordingly as data is updated. In practice, actual housing resources may
not match anticipated levels, so the input values to the model and code should be updated using
recent data as it becomes available. While we employ values from Alameda County’s single adult
population which has extremely high queues, our code and approach can be used to help with ca-
pacity planning for other populations. The main resource for data is HMIS (Homeless Management
Information System) which can be used to estimate of the number of people arriving to the system.
These values can then be used to calculate arrival rates. HMIS also tracks the number served,
as well as current housing and shelter inventory levels, and these values can be used to calibrate
housing server parameters. Additionally, counties are responsible for tracking clients as they arrive
using Coordinated Entry. We used aggregated data from Alameda County and housing planning
discussions to determine the values of T,, A\g, Xo, ho, So, Ch, ¢s and g in Table [Il We notionally
chose the values of Tj, T¢., C, By, Bs and w as proposed parameters for our optimization problem,

but these could change based on varying preferences of the system planners.
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Table 1: Model parameters

Value (®) Value (®;) Value (®3)
Ty 5 years 5 years 5 years
Ty 5 years 5 years 5 years
1. - - 3 years
A %Vde {1,...,T, x 365} %Vde {1,...,T, x 365} %Vde {1,...,T, x 365}
%Vde{Tax%E)—kL...,D} df’;—dee{Tax365+1,...,D} &Vde{Taxi’)GE)-i—l,...,D}
Xo 12,000 people 12,000 people 12,000 people
ho 4,000 units 4,000 units 4,000 units
S0 1,500 units 1,500 units 1,500 units
ch 30,000 USD /unit 30,000 USD/unit 30,000 USD /unit
Cs 10,000 USD/unit 10,000 USD/unit 10,000 USD/unit
C 200,000,000 USD 200,000,000 USD 200,000,000 USD
B! 500 units 500 units -
B? 500 units 500 units -
Ho T T TEh T T
w 0.3 0.3 0.3
Number of people housed/sheltered/unsheltered
100004
8000
v
Q.
8 6000 1
G
3
€ 4000 -
=2
2000 —1——="""""7 [ | [ T|... hy
Sd
— Uy
0 T T T T T T
0 2 4 6 8 10

In Figures and [6] we illustrate the model dynamics for the optimal solutions to ®p, ®; and
®y, respectively. For &g, the daily quantities hy, sq and ug corresponding to the optimal values of
hy and s; are displayed in Figure 4. We prefer to spend all surplus budget (beyond what is needed
for the baseline capacity) in the first year on housing. There is no incentive to spend the surplus

budget later when the effect would be diminished. The benefit (on the objective value) per USD

Figure 4: Optimal solution for ®g.

d/365 (Time in years)
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spent on housing in the first year is greater than the equivalent benefit of shelter. If we were to
increase cp, then the benefit per USD of housing would decrease as fewer houses could be built.
If we were to decrease the housing service rate pg, the benefit would also get worse. In either
case, with sufficient change, the benefit per USD spent on shelter may surpass that of housing, and
building shelter would become preferable. This would also happen if we were to reduce the cost
¢s sufficiently, enabling more shelters to be built per USD. Due to the linearity of the objective

function, it would never be preferential to spend the surplus budget on a mixture of housing and

shelter.
Number of people housed/sheltered/unsheltered
8000 -
@
S 6000 -
o
-
(@]
]
Q
£ 4000 -
>
=2
2000
..... hg
Sd
o T T T T T T
0 2 4 6 8 10

d/365 (Time in years)

Figure 5: Optimal solution for ®;.

The results for ®; are dispayed in Figure With this nonlinear formulation, we still prefer
to spend all surplus budget in the first year, but there is now a preference for a mixture of extra
housing and extra shelter. This is because the quadratic penalty associated with a high unsheltered
population encourages shelter which quickly reduces the size of the unsheltered queue. However,
the quadratic penalty of having a large sheltered population encourages early investment in housing
above the minimum. This housing investment in time also has a meaningful effect on reducing the
unsheltered queue, since sufficient houses may be built to have a total service rate higher than the
arrival rate, thus bringing stability to the system.

With &5 (results in Figure @, we can see the effect of shape constraints. We note that the
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Figure 6: Optimal solution for ®s.

initial ramp up of shelter is able to bring the unsheltered queue down in the short term. The rate
of increase in the housing capacity must not decrease over time so we see a more steady increase
in housing compared to previous solutions. The total amount of housing we can build is affected
by the fact that after the shelter mode at t = 3 years, decommissioning shelter makes more budget
available for housing. Thus we are able to achieve sufficient housing for a stable system in the long
term, while affording immediate relief to the system via shelter. We note that with this formulation,
for every 3 shelters decommissioned, 1 house may be acquired, resulting in 2 people immediately
rejoining the unsheltered part of the queue. Although this enables the housing capacity to increase
which is good for long-term relief to the system, the immediate effect is undesirable in practice and
we see that after 5 years the unsheltered queue is again very large. An alternative formulation may
enforce a more controlled decommissioning process by, for example, including a shape constraint
on the total number of housing and shelter units.

In Table [2| we list the optimal solutions to ®y, ®; and P9 in terms of the capacity at the end of
each year and the proportion of the total budget spent on building in that year. Negative budget
spent corresponds to a saving made by decommissioning shelter. All optimal solutions spend the
maximum possible budget of 200,000,000 USD. The solution to ®¢ sees the biggest early investment

in housing as it is preferable to shelter according to the given linear objective function. With the
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Table 2: Optimal capacities at the end of each year (proportion of total budget spent)

Type | Initial Year 1 Year 2 Year 3 Year 4 Year 5
®y | Housing | 4000 | 7833 (57.5%) | 8333 (7.5%) | 8833 (7.5%) | 9333 (7.5%) 9833 (7.5%)
Shelter 1500 2000 (2.5%) | 2500 (2.5%) | 3000 (2.5%) | 3500 (2.5%) 4000 (2.5%)
®; | Housing | 4000 | 7497 (52.5%) | 7997 (7.5%) | 8497 (7.5%) | 8997 (7.5%) 9497 (7.5%)
Shelter 1500 3008 (7.5%) | 3508 (2.5%) | 4008 (2.5%) | 4508 (2.5%) 5008 (2.5%)
®, | Housing | 4000 | 5094 (16.4%) | 6188 (16.4%) | 7282 (16.4%) | 8376 (16.4%) | 9470 (16.4%)
Shelter 1500 | 8148 (33.2%) | 8148 (0.0%) | 9040 (4.5%) | 8371 (-3.3%) | 5089 (-16.4%)

quadratic objective function, the solution to ®1 sees a slightly smaller early investment in housing
along with a slightly bigger early ramp up of shelter, compared to ®3. The solution to @9, in
contrast, sees a large early ramp up of shelter and a steady investment in housing over time. In
years 4 and 5 we see decommissioning of shelter in the solution to ®4 to enable the continued
investment in housing.

In Figure [7] we compare the dynamics of the unsheltered queue for each optimal solution. All
solutions see an initial drop in the unsheltered queue as early investment is made, followed by a
subsequent rise as capacity slowly catches up with demand. Then there is a decrease as the arrival
rate drops and enough houses have been built to bring stability to the system. If the arrival rate
does not decrease as anticipated, the long-term unsheltered population may not stabilize given
current resource levels. In comparison to @, the solution to ®; gives greater immediate relief to
the system via shelter but less long-term relief via housing. The solution to ®o gives substantial
short-term relief to the system. Long-term relief to the system is slower here with a more realistic
gradual increase in housing capacity, enforced by the shape constraints.

We solved all problems in Pyomo using the GLPK solver for ®; and the IPOPT solver for ®;
and ®5. Problems ®g, ®; and $5 were solved in 0.662, 0.760 and 0.759 seconds, respectively. All
code used for this analysis is publicly available at https://github.com/grahamburgess3/tvcp

We note that the input values used to display numerical results in this paper are subject to
change, and emphasize that the model user should update the input values as additional data
becomes available. The optimal solutions presented in the figures are designed to show how the
objectives and constraints could affect planned investment in housing and shelter for our given set
of inputs. Alameda County was searching for an investment plan that would reach functional zero
in five years, and we demonstrate some conditions under which the number of unsheltered people
stabilizes over the long term. In reality, arrival rates may be higher than expected and service rates

lower than anticipated. Thus, it is important to consider a range of possible inputs to the model,

24


https://github.com/grahamburgess3/tvcp

Number of people unsheltered

W B Ul
o o o
o o o
o o o

1 1 1

Number of people

2000 A

Optimal solution to ®q
1000 —— Optimal solution to ®;
—— Optimal solution to ®,

0 T T T T T T
0 2 4 6 8 10

d/365 (Time in years)

Figure 7: Unsheltered queue for each optimal solution

motivating the sensitivity analysis in the next section which reveals situations when the system

never stabilizes.

6 Sensitivity analysis

As discussed in Section [3] the two main inputs to the fluid flow model are the arrival rate and the
service rate. There is uncertainty associated with these inputs, especially over planning horizons
such as those faced by Alameda County. In this section we shed light on the sensitivity of the
optimization results to changes in these model inputs. In Section [§] we used an arrival rate of
10/day which reduced to 6/day at the end of the 5-year decision horizon. We maintain the initial
arrival rate of 10/day during the 5-year decision horizon. However, we now consider alternative
assumptions for the additional 5-year modeling horizon. We give particular attention to the case
where the arrival rate remains at 10/day during this period. We also let the arrival rate during the
additional 5-year modeling horizon take values from 5/day to 13/day. For simplicity we model a
step change in the arrival rate at the end of the decision horizon. In Section [5] the service time for a
client in housing was 4 years. We now let this service time take values from 3.5 to 5.5 years. These

ranges were chosen to reflect the uncertainty in the real-world quantities, purposefully avoiding
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model inputs which would violate the assumption of houses and shelters always being occupied.
We note that it is very difficult to predict future arrival rates which may change every year (as
opposed to changing only after 5 years), and so it is important for the user to update the model

input code and rerun the planning model as new information becomes available.

6.1 Optimization results for a range of model inputs

In this section we solve the optimization problem ®5 for each element of a 9 x 9 input space. We
construct this input space using the aforementioned ranges in arrival rates and service times. The
objective function ®9 is a quadratic combination of the unsheltered and sheltered queues on each
day of the 10-year modeling horizon, as given in Equation 4.10} Figure [§| displays the objective
values for the resulting optimal solutions. As the arrival rate increases, and as the service time
at housing increases, the objective value of the optimal solution becomes worse. In Figure |8 we
indicate with white squares where the optimal solution exhibits queueing stability after the end of
the decision horizon, i.e., where the total service rate given the housing capacity exceeds the arrival
rate. This illustrates that given our optimization framework, only certain arrival rate and service
time combinations will result in an optimal solution which will lead to a long-term decrease in the
unsheltered queue.

To compare the specific case when the arrival rate drops to 6/day with the case when the arrival
rate remains at 10/day, we plot the dynamics of the corresponding optimal solutions in Figure @
When the arrival rate remains at 10/day, the optimal solution includes less housing but more shelter
compared to when the arrival rate drops to 6/day, however these differences are relatively small.
When the arrival rate remains at 10/day, the unsheltered population grows during the additional
5-year modeling horizon. This is in stark contrast to when the arrival rate drops to 6/day. Here,
the unsheltered population decreases in the long term. It is interesting to note that while the
objective values of the optimal solutions are very different, the optimal solutions themselves (the
capacity plans) are reasonably similar. It is also worth noting that the instability of the queue with
the arrival rate of 10/day is a result of the budget constraint of this problem. An increase in the

budget would help to achieve stability at higher arrival rates.

6.2 The effect of making a “wrong” decision

In this section we explore the regret associated with choosing a capacity plan using model inputs

which do not materialize in reality. To this end, first consider the optimal solutions from Section
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Figure 8: Objective values for optimal solutions to ®5 (quadratic objective including sheltered and
unsheltered queues) with a range of arrival and service scenarios. White squares mark solutions
where queueing stability is reached by the end of the decision horizon. The white dot indicates the
scenario analyzed in Section
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Figure 9: Number of people housed/sheltered /unsheltered in optimal solutions to ®5 for the cases
when the arrival rate drops to 6/day and remains at 10/day.

[6.1] where for each element of the 9 x 9 input space we solve the optimization problem ®,. In the

left plot of Figure [L0] we display the average unsheltered queue over the 10-year modeling horizon
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using these optimal solutions. This can be interpreted by a decision-maker as the range of optimal
outcomes given the range of model inputs. Next consider the optimal solution to ®5 from Section
where the arrival rate reduces to 6/day and service time at housing is 4 years. We call these model
inputs «’ and the corresponding optimal solution (h’, s’). In the center plot of Figure 10| we display
the average unsheltered queue over the 10-year modeling horizon using this optimal solution (h’, s’)
but with the range of different model inputs. This can be interpreted by a decision-maker as the
range of outcomes in practice following this specific decision. For a given set of model inputs x (a
given grid cell) by running the fluid model with the optimal solution (h', s’) which was optimized
using model inputs @', we expect to see a worse outcome compared to running the model with
optimal solution (h, s) obtained by optimizing with model inputs . In the right plot of Figure
we observe the extent to which the outcomes are worse for this reason. We call this the regret. This
can be interpreted by a decision-maker as the effect of making the “wrong” decision i.e. choosing a
capacity plan which is optimal for a set of model inputs which does not materialize in reality. Note:
for a meaningful comparison, we plot the average unsheltered queues as opposed to the objective
values (see ®3) which are quadratic in both the average unsheltered and sheltered queues. Figure
only plots the unsheltered queue as opposed to the full objective function from ®5, which includes
sheltered queues. Therefore, the outcome for the average unsheltered queue can appear improved
when we have optimized with a different set of model inputs. This apparent improvement comes
at the expense of a worse outcome for the average sheltered queue. Therefore, in the right plot of
Figure [10] we omit the cases where the average unsheltered queue reduces because it is misleading
to consider these cases an improvement when we are not considering the effect on the sheltered
queue.

Figure [I0] illustrates that if only the arrival rate is worse in reality than expected, the outcome
having optimized with a different arrival rate would not be much worse than optimizing with the
actual arrival rate. This agrees with insights from our experiments illustrating that an optimal
solution structure does not change much when we increase only the arrival rate, as suggested in
Figure 9] However, if the service time in housing is longer in reality than expected, the outcome
having optimized with a different service time could be considerably worse than optimizing with
the actual service time. From detailed explorations into the solution structure, this is because the
optimal solution for a shorter service time would involve fewer shelter units but more houses. When
the service time is actually longer, those extra houses are less effective than shelter in reducing the

unsheltered queue.
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Figure 10: The effect of making a “wrong” decision. Left: Average unsheltered queue over a
10-year modeling horizon when running each scenario with its own optimal solution. Center:
Average unsheltered queue over a 10-year modeling horizon when running each scenario with the
optimal solution to ®, from Section [5 (white dot). Right: The percentage increase to the average
unsheltered queue (the regret) when running each scenario with the optimal solution to ®5 from
Section [5] as opposed to its own optimal solution. White boxes with diagonal lines omit cases where
the average unsheltered queue reduces as these improved results do not consider the potential effects
on the sheltered queue.

7 Conclusions

Most capacity planning formulations we have reviewed in the literature consider capacity expansion
from a single-stage perspective, in that the decision-maker has one shot to choose and optimize a
fixed capacity to accommodate the queueing system. In reality, most public sector services do not
have the resources to instantaneously ramp up to the ideal capacity, as there may be budgetary or
time constraints that control this rate. A model that accounts for these limits in capacity expansion
over time will provide a more realistic and executable plan, hence we attempt to provide a method
for determining how to allocate resources over time. While housing is the primary resource and is
modeled as the main server system, we also model investment into shelter, which supports some of
the people in the queue, while not modeled as a server.

Few models exist for modeling the flow of the homeless population through a CoC, especially
for locations like Alameda County where there is clearly a major lack of resources compared to
demand. We develop a fluid flow queueing model to track the unsheltered population over time
given an investment policy into housing and shelter. This model is uniquely poised to account for
the instability of the system and the currently high queueing backlog. Our model is amenable to
optimization, so we construct different formulations to balance the desire for high levels of housing
at high cost against cheaper shelter options. In addition to budgetary constraints, we employ

shape constraints as a means of ensuring our investment function output is feasible from a policy-
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making and implementation standpoint. The idea of a unimodal function for shelter investment
has been suggested by Alameda County, and such shape constraints can easily be implemented in
our framework.

While our fluid queueing model is simple and makes many assumptions that may not be fully
realistic, it provides an aggregate picture of the flow of clients through the system that allows for
broad insights into the optimal allocations between housing and shelter. An aggregate model is
critical to demonstrating the effects of inadequate resources leading to thousands of people being
unsheltered over a long period time — additional model detail is not necessary to prove this point
or demonstrate that thousands of additional housing units are needed. Certainly queueing models
with deeper levels of complexity exist to accurately model the system, but they aren’t amenable
to optimization and hence rely on trial and error to perform comparisons between plans. While
delivering a highly specialized optimization plan could be useful, Alameda County is unable to
fully control implementation due to numerous resource constraints (for example limited funds, slow
inventory build rates, and zoning ordinances). Thus, we develop an approach for providing general
insights on the allocation of resources between housing and shelter, and how this allocation should
change over time. Additionally, our formulation could be used to optimize capacity expansion for
any highly-congested queueing system beyond the homelessness domain.

There are many opportunities for future work. Exploring alternative objective functions and
constraints would reveal many alternative formulations. For example, smoothness constraints on
the unimodal shelter capacity function may give more practical solutions that appear reasonable to
constituents. Further constraints to control the decommissioning of shelter may also be appropriate.
A bi-objective formulation would likely give further insight into the trade-off between short-term
relief to the system via shelter and long-term relief via housing. A goal programming formulation
which penalized deviations on a time-dependent goal on the unsheltered population would be
interesting to explore.

We have also worked with discrete-event simulation (DES) models of homeless care systems to
test capacity plans without optimization. A natural next step is to apply optimal planning to a
DES. While our fluid flow model captures expected queue lengths quickly and effectively with a
simple setup, with DES we can model a range of system complexities which are beyond the scope
of the fluid flow model. Examples of such complexities include tandem queueing, the conversion of
shelter to housing and the non-zero time needed to occupy a house with a new resident following

the departure of the previous resident. Optimization with such a model would then fall in the realm
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of simulation optimization, and this is the subject of our ongoing work in this area.
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