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Abstract 

Lung nodules are areas of higher density in the lungs that can happen for a number of reasons, 

such as smoking or being exposed to airborne pollutants for a long time. It is essential to find and 

classify tumors on Computed Tomography (CT) scans as soon as possible so that lung diseases 

can be diagnosed and evaluated, as well as for planning and making treatment plans. For the 

diagnosis, it is essential to understand the difference between typical lung diseases like 

Tuberculosis, Pneumonia, and lung cancer, as all the diseases have similar symptoms initially. 

Initially, all the diseases have respiratory symptoms like cough, difficulty breathing, and chest 

pain. Pulmonary infiltrates or nodules can be observed in lung cancer, pneumonia, COVID-19, and 

tuberculosis, posing difficulty distinguishing between the diseases. Thus, this thesis has performed 

the classification of different types of diseases using X-rays by proposing a novel deep-learning 

framework for the multi-class classification of lung diseases, including lung cancer. The 

experimental results show that the Visual Geometry Group Network (VGG) 19 + Convolutional 

Neural Network (CNN) outperformed other existing work with 96.48% accuracy in the multi-

classification of lung diseases. 

Moreover, once lung tumor is detected, precise localization enables healthcare practitioners to 

ascertain the tumor's dimensions, which is crucial for staging and devising treatment strategies. 

Hence, this research proposes an advanced deep learning model called the Universal Network (U-

net) to accurately segment lung tumors utilizing multiple types of imaging data, specifically CT 

and Positron Emission Tomography (PET) scans. The intricate structures of the suggested models, 

which incorporate several fusion approaches such as early fusion, late fusion, dense fusion, hyper-

dense fusion, and hyper-dense VGG16 U-Net, are discussed in detail. The experimental results, 

particularly the performance of the hyper-dense VGG16 model, instill confidence in the proposed 

models, as it outperformed all other analyses, receiving a Dice score of 73%. 

Survival analysis for lung cancer patients is a crucial aspect of treatment planning and outcome 

prediction. Therefore, in-depth stage classification using the TNM (Tumor, Node, metastases) 

staging system of Lung Cancer is of utmost importance. This thesis suggests an innovative method 

to classify the overall stage of non-small cell lung cancer (NSCLC) by employing multimodal data, 

including multi-view CT images and textual clinical information. A comparative analysis of Vision 

Transformer (ViT) and Convolutional Neural Network (CNN) architectures, evaluating both direct 
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classification and TNM-based approaches are proposed. The experimental results prove that the 

ViT-based direct model achieves superior accuracy 98.75%, improving accuracy by 8.75% over 

the TNM-based ViT model, while also reducing computational complexity by 66.67%. Similarly, 

the CNN-based direct model achieves 87% accuracy, outperforming the TNM-based CNN model 

by 7%, with a corresponding reduction in computational demands. The use of the proposed 

methods in real-time can help practitioners to detect lung cancer and predict the survival of the 

patient effectively. 
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Chapter 1 

1. Introduction 

Cancer is a highly fatal and the most challenging disease ever documented in human 

history. The cure for cancer remains elusive as those afflicted with the condition often become 

aware of it during advanced stages. Detecting it in its early stages is challenging, and the 

majority of cancer-related deaths are attributed to lung cancer. Consequently, extensive 

research has been undertaken to create a system capable of identifying lung cancer from CT 

scan images [1]. Preventing cancer is difficult due to the manifestation of symptoms at 

advanced stages, making recovery hard. Additionally, certain lung disorders have symptoms 

that closely resemble those of lung cancer, leading to the potential misidentification of these 

diseases as lung cancer in medical images [2].   

The American Cancer Statistics 2023 study reveals that lung cancer ranks as the second 

most prevalent cancer among both males (12%) and females (13%). However, it also has the 

highest fatality rate of 21% across both genders. Each day, lung cancer claims the lives 

of around 350 individuals, a statistic that is nearly 2.5 times higher than the number of deaths 

caused by the second most common cause of cancer-related deaths, which is colon and rectal 

cancer [3]. There are two primary subcategories of lung cancer: small-cell lung cancer (SCLC) 

and non-small-cell lung cancer (NSCLC). Lung cancer typically arises from a combination of 

variables, such as cigarette use, exposure to dangerous particles in the atmosphere, genetic 

predisposition, old age, and other unidentified causes.  Symptomatic signs of lung cancer 

include yellowing of fingers, stress, persistent disease, fatigue, reactions to allergens, 

wheezing, loud breathing, hemoptysis, respiratory difficulties, bone pain, headaches, 

dysphagia, and chest discomfort [4]. 

Deep learning (DL) and machine learning (ML) algorithms yield cutting-edge outcomes 

in various domains, such as object detection, classification, and semantic segmentation [5]. 

They significantly impact bioinformatics, particularly in cancer detection [6]. Recent 

advancements in DL technology have facilitated the autonomous identification of graphic 

components by CAD systems. Consequently, numerous medical image-processing approaches 

have been effectively implemented [7].   
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The capacity of deep learning to process intricate, multi-dimensional data and identify 

significant characteristics has seamlessly aligned with medical imaging. Conventional image 

analysis techniques frequently depended on features and rule-based algorithms, which 

restricted their capacity to fully utilize the intricate information in medical images. On the other 

hand, deep learning acquires the ability to autonomously identify significant characteristics 

from unprocessed data, enabling more precise and resilient picture analysis. DL has become an 

exciting approach to diagnosing lung cancer. It can make cancer detection much more accurate 

and quicker for many types of cancer [8]. The transformation is notably noticeable within 

medical imaging, wherein pathology and radiology images function as an indispensable 

diagnostic medium. 

1.1. Research Problem 

Early recognition is crucial in the treatment of cancer. Early detection of lung cancer 

frequently enables the utilization of more efficient and less intrusive treatment alternatives, 

thereby substantially enhancing patient outcomes. On the other hand, a diagnosis that is 

postponed can result in lung cancers that have progressed to a more advanced stage, making 

them harder to treat [9]. Incorporating deep learning methods into the analysis of medical 

images has received significant interest in recent years. Moreover, deep learning can utilize 

multimodal data to achieve a more thorough evaluation of lung cancer. By combining medical 

imaging, genetics, and clinical data, a comprehensive understanding of a patient's health can 

be achieved, enabling more accurate and tailored diagnostic and treatment strategies [10]. 

Various imaging modalities, including Computed Tomography (CT), Magnetic Resonance 

Imaging (MRI), and PET scans, offer distinct and supplementary insights into lung tissue 

composition, operation, and metabolic behavior. Integrating various modalities can achieve a 

more thorough comprehension of the disease. Moreover, including clinical data, encompassing 

patient history, demographics, and biomarkers data, offers contextual details that can enhance 

a comprehensive evaluation of a patient's well-being. A thorough understanding of the patient's 

overall condition is crucial for precise diagnosis and formulation of treatment strategies [11].  

Despite advancements in medical imaging and automated systems, several significant 

challenges remain that hinder the effective identification, localization, and staging of lung 

cancer. These gaps are evident in current diagnostic practices and automated systems that rely 

on deep learning and other machine learning methods.  
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• Symptom Overlap and Misdiagnosis: Many lung conditions, such as pneumonia, 

COVID-19, and tuberculosis, share similar respiratory symptoms with lung cancer, 

creating significant diagnostic challenges. Chest X-rays, often the first line of 

investigation due to their widespread availability, are commonly used for 

preliminary diagnosis. However, traditional automated systems for X-ray analysis 

usually struggle to distinguish between these conditions. Existing automated 

systems have proven effective in binary classification tasks (e.g., detecting the 

presence or absence of pneumonia). However, when handling multi-class 

classification involving a broader range of diseases with overlapping symptoms, 

including lung cancer, these systems leave a gap in early lung cancer detection. For 

instance, specific patterns in X-ray images, such as patchy lung opacities observed 

in pneumonia or tuberculosis, might look very similar to early-stage lung cancer. 

This overlap frequently results in misdiagnosis, which leads to delayed or 

ineffective therapies and has a detrimental influence on patient outcomes.  

• Tumor Localization Challenges: Currently, automated algorithms for lung tumor 

localization rely mainly on CT scans, which give rich anatomical data. However, 

CT alone has significant limitations since it fails to capture critical functional 

information on tumor metabolism. While MRI offers high-resolution imaging and 

improved soft tissue contrast, its application in lung tumor imaging is limited due 

to respiratory motion errors and poor sensitivity to air-filled structures. These 

difficulties impede precise tumor localization and may result in inadequate 

assessments. Other modalities, such as ultrasonography, confront similar issues, 

with low penetration and uneven anatomical information for deep-seated lung 

cancers, complicating segmentation attempts. PET imaging, when combined with 

CT, provides critical metabolic insights that improve our understanding of tumor 

behavior and activity. This combination can improve treatment planning and 

staging by allowing for a more thorough examination of malignancies. Some 

existing systems have begun to incorporate multimodal techniques by integrating 

CT and PET imaging, utilizing their advantages to improve tumor segmentation. 

However, there is still room for improvement in tumor localization accuracy 

through more accurate fusion approaches that combine the characteristics of both 

imaging modalities. 
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• Inadequate Staging Classification: Accurate staging of lung cancer utilizing the  

Tumor, Node, Metastases (TNM) approach is critical for selecting effective 

treatment options, estimating patient outcomes, and forming prognoses. Existing 

automated systems frequently rely primarily on imaging data for TNM 

categorization, overlooking the vital role that demographic and clinical data might 

play in staging accuracy. While some techniques may be comparably sensitive in 

determining tumor size (T), they often overlook other important factors such 

as lymph node involvement (N) or distant metastases (M). Inaccurate general stage 

forecasts resulting from the lack of thorough staging models could lead to uneven 

patient treatment approaches and worse-than-ideal results. The preponderance of 

the T stage in current models limits their capacity to totally reflect the course of 

lung cancer, so influencing the prognosis dependability and treatment efficacy. 

These inadequacies in current diagnostic procedures highlight the urgent need for novel 

concepts that use deep learning to improve the accuracy and dependability of lung cancer 

detection, tumor segmentation, and stage classification. By resolving these problems using 

multimodal data fusion, the model's diagnosis precision can be improved, enabling more 

precise tumor localization and establishing solid, data-driven frameworks for lung cancer 

staging. 

1.2. Research Motivation 

The most prominent cause of cancer-related fatalities globally is still lung cancer, and proper 

diagnosis and early discovery significantly affect the survival chances. This research is driven 

by several motivations in both the critical clinical need for improvement and the technological 

possibilities presented by contemporary deep learning methods. 

• Enhancing Patient Outcomes by Early Detection: Early detection is essential for 

lung cancer survival rates. However, because lung cancer symptoms overlap with those 

of other respiratory disorders, current diagnostic instruments sometimes miss the early 

stages of lung cancer. This study is driven primarily by the possibility of significantly 

enhancing patient outcomes via early detection of lung cancer. We want to create 

models that can increase the accuracy of early detection by using advanced artificial 

intelligence technology, therefore enabling quicker interventions and higher survival 

rates.  
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• Use of Multimodality imaging: Accurate diagnosis and treatment planning in lung 

cancer depend not only on spotting the disease but also on correctly pinpointing tumors, 

hence bridging the gap between imaging modalities. Conventional imaging techniques, 

including CT and PET scans, provide different but insufficient perspectives on lung 

cancers. PET scans offer vital information regarding metabolic activity, but CT scans 

concentrate on the anatomical aspects. The possibility of closing the difference between 

these two imaging modalities primarily drives this research. This work attempts to 

provide a complete knowledge of lung cancers by proposing improved deep-learning 

models that combine data from both CT and PET scans, therefore enabling more exact 

localization and focused treatment.  

• Advancing Precision Medicine in Cancer Staging: Predicting outcomes for lung 

cancer patients and choosing therapy courses depend much on the TNM staging system. 

Though crucial, current automated staging systems may ignore thorough data 

integration, including demographic information and imaging. Incorporating more data-

rich models will help to develop precision medicine, thereby driving this study. Using 

deep learning approaches, it is possible to offer more complex and personalized staging 

assessments, therefore facilitating more informed treatment decisions and more 

accurate prognosis predictions.  

• Harnessing the Power of AI for Clinical Use: AI and DL are becoming more valuable 

in healthcare, potentially changing how doctors practice their profession. The 

therapeutic use of AI has not yet realized its full potential despite its impressive 

performance in other domains, such as picture recognition and natural language 

processing. The primary goal of this research is to discover ways to use artificial 

intelligence's ability to change things to assist doctors with their daily tasks, particularly 

in the detection and treatment of lung cancer. This study aims to push the boundaries of 

AI in healthcare by developing models that are robust, scalable, clinically relevant, and 

simple to integrate into existing processes. The primary motivation for this research is 

the urgent need to improve lung cancer tumor location, diagnostic accuracy, and 

staging. With the ultimate goal of improving lung health care and patient outcomes, we 

are looking for innovative solutions to these problems using advanced deep learning 

methods. 
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1.3. Thesis Aims and Objectives 

Developing sophisticated deep learning-based models to enhance the diagnosis, localization, 

and staging of lung cancer is the goal of this work. This work aims to improve the accuracy of 

early detection, enable more exact tumor localization, and provide solid predictions for TNM-

based cancer staging by using multimodal imaging data and integrating clinical demographic 

information, thus contributing to more efficient patient management and improved outcomes. 

The following particular goals help one to reach this aim: 

• Using chest X-ray images, create and use a deep learning model to precisely classify 

six different lung diseases—including pneumonia, TB, COVID-19, and lung cancer. 

This goal seeks to lower the chance of misdiagnosis by better-automated analysis, 

therefore addressing the difficulties presented by symptom overlap among these 

diseases. 

• To investigate how PET and CT imaging modalities might be combined to improve 

tumor localization. This aim will be to create algorithms that combine metabolic 

information from PET scans with anatomical data from CT scans, enabling a more 

complete knowledge of tumor traits and behavior. Correct therapy planning and tumor 

activity evaluation depends on this integration. 

• A complete staging classification system based on the TNM (tumor, node, metastases) 

staging system predicts the general stage of lung cancer by incorporating pertinent 

demographic and clinical data to increase prognosis accuracy and guide treatment 

decisions. 

• To perform thorough validation of the created models utilizing many datasets and 

evaluation criteria, including accuracy, sensitivity, specificity, and F1-score. This 

purpose guarantees dependability and generalizability among various patient 

populations. Furthermore, the clinical usability and scalability of the suggested models 

will be evaluated by comparing them with current diagnosis and staging systems. 

• By working with medical practitioners, one can evaluate the clinical applicability of the 

suggested approaches by ensuring that the frameworks created fit clinical procedures 

and handle practical diagnostic requirements. 
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1.4. Research Contributions 

The significant contributions of the research are given below. 

• A deep learning classification model is proposed to identify and differentiate six 

lung diseases: pneumonia, lung cancer, tuberculosis (TB), lung opacity, COVID-

19, and normal cases. Due to overlapping symptoms that result in similar patterns 

on X-ray images —such as ground-glass opacity and nodular formations—this 

study utilizes a transfer learning approach with a pre-trained VGG19 model 

enhanced by three additional convolutional neural network (CNN) layers. Trained 

on a large and diverse dataset of X-ray images, this model represents one of the 

first attempts to classify multiple lung diseases effectively using X-ray imaging at 

the time this investigation took place. 

• An innovative architecture is proposed for lung cancer segmentation using 

multimodal imaging from PET and CT scans. This model leverages both PET and 

CT scans, providing critical metabolic and anatomical information. It utilizes a 

modified U-Net architecture with various fusion strategies: early fusion, late 

fusion, dense fusion, hyper-dense fusion, and hyperdense VGG-16 U-Net. By 

incorporating dense connections for each modality, the model improves 

information flow and feature representation over a basic encoder. The hyperdense 

connections enhance integration between modalities by capturing the 

complementary details from each modality. Using VGG-16 for deep feature 

extraction boosts overall segmentation performance. These modifications 

collectively enhance segmentation performance compared to other strategies. 

• An advanced deep learning (DL) approach named Vision Transformer (ViT) is 

developed for overall stage prediction of lung cancer based on the TNM staging 

system, integrating both imaging data and demographic information. Unlike 

existing approaches that classify TNM stages individually before making a final 

prediction, our model proposes a direct overall stage prediction using ViT. 

Additionally, we introduce a multi-view approach along with demographic data to 

enhance prediction accuracy. To validate the effectiveness of our proposed model, 

we also apply a CNN model for this task and compare the results. To the best of 

our knowledge, this is the first work applying the ViT model for overall stage 

prediction of lung cancer based on the TNM system. 
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Finally, to validate our models across all contributions, we employed various 

evaluation metrics and loss functions. For the classification model, we assessed metrics 

such as accuracy, precision, recall, and F1-score. The segmentation model utilized the 

Dice Similarity Coefficient (DSC) and Intersection over Union (IoU) metrics, 

optimized with multiple loss functions—including Dice loss, binary cross-entropy 

loss, and focal loss—to compare their performance effectively. In the Vision 

Transformer model for overall stage prediction, accuracy was used, with cross-entropy 

loss applied during training. These methods ensured a comprehensive evaluation of 

our contributions to enhancing lung disease diagnosis and prognosis assessment. 

1.5. Thesis Structure 

The research conducted in this thesis revolves around three main areas: Multimodal 

medical data based on an advanced DL framework for multiclass lung disease classification, 

lung tumor segmentation, and overall stage prediction of lung cancer. The thesis is structured 

into six distinct chapters, as indicated below. 

Chapter 2 comprehensively analyzes the existing literature on identifying and categorizing 

lung diseases using medical imaging techniques, i.e., Chest X-ray images. The second section 

of the literature examines the segmentation techniques employed with multi-modality pictures, 

specifically CT and PET scans. The CT-feature extraction, PET-feature extraction, and feature 

fusion procedures are thoroughly explained. The third section of the literature review examines 

research that explicitly investigates lung cancer stage classification and overall stage prediction 

based on the TNM stage system using both CT imaging and clinical data. The literature 

discusses many methodologies that utilize machine learning (ML), deep learning (DL), transfer 

learning, Vision Transformer (ViT) approaches, applied pre-processing processes, dataset 

robustness, and limitations. 

Chapter 3 proposes a novel DL framework for the multi-class classification of Normal, 

Pneumonia, Lung Cancer, tuberculosis (TB), Lung Opacity, and the latest addition, COVID-

19, from the chest X-ray images. A detailed description of the tremendous datasets from various 

resources used and the pre-processing steps performed on the dataset are also discussed. The 

pseudo-code for the proposed algorithm is given along with the architecture of the proposed 

model. The mathematical notations for the performance metrics used are also explained. 

Furthermore, the results obtained and the accuracy and loss graphs are presented and discussed 
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in detail. Finally, the chapter ends with the conclusion and future scope for classifying chest X-

ray images into different lung diseases, including lung cancer.  

Chapter 4 proposes using an advanced deep learning model called U-net to accurately 

separate lung tumors utilizing multiple types of imaging data, specifically CT and PET scans. 

The intricate structures of the suggested models, which incorporate several fusion approaches 

such as early fusion, late fusion, dense fusion, hyper-dense fusion, and hyper-dense VGG16 U-

Net, are discussed. The merits and disadvantages of each model are emphasized. The findings 

from all the models are compared with the benchmark models. The several loss functions 

employed for model training are examined, and their mathematical expressions are provided. 

Each model's anticipated segmented image is compared to the corresponding ground truth.  

Chapter 5 suggests an innovative method to predict the overall stage of non-small cell lung 

cancer (NSCLC) by employing sophisticated deep learning methods, including Vision 

Transformers, using the multi-input dataset, including radiological and clinical data. The 

chapter discusses the conventional TNM staging approach, the clinical parameters affecting 

stage prediction, and the rationale for using Transformers.  The thorough comprehension of 

lung cancer staging, novel strategies, and explanation of the benefits of Vision Transformers in 

this crucial medical application are discussed. The ViT-based architecture for overall stage 

prediction is presented and discussed in detail. The findings for the TNM staging classifier are 

discussed and compared with the overall stage prediction-based approach and the benchmarked 

models.  

Chapter 6 presents the concluding section and summarizes this research by evaluating the 

effectiveness of the offered techniques and analyzing their practical implications for Lung 

Cancer Diagnosis and Prognosis assessment based on overall stage prediction using multi-

modality imaging and clinical data. It also highlights the limitations and potential future work 

that enhances patient outcomes, facilitates and expedites the diagnosis process, and saves time 

for decision-making. 
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Chapter 2 

2. Literature Review 

2.1. Introduction 

Manually interpreting medical images can be characterized by its time-consuming nature, 

susceptibility to human error, and susceptibility to intra-observer and inter-observer variability. 

In recent years, using artificial intelligence (AI) techniques, namely deep learning models, has 

proven crucial in image processing automation. This development has garnered significant 

interest within the field of medical imaging. Medical imaging has been significantly 

transformed by the widespread adoption of CNNs, which have proven to be highly effective at 

capturing intricate patterns and facilitating the automated identification of diseases and 

anomalies. Recent research has exhibited noteworthy advancements in lung cancer detection, 

segmentation, and classification [12, 13].  

The literature is divided into six sections. Section 2.2. discusses the background. Section 

2.3. provides the literature review of multi-class lung disease classification using DL. Section 

2.4. describes the literature for Lung Tumor Segmentation using Multimodality of Computed 

Tomography (CT) -Positron Emission Tomography (PET) Scans. Section, 2.5. provides 

detailed literature about Non-Small Cell Lung Cancer TNM Classification and Overall Stage 

Prediction Using Vision Transformers. Section 2.6 summarizes the research gaps. Finally, the 

chapter concludes with a summary presented in section 2.7. 

2.2. Background 

Numerous studies have discussed the efficacy of computer-aided diagnoses in the medical 

context, based on collaboration between medical researchers and computer scientists. Certain 

computer-aided diagnosis systems in medicine may be classified as expert systems since they 

seek to replicate the decisions of medical professionals. In addition, computer-aided detection 

systems in medicine can process complicated and large clinical data [14, 15]. Computer-aided 

detection systems can also assist clinicians to gain new insights into data and apply the 

knowledge to improve diagnostic accuracy. As a result, the systems are considered intelligent 

systems since they employ a process of feedback to continuously enhance their performances. 
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Large clinical data is complicated to analyze. Intelligent Computer-aided diagnosis systems 

using data mining, artificial intelligence (AI), and deep learning methodologies are beneficial 

in diagnosing an array of illnesses and medical disorders. 

In the last century, researchers have accumulated substantial knowledge regarding human 

anatomy and physiology.  In recent years, chest X-rays (CXR), ultrasounds, and MRI have 

played vital roles in enhancing the accurate diagnosis of human diseases. Significant 

improvements in healthcare and medical research have helped people to improve their quality 

of life as new technologies have facilitated the accurate diagnoses of patients’ ailments and 

diseases. In the last few decades, medical experts have faced challenges in conducting an 

accurate diagnosis of diseases, which has compounded unnecessary healthcare and malpractice 

claims for both doctors and patients. Machine learning, deep learning, and statistical analysis 

are effective tools for computer-aided diagnosis. These tools are used in solving difficult 

computer vision tasks in medical imaging, such as segmenting lungs, classifying lung diseases, 

and so on. With recent developments in deep learning, machines can perform equally or better 

than humans in a wide range of activities. For example, deep learning can be used to calculate 

treatment outcomes, such as cancer therapy. With huge-labeled datasets and deep learning-

based approaches, promising findings are developed in the categorization of thoracic disorders 

using a CXR modality. In addition, machine learning is the model that can learn and make 

decisions based on a vast number of input data sets. Artificial intelligence performs activities 

that require human intellect, such as voice recognition, translation, and the ability to analyze 

colors and shapes by evaluating incoming data and making predictions. A combination of 

machine learning algorithms, known as deep learning, has demonstrated remarkable success in 

various sectors, particularly in the healthcare sector [14, 15]. Deep learning models can 

accurately predict and categorize numerous diseases, such as tuberculosis (TB), lung cancer, 

pneumonia, and currently COVID-19, using images without human intervention. As the 

network becomes larger, data representation becomes deeper, making deep learning to be more 

effective, contrary to classical machine learning. Consequently, the model automatically 

collects characteristics and generates more accurate outcomes. Since the models use a 

combination of non-linear functions rather than linear functions, deep learning algorithms are 

more accurate than typical machine learning methods.  

In late 2019, the coronavirus (COVID-19) pandemic invaded the planet, leading to an alarming 

scenario. The virus was first formally discovered in Wuhan, China, in December 2019, and the 

World Health Organization (WHO) designated it as an emergency health problem at the 
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beginning of 2020. By March 2020, WHO classified it as a pandemic [16]. The Coronavirus 

causes pneumonia, persistent cough, high fever, and fatigue, among other symptoms. Reverse 

transcription-polymerase chain reaction (RT-PCR) is employed to identify positive cases of the 

virus. However, it can take several hours, even days, to generate results using this form of 

diagnosis. RT-PCRs are both time-consuming and expensive. Subsequently, experts are facing 

significant challenges in developing alternatives via detection technologies. AI is being used to 

automate the diagnosis of many diseases today, and AI has been proven to achieve superior 

performance during automatic image categorization using various machine learning 

algorithms. The detection is based on the image processing and the classification of the features 

extracted from the CXR or CT, as shown in Figure 2.1. Furthermore, machine learning specifies 

models that have the capability of learning and making decisions based on a massive input of 

data samples. 

 

Figure 2.1. Image processing-based classification model 

In the context of deep learning, the extraction and classification of features from images is the 

primary goal. Deep learning has been a huge success in a wide range of industries, including 

healthcare [15]. In addition, deep learning can develop models that can accurately predict and 

diagnose illnesses using images. It has been effective in diagnosing TB [17–22], pneumonia 

[23–30], lung cancer [31–35], and COVID-19 diagnosis without the need for human expertise. 

Unlike traditional machine learning, the fundamental reason behind using deep learning 

techniques is its ability to build the model of input as the size of the network deeply grows. 

Because of this, the model automatically gathers data and generates findings that are more 

accurate. Deep learning models, in contrast to typical machine learning algorithms, describe 

features using a sequence of non-linear functions that are incorporated to optimize the accuracy 

of the utilized model. 
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In 2020, lung cancer ranked as the second most prevalent cancer, accounting for around 

11.4% of all newly identified instances of cancer, with approximately 2.2 million individuals 

affected. Furthermore, it was the primary cause of cancer-related mortality, responsible for 

approximately 18.0% of the deaths caused by cancer globally, resulting in approximately 1.8 

million fatalities. Loss of appetite, exhaustion, chronic coughing, and chest pain are among the 

symptoms of lung cancer, which can cause unimaginable anguish for the sufferer [36]. 

Segmentation of lung tumors, treatment evaluation, and tumor stage classification have 

become significantly more accessible with the advent of PET/CT scans. Moreover, the 

molecular characteristics and anatomic aberrations of the target lesion can be observed with 

PET/CT. PET imaging technique does not involve cutting or surgery. By detecting illness 

markers earlier, PET allows for earlier diagnosis than imaging modalities like MRI and CT 

[37]. Their metabolic processes can be analyzed for their physiological function and 

biochemical features by studying particular organs and tissues. PET can detect molecular and 

cellular levels of tissue metabolism.  

However, multimodality imaging technology, such as PET-CT scanners, has 

simultaneously made it possible to record functional and anatomical information [38]. It is a 

rigorous and time-consuming process for oncologists, radiologists, and pulmonologists’ to 

manually segment the lesions and tumors, leading to delays in therapy and decreased survival 

rates, particularly in clinics with insufficient resources. In addition, specialist knowledge and 

clinical experience are necessary for high-quality manual localization and segmentation. 

Because of this, computer-aided diagnostic (CAD) systems [39] were developed to replace 

radiologists’ manual viewing of lung cancer. Combining lung segmentation approaches with 

radiologists’ knowledge can reduce the burden on radiologists and boost their productivity and 

accuracy. Many recent advancements in image segmentation have allowed for more precise 

and effective treatment and diagnosis. Thresholding, Atlas, and Region Growing are some 

examples of classic automatic segmentation methods. These approaches use shallow qualities 

of an image, such as grayscale, texture, gradient, and many more, to segment the object [40]. 

However, conventional segmentation techniques have difficulty distinguishing between tumors 

and surrounding healthy tissue because their intensity distributions are similar. In addition, 

these tasks typically involve manual processes and are characterized by a significant 

investment of time. Moreover, they are subject to substantial heterogeneity across operators. 
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Furthermore, the complexity of the background in CT images consistently provides quite 

different information when comparing PET and CT scans. As a result of these constraints, deep 

learning-based algorithms have proven to be superior in au-to-segmenting medical images [41].  

Deep learning (DL) models automatically extract features and apply the learned high-

dimensional abstractions for performing segmentation. The effectiveness of fully convolutional 

networks (FCN) for semantic segmentation is promising [42]. In an FCN, the fully connected 

layer is replaced by a convolutional layer. This comprehensive framework has served as the 

foundation for subsequent studies of semantic segmentation of medical images. Medical image 

segmentation commonly uses U-Net [43], built on the FCN architecture. Using skip-connection 

architecture, each layer’s down-sampled features are joined with their up-sampled 

counterparts. This mechanism is similar to an encoder-decoder, but it is more effective and 

doesn’t require a lot of disk space. FCN-based networks, such as U-Net, have surpassed manual 

or semi-automatic segmentation methods since the emergence of big data methods. 

The U-Net architecture is a convolutional neural network (CNN) primarily used to 

recognize image patterns. U-Net semantic segmentation relies extensively on the 

categorization of image pixels. Segmenting lung tumors can be reduced to a 

foreground/background pixel binary classification problem. The down-sampling and up-

sampling module is responsible for the U-Net architecture. The surface layer is where 

localization information is learned, but the down-sampling procedure, also known as the 

pooling procedure, may improve the volume of context data the network learns [43].  

The VGG model investigates the effect of convolutional network depth on recognition 

accuracy in a large-scale setting. The main contribution is a thorough evaluation of increasing-

depth networks using an architecture with 3x3 convolution filters, which shows a significant 

improvement. The VGG model, a kind of CNN, was created to improve model performance 

when more layers are added. The VGG model takes 224x224 color images as its primary input 

and feeds them via a sequence of convolutional layers with filter sizes of 3x3 and 1x1 with the 

stride of 1 and valid padding, as well as Max-pooling with 2x2 with the stride of 2. Finally, a 

three-layer network is developed with a soft-max activation function and 4096 neurons in the 

first two layers, followed by 1000 neurons in the last layer. VGG [44]  presents the two primary 

models, VGG16 and VGG19. In comparison to the VGG-19 network, which has 19 layers of 

typical convolutional networks, the VGG-16 network [44] only has 16, each of which has 33 
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filters and strides of 1. Each of the five blocks is separated from the next by a max-pooling 

layer. There are three interconnected layers on top of the blocks.  

Based on a report published by the American Cancer Society in 2022, it was projected that 

there would be around 1.9 million newly diagnosed cases of lung cancer and a mortality rate 

exceeding 600,000 in the United States. Out of the fatalities, lung cancer was responsible for 

an average daily of 350 deaths [45]. The delayed identification of lung cancer nodules and 

subsequent management of lung cancer patients is associated with elevated mortality rates. 

Typically, those diagnosed with lung cancer face a survival rate ranging from 10% to 16% 

during a five-year period. Nevertheless, the survival rate has the potential to increase to 70% 

in the event of an early diagnosis of lung cancer [46]. Moreover, people whose lung cancer has 

progressed to a later stage have a much lower chance of survival. Prioritizing lung cancer in its 

first stages is imperative to enhance the likelihood of patient survival. In recent decades, 

medical imaging methods have assumed a progressively significant role in the screening, 

prognosis, survival estimation, and early identification of lung cancer, ultimately contributing 

to treatment efficacy and preventative strategies [47]. X-rays are frequently used as a 

preliminary screening for lung cancer as the X-ray modality can reveal lung abnormalities, but 

a CT scan is now considered the gold standard. Nevertheless, due to the two-dimensional nature 

of X-rays, these images cannot precisely determine the specific location of any abnormalities. 

In contrast, CT images are three-dimensional representations that offer comprehensive insights 

into cancer, encompassing critical aspects such as tumor position, morphology, and 

characteristics [48].  

Lung cancer is classified into two distinct categories, with differentiation depending on the 

microscopic characteristics of cancerous cells. There are two primary forms of lung cancer: 

small cell type lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Among these, 

NSCLC is the predominant form, representing approximately 80%–85% of lung cancer 

diagnoses [49]. Both categories are extensions of the TNM system [50]. Medical professionals 

primarily categorize patients into limited and extensive stages in treatment planning for small 

cell lung cancer (SCLC). During the initial phase, neoplasms are localized inside a specific 

thoracic area, such as a solitary pulmonary lesion or a lymph node on the same side. On the 

other hand, the advanced stage of cancer is characterized by the dissemination of malignant 

cells to both thoracic areas and multiple other anatomical sites via metastasis. SCLC is 

characterized by its quick growth and aggressive metastasis, often leading to a fatal outcome 

within a few weeks. Hence, medical professionals must make critical therapy determinations 
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expeditiously. Nevertheless, it is not always true that physicians exclusively adhere to a binary 

classification of small cell lung cancer (SCLC) stages. Occasionally, medical professionals may 

also opt for TNM staging as an alternative to assessing SCLC. The determination of treatment 

varies among individual patients. The medical practitioners use to choose the TNM staging 

instead of evaluating SCLC. However, the selection of treatment options varies with respect to 

individual patients. 

2.3. Multi-Class Lung Disease Classification from 

Chest X-Ray Using DL  

In most countries, chest computed tomography (CT) and X-ray pictures are widely utilized 

as a feasible option for identification of COVID-19. However, COVID-19 identification is a 

complex process that requires clinical imaging of patients [51–57]. Lung cancer represents a 

major source of mortality in humans. The immediate diagnosis could improve human survival 

[31–34]. Applying machine learning and image processing has presented considerable promise 

for lung cancer diagnosis. This section discusses an exhaustive evaluation of deep learning 

models for TB, COVID-19, lung cancer, and pneumonia. Transfer learning methods, such as 

VGG-16, ResNet-50, and InceptionV3, to clinical pictures of lung illnesses and COVID-19 has 

offered promising results [18]. It is discovered that pneumonia is among the significant 

symptoms of COVID-19. Transfer learning helps discover that the same virus causes 

pneumonia and COVID-19. The following subsections describe the literature for COVID-19, 

lung cancer, pneumonia, and TB detection. 

2.3.1. Covid19 Detection  

A study demonstrates that the information obtained by a model trained to detect viral 

pneumonia may be applied to identify COVID-19 [56]. As a result, Haralick features can be 

used to facilitate feature extraction. This approach involves statistical analyses that focus on a 

specific area of COVID-19 diagnosis. In comparison to the traditional classifications, transfer 

learning has consistently proven to offer statistically significant outcomes [56]. Some studies 

developed and analyzed a fully automated COVID-19 detection framework utilizing CTX. To 

diagnose COVID-19, the visual features were extracted from volumetric chest CT images using 

COVID-19 neural network approach. The outcomes show that the approach has outperformed 

the existing work. Pre-trained models-based CNN architecture such as Inception-ResNetV2, 

ResNet152, ResNet50, InceptionV3, and ResNet101 was used in related work to identify 

COVID-19 pneumonia based on the CXR images. Among the existing models, the ResNet50 
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exhibited the most accurate classification outcomes [53]. The comparison and modeling were 

based on CT images of 101 pneumonia, 88 COVID-19 patients, and 86 healthy cases from two 

areas in China. A detailed relation extraction neural network (DRENet) learning-based CT 

diagnostic algorithm identified COVID-19 patients. The model correctly distinguished 

between COVID-19 patients with a recall of 0.93, AUC of 0.99, and accuracy of 0.96. The 

research showed that deep learning based on CT scans may help to detect COVID-19 patients 

and automatically identify possible abnormal changes. Another study categorized COVID-19 

CXR images by applying modified MobileNet and a ResNet architecture. With this approach, 

characteristics from multiple CNN layers are dynamically combined to overcome the gradient 

vanishing problem. The proposed approaches outperform the current methods by 99.3% on the 

CT image dataset and by 99.6 % on the CXR [54]. 

Some studies developed a model to distinguish between critical and severe COVID-19 

instances using deep learning characteristics and radionics based on D-Resnet [52, 58]. These 

authors studied 217 individuals in three Chinese hospitals, 82 with extreme severity and 135 

with serious disease. The patients were grouped into two (174 patients) for training and (43 

patients) for testing. The authors created a 3-dimensional deep learning network using the 

clipped segments and multivariable logistic regression to integrate relevant radiomics 

characteristics and deep learning scores. To test the robustness of their methods, they used 

stratified analysis, cross-validation, decision curve analysis, and survival analysis. An AUC of 

0.909 distinguishes between critical patients in the test and training groups [58]. Another study 

applied InceptionV3, NASNet, Xception, DenseNet, MobileNet, VGGNet, 

InceptionResNetV2, and ResNet for classifying the COVID-19, which was tested on the mixed 

dataset of CXR and CT images. DenseNet121 offered the best performance with an accuracy 

of 99% [52] 

Image segmentation is used to categorize chest CTX into pneumonia, COVID-19, and 

normal illnesses using four CNN base learners, a modified stack ensemble model, and Naive 

Bayes as the meta-learner in one research. For COVID-19, pneumonia, and normal classes, the 

suggested technique beats current techniques by .9867 on standard datasets and 0.98 Kappa on 

the same datasets [59] based on CT scans. By reducing manually labeled CT images, the 

suggested technique may accurately detect COVID-19 infections and rule out the case of 

COVID-19. Based on the positive qualitative and quantitative results, the recommended 

approach is widely used in large-scale clinical trials [60]. The convolution neural networks are 

effective in converting 360 X-ray and CT scan pictures into a categorization on a binary class 
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pneumonia-based translation of decision tree, Inception V2, and VGG-19 models. Compared 

to decision tree (60%) models and Inception V2 (78%), the fine-tuned version VGG-19 (91%) 

exhibits the greatest increase in training and validation precision [60]. 

The GSA-DenseNet121-COVID-19 is a unique mixed CNN architecture that utilizes 

DenseNet121 and the optimization technique of gravitational search (GSA). The DenseNet121-

COVID-19 could identify COVID-19 better than other DenseNet121, which could only 

diagnose 94% of the test set. The suggested method was contrasted with an Inception-v3 CNN 

architecture and manual analysis when computing hyperparameter estimates. The GSA-

DenseNet121-COVID-19 outclassed the comparison technique, which could only categorize 

95% of the test set samples [61].  

EfficientNet-based pre-trained models were lowered using kernel principal component 

analysis. Then, multiple retrieved features were merged using a feature fusion technique. 

Finally, stacked ensemble meta-classifiers were used to classify the model into two stages. 

Predictions were made in the first step using a support vector machine (SVM) and a random 

forest, which were then pooled and fed into the second stage. Next, a logistic regression 

classifier divides the X-ray and CT data into two classes (COVID and NON-COVID). The 

model’s performance was compared to other CNN-based pre-trained models. The new model 

outperforms previous approaches and may be used by clinicians for point-of-care diagnosis 

[62]. In a comparable work, researchers used ResNet32 and the deep transfer learning 

technique to categorize COVID-19-infected patients, and the results were published. 

Comparing the COVID-19 classifier to earlier supervised learning models, experimental data 

demonstrated that it delivered superior outcomes when compared to previous learning models 

[63]. 

A cutting-edge attention-based deep learning model with VGG-16 and a fine-tuned 

classification process was designed using a unique deep learning model that uses a convolution 

layer of the VGG-16 models for COVID-19. The experimental analysis shows steady and 

promising performance after comparing the suggested approach to the existing models [64]. 

The integrated stacking deep convolutional network using pre-trained models like ResNet101 

and XceptionV3 was applied for InstaCovNet-19. The accuracy of .99 for three classes 

(Normal, Pneumonia, COVID-19) and .9953 for two classes (COVID, non-COVID) is 

achieved. In ternary classification, the suggested model obtained 98% accuracy, whereas binary 

classification achieved 100% precision and 98% recall [64].  
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The CNN is used to implement binary and multiclass classification. The model was trained 

on 3877 CT and X-ray pictures, of which 1917 were of COVID-19-affected people. The binary 

classifier achieved a 99.64% accuracy and exhibited a 99.58% recall, a 99.56% precision, a 

99.59% F1 score, and a 100% ROC. The model was trained with 6077 photographs. A total of 

1917 patients were of Covid-19 infected patients, 1960 healthy people, and 2200 pneumonia 

patients. The suggested technique obtained 98.28% accuracy, 98.25% recall (or sensitivity), 

98.22% precision, 98.23% F1-score, and 99.87% ROC for multiclass classification [65]. 

2.3.2. Lung Cancer Detection 

The early detection of lung cancer increases survival chances from 14% to 49%. Although 

CT approaches are found to deliver more accuracy than X-rays, a conclusive diagnosis relies 

on many imaging modalities. An artificial DNN can spot lung cancer in CT images. Therefore, 

studies have proposed an adaptive boosting technique and a DenseNet to classify the lung 

image as normal or malignant. A total of 201 lung pictures have been included in the training 

dataset, with 85 percent of them being utilized for training and 15 percent being used for testing 

and classification. The proposed approach was shown to achieve a 90% accuracy in testing 

[34]. The MLP classifier offered a higher accuracy of 88.55% than the alternative classifiers, 

according to the outcome of the analysis of a study [33]. The CNN, DNN, and sparse auto-

encoder deep neural networks were employed to identify lung cancer calcification. CT scans 

of benign and malignant lung nodules were classified using these networks. The Lung Image 

Database Consortium image collection (LIDC) database examined the networks where 

accuracy was 84.15%, sensitivity 83.96%, and specificity 84.32% [32]. CNN was the most 

accurate of the three networks. Another work applied Optimal Deep Neural Network (ODNN) 

and Linear Discriminate Analysis (LDA) to evaluate CT lung images that reduce the 

dimensionality of deep features. The ODNN is used with CT scans and optimized using the 

Gravitational Search Algorithm to classify lung cancer, thereby offering 96.2% sensitivity, 

94.2% specificity, and 94.56% accuracy [31]. 

2.3.3. Pneumonia Detection 

Since medical specialists face challenges in distinguishing between COVID-19 and 

pneumonia, one study utilized an artificial neural network, ensemble classifier, SVM, and KNN 

for categorization. However, a RNN with a LSTM has been proposed as a deep learning 

architecture to identify lung conditions. The outcomes of the experiments demonstrated the 

resilience and effectiveness of the suggested model [30]. Another work uses an ensemble of 

InceptionResNet_V2, ResNet50, and MobileNet_V2 for classifications. The outcomes 
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revealed that the ResNet50, MobileNet_V2, and InceptionResNet_V2 models provide an F1 

score of 94.84%, which is higher than other models [29]. In addition, the CNN with pre-trained 

weights is utilized to categorize COVID-19, pneumonia, and healthy individuals using transfer 

learning techniques. Those who have active SARS-CoV-2 and pneumonia were accurately 

categorized in the dataset, which is one of the most important discoveries of that work [25]. 

Another study examined the potential of using machine learning to delineate and pinpoint 

pneumonia in CXR using RetinaNet and Mask R-CNN as an ensemble for the identification 

and localization of pneumonia, thereby achieving a recall of 0.793 for a large dataset [28]. For 

a variety of lung diseases, the transfer learning approach was used to capture images on CXR 

and CT. As COVID-19 resembles pneumonic viral lung illness, COVID-19 detection is 

challenging and relies on a thorough examination of a patient’s clinical pictures. The goal is 

attained using a novel architecture trained to identify virus-related pneumonia for COVID-19 

detection. When compared to traditional categories, the findings of transfer learning are 

strikingly different [27].  

One study develops the CNN model from scratch to extract characteristics from an image 

of pneumonia infected person’s chest X-ray and categorize it. This concept might alleviate 

some of the issues associated with dealing with medical images. It is difficult to obtain a 

significant number of pneumonia datasets for this classification assignment due to the limited 

availability of such data. Multiple data augmentation strategies were used to increase the 

accuracy of the training and validation classification of the proposed model. This has achieved 

a significant precision of 0.94814 in the validation phase [26]. The transfer learning system 

automatically differentiates between 3883 CXR pictures classified as exhibiting pneumonia 

and 1349 that are designated normal. As an initialization, the suggested technique makes use 

of weights pre-trained on ImageNet using the Xception Network. When compared to current 

approaches, the model is competitive in obtaining 0.84, 0.91, 0.99, and 0.97 for precision, 

recall, F1, and ROC, respectively [24]. In a separate study, researchers studied 180 X-ray 

images of persons who had been infected with COVID-19. The research attempted to employ 

the most successful systems, such as ResNet50V2 and Xception networks, to detect the virus. 

Overall, the suggested model achieved a 91.4% accuracy for all classes and a 99.50% accuracy 

for instances of COVID-19 [23].  

2.3.4. Tuberculosis Detection 

Using a CXR dataset from the National Library of Medicine Shenzhen No.3 Hospital, 

researchers developed a DCNN model to detect tuberculosis. This dataset was compared with 
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a non-TB-specific chest X-ray dataset of a different population. The DCNN offered an AUC of 

0.9845 and 0.8502. The AUC of the supervised DCNN model in the CXR dataset, on the other 

hand, was much lower, at 0.7054, than in the other datasets. A total of 36.51% of aberrant 

radiographs in the CXR dataset associated with tuberculosis were predicted by the final DCNN 

model [17]. 

Another study combined ResNet and depth-ResNet to predict severity scores and analyze 

TB’s likelihood. A depth-ResNet of 92.70% and ResNet-50 of 67.15% were produced for TB 

detection. The study used the overall severity probability, different likelihoods for high severity 

(1 to 3 scores), and low severity (4 and 5 scores), where scores of 1 to 5 were converted into 

the probabilities of 0.9, 0.7, 0.50, 0.30, and 0.2. A 75.88% and 85.29%, respectively, are the 

averaged accuracies for both approaches [18]. Other studies proposed three standard designs 

in the ensemble technique, namely AlexNet, GoogleNet, and ResNet. As a result, a new 

classifier for TB categorization has been developed from scratch. A combined dataset of 

publicly accessible standard datasets is used to train and test the suggested approach. Accuracy 

of 88% and the AUC of 0.93%, which is better than most existing approaches, are achieved 

[19].  

The hierarchical feature extraction for abnormality detection method uses two levels of 

hierarchy to classify characteristics into healthy and unhealthy categories. Two levels of feature 

extraction are identified: level one is handmade geometrical feature extraction, and level two 

is typical statistical feature extraction and textural feature extraction from segmented lung 

fields. They were tested on 800 CXR images derived from two public datasets to verify their 

performance. AUC = 0.99 0.01 for Shenzhen and 0.95 0.06 for Montgomery, which illustrated 

that the two TB detection approaches offered a promising performance as compared to the 

existing techniques, as demonstrated by the obtained findings. Furthermore, Friedman's 

posthoc multiple comparison methods are demonstrated to statistically validate the suggested 

method [20]. Latif et al. [66] automate the diagnosis procedure of pneumonia using image 

processing techniques. It presents a suggested and realized automated method for accurately 

diagnosing pneumonia utilizing images from the DICOM chest X-ray collection. This research 

presents a pneumonia diagnosis system with enhanced deep residual networks (ResNet) 

architectures. The system is evaluated using a dataset of 30,227 DICOM Chest X-rays. Two 

residual network models, Version 1 and Version 2, were employed. Additionally, the outcomes 

were compared with three distinct CNN models and methodologies discovered in recent 

scholarly works. The findings demonstrate that the proposed ResNet (Version 2) technique 
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attains superior accuracy compared to CNN and other previously suggested approaches. The 

ResNet model attained an average accuracy of 88.67% after 80 epochs. The reviewed studies 

about chest disease detection and classification are summarized in Table 2.1. 

Table 2.1. Literature summary for multi-class lung diseases classification 

Disease Study Method Medical 

Image 

Performance 

Acc. Prec. Sens. 

COVID-19 [56] VGG-16, ResNet-

50, InceptionV3 

CXR+CT 93 91 90 

[58] VGG-19+ 

ResNet-50 

CT 94 95 90 

[55] DRE-Net CT 86 96 93 

[54] Modified ResNet CXR+CT 99.3 99.7 99.1 

[53] ResNet50 CXR 96.1 76.5 91.8 

[52] DenseNet121 CXR+CT 98 96 96 

[51] VGG-16 CXR 98.67 100 98 

[58] D-Resnet-10 

network 

CT 81.4 79.8 87.5 

[59] VGG+CNN CT 96.2 97.3 94.5 

[60] VGG-16, 

InceptionV2, DT 

CXR+CT 91 94 97 

[61] GSA-

DenseNet121 

CXR 98.38 98.5 98.5 

[62] Deep learning 

Meta classifier 

CXR+CT 99 99 99 

[63] ResNet32+DTL CT 93 95 91 

[67] VGG-16 CXR 79.58 92 95 

[64] InstaCovNet-19 CXR 99.08 99 99 

[68] CNN CXR+CT 98.28 98.22 98.25 

Lung 

Cancer 

[34] FPSO-CNN CT 95.62 96.32 97.93 

[33] Multi-layer 

Perceptron (MLP)  

CT 88.55 86.59 89.84 

[32] CNN CT 84.15 84.32 83.96 
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[31] MGSA CT 94.56 94.2 96.2 

Pneumonia [30] RNN-LSTM CXR 95.04 88.89 95.41 

[29] ResNet50 

+MobileNetV2+ 

InceptionResNetV

2 

CXR 95.09 95.53 94.43 

[25] CNN with pre-

trained weights on 

ImageNet 

CXR 91 92 87 

[28] RetinaNet and 

Mask R-CNN 

CXR 83.80 75.8 79.3 

[27] Transfer learning CXR+CT 94.9 93 93 

[26] CNN CXR 93.73 - - 

[24] Xception Network 

pre-trained 

weights on 

ImageNet 

CXR 97.3 84.3 99 

[23] Xception+ResNet

50V2 

CXR 99.50 92.69 80.53 

Tuberculosis [17] DCNN CXR 98.45 82 72 

[18] Depth-ResNet CT 85.29 - 84.16 

[19] Ensemble 

(AlexNet, 

GoogleNet and 

ResNet) 

CXR 88.24 88.0 88.42 

[20]  

(SVM+FOSF+GL

CM) 

CXR 99.40 99.42 99.40 

Lung 

Opacity                      

[66] 

ResNet CXR 88.67 - - 
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2.4. Lung Tumour Segmentation using Multimodality of 

CT-PET Scans 

CT and PET imaging are used in various research papers because of the unique insights they 

provide into the structure and function of the human body, respectively. Combining the two 

allows for the early detection of even the tiniest lung tumors. This section provides the detailed 

literature for lung tumor segmentation using multimodality imaging CT and PET. 

Wang et al. [69] advised a DL-based dual-modality approach using CT and PET scans to 

develop an automated segmenting of lung tumors for radiation therapy planning. Two distinct 

convolution routes were built into the 3D convolutional neural network for extracting features 

at different resolutions from the PETs and simulated CTs, and a single deconvolution path was 

also built into the network. Tumour segmentation via skip connections at each granularity was 

achieved by aggregating the obtained characteristics from the convolution arms and feeding 

them into the deconvolution pathway. A panel of oncologists judged the medical effectiveness 

of the network-generated segmentation strategy. While this work has many promising 

applications, it does have some caveats. The network may struggle to produce precise 

segmentations when tumor edges are not precise on CT or PET.  

Park et al. [70] presented a two-stage Unet model to boost the segmentation effectiveness 

of lung tumors by utilizing [18F]FDG PET/CT, as precise segmentation is necessary for 

determining the functional size of a tumor in this imaging modality. The LifeX program was 

used to create the tumor volume of interest. In the first step, a 3D PET/CT volume is used to 

train a global U-net, based on which a 3D binary volume is then retrieved to serve as an initial 

representation of the tumor’s region. In the second stage, the PET/CT slice identified in Stage 

1 is sent to the U-net, generating a 2D binary image centered on the eight adjacent slices. The 

major drawback of the research is the lack of a 3D volume as the final result of the suggested 

approach. It may cause the coronal and sagittal slices to have gaps between the binary 

segments. 

Xiang et al. [71] recommended a modality-specific segmentation network (MoS-Net) to 

segment lung tumors. To better understand the differences between PET and CT scans, MoSNet 

is taught to use modality-specific representations. In contrast, modality-fused representations 

are employed to convert the typical characteristics of lung tumors in both scan types. The 

authors suggest an adversarial approach that uses an adversarial purpose concerning a modality 
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discriminator and a reserved modality common illustration to reduce the modality difference’s 

approximation. As a result, the network’s ability to represent data for the segmentation in PET 

and CT scans is enhanced. By generating a map for each modality, MoSNet can explicitly 

quantify the weights for the attributes in each modality. However, the limitation of the research 

is that the proposed approach is developed for 2D thorax PET-CT slices. 

Fu et al. [72] proposed a DL system for lung cancer segmentation, i.e., a multi-modal spatial 

attention module (MSAM). It is trained to highlight tumor-related regions selectively and 

downplay those physiologically rising from the PET scans. Next, using the created spatial 

attention maps, a CNN core is trained to focus on areas of a CT image with a higher propensity 

for tumors. The drawback of the research is that the datasets used only had one observer define 

the outlines. If numerous observers had been used to reach a consensus segmentation, things 

would have gone much smoother. Because of the potential vagueness of the related 

thresholding approach used to create the ground truth for the NSCLC dataset, the segmentation 

outputs require human adjustment to correct for incorrectly categorized ROIs. 

Zhong et al. [73] provided an innovative method for lung tumor segmentation by bringing 

together a robust FCN-based 3D-Unet and a graph-cut-based co-segmentation model. Initially, 

high-level discriminative features for PET and CT images are learned by independently training 

two distinct deep Unets on the data sets. These features then create tumor/non-tumor masks 

and probability maps. The final tumor segmentation findings are obtained using the PET and 

CT probability mappings in a graph-cut-based co-segmentation model. Despite fusing their 

extracted features, the research has given different results for CT and PET. 

Hwang et al. [74] recommend a new network architecture called 3C-Net, which uses 

numerous contexts in three distinct ways. Two decoders in the network are implemented to 

exploit inter-slice contextual information: a segmentation decoder and a context decoder. The 

context decoder receives the inter-slice difference features and uses them to predict the 

segmentation mask’s inter-slice difference. Having this 3D background information for each 

slice helps in attention direction. The prediction results from each decoder stage were used to 

derive a loss function for network optimization. Since two modalities are used, i.e., PET/CT 

data, a co-encoder block is implemented to extract mutually reinforcing features from both 

modalities while simultaneously acquiring contextual knowledge about them. Weights for both 

CT and PET were modified twice in co-encoder blocks. The co-encoder blocks take in relevant 

data from both modalities, allowing for interaction while maintaining spatial and structural 
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coherence. The encoder additionally includes an Asterisk Spatial Pyramid Pooling (ASPP) 

block in its final step. The ASPP block aids the network in increasing the scope of its 

observations and avoiding the loss of spatial context, which allows the recording of visual 

context at various scales.  

Kumar et al. [75] improve the multimodality of PET-CT fusion using CNN, which learns to 

fuse complementary information. The proposed CNN stores modality-specific characteristics 

before deriving a spatially variable fusion map. It allows quantifying the relevance of each 

modality’s characteristic across various spots. Moreover, multi-plying the fusion maps with the 

modality-specific feature maps yields representations of the complementary multimodality 

data at various positions. The recommended CNN is tested on PET-CT scans of lung tumors, 

where its ability to detect and separate many regions with variable fusion needs is evaluated.  

Jemaa et al. [76] demonstrated a comprehensive strategy employing 2D and 3D CNN for 

rapid tumor classification and metabolic data retrieval from whole-body FDG-PET/CT images. 

This architecture is relatively economical in terms of tumor load, healthy tissue volume, and 

the intrinsic heterogeneity of the input images. This is especially important for whole-body 

scans due to their vast size and high asymmetry.  

Zhao et al. [77] developed a novel multimodality segmentation approach that utilizes a 3D 

FCN and simultaneously includes PET and CT data in tumor segmentation. Initially, the 

network underwent a multitask training phase, during which two parallel sub-segmentation 

architectures, each built with a deep CNN, were learned to generate map-like features from 

both modalities. The PET/CT feature maps’ characteristics were re-extracted using a weighted 

cross-entropy reduction technique, and a feature fusion component was then constructed using 

cascaded convolutional modules. The softmax function was also used to generate the cancer 

mask as the network’s final output. The research lacks an automatic setting of the weighting 

parameters of the loss functions, which can affect performance. Also, more effective ways for 

feature extraction can increase the segmentation's performance. 

Using W-net, Zhong et al. [78] evaluate 3D Deep Fully Convolutional Networks (DFCN) 

for tumor co-segmentation on dual-modality NSCLC and PET-CT images. CT and PET data 

are combined to understand NSCLC tumors in PET-CT scans better and apply DFCN co-

segmentation. The recommended DFCN-based co-segmentation approach uses two connected 

3D-UNets with an encoder-decoder to exchange complementing data between PET and CT.  
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Bi et al. [79] developed a hyper-connected fusion model that uses a CNN-TN fusion encoder 

and a CNN-TN fusion decoder. With hyper-connections between them, the encoder splits into 

three forks to independently handle PET, CT, and combined PET-CT scans. The transformer 

encoders process the encoded image embeddings to learn complimentary characteristics in a 

long-range dependency between the PET, CT, and concatenated PET-CT images. The 

transformer decoder combines the learnt embeddings to find characteristics important for 

segmentation, which are subsequently transformed into a 2D feature map. The segmentation 

results are then up-sampled using a convolutional neural network. The data came from the soft-

tissue sarcoma databases. The data showed that the model’s dice had a probability of 66.36%. 

The summary of the literature research on lung tumor segmentation models is listed in Table 

2.2. 

Table 2.2. Summary of literature on lung tumor segmentation models using 

multimodality 

Author Year CT-only Extractor 
PET-only 

Extractor 

Feature 

Fusion 

Dataset 

Description 

Wang et al. [69] 3D CNN 3D CNN 3D CNN 

Private clinic 

dataset 

comprising 290 

pairs of CT and 

PET. 

Park et al. [70] Global Unet Global Unet 
Regional 

Unet 

Private data of 

887 individuals 

with lung 

cancer. 

Xiang et al. [71] 
Dual-stream 

encoder 

Dual-stream 

encoder 

Decoder 

branch 

126 PET-CT 

scans 

containing 

NSCLC 

Fu et al. [72] 
Encoder-decoder 

backbone CNN 

Multimodal 

spatial 

attention 

CNN 

architecture 

containing 

Two clinical 

PET-CT 

datasets of 
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Author Year CT-only Extractor 
PET-only 

Extractor 

Feature 

Fusion 

Dataset 

Description 

module 

(MSAM). 

skip 

connections. 

NSCLC and 

STS 

Zhong et al. [73] 3D-Unet 3D-Unet 

graph-cut-

based co-

segmentation 

model 

PET-CT scans 

from lung 

cancer patients 

Hwang et al. 

[74] 
Shared co- encoder 

Shared co-

encoder 

Shared co-

encoder 

F-18-FDG 

PET/CT scans 

from a private 

hospital 

Kumar et al. 

[75] 

An encoder using 

multiscale output 

An encoder 

using 

multiscale 

output 

Decoder 

using 

multiscale 

multimodal 

input 

Biopsy-proven 

NSCLC FDG 

PET-CT scans. 

Jemaa et al.  

[76] 
- - 

2D U-Net 

and  selected 

VNet 

Patients with 

non-lymphoma 

Hodgkin’s and 

NSCLC, which 

includes 3664 

FDG-PET/CT 

images from 

head to toe. 

Zhao et al.  [77] VNet VNet 

Voxel-wise 

addition, 

along with 

VNet 

Private clinical 

dataset having 

3D PET/CT 

images. 

Zhong et al. [78] 
An encoder using 

multiscale output 

An encoder 

using 

multiscale 

output 

Decoder 

using 

multiscale 

NSCLC 

patients who 

received 

stereotactic 
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Author Year CT-only Extractor 
PET-only 

Extractor 

Feature 

Fusion 

Dataset 

Description 

multimodal 

input 

radiation 

treatment 

Bi et al. 

[79] 
CNN-TN Encoder 

CNN-TN 

Encoder 

TN-CNN 

decoder 

Non-small cell 

lung cancer 

(NSCLC) and 

one soft-tissue 

sarcoma (STS) 

dataset. 

 

2.5. Non-Small Cell Lung Cancer TNM Classification and 

Overall Stage Prediction Using Vision Transformers 

This section is divided into three subsections: one section will be lung cancer detection using 

vision transformers, and the second section will be based on TNM stage classification. 

2.5.1. Lung Cancer Detection Using Vision Transformers 

Nevertheless, the emergence of transformers has informed researchers about a significant 

limitation of CNNs: their inability to capture long-range dependencies effectively. This 

limitation pertains to the challenges of extracting contextual information and identifying non-

local correlations among objects.  Malaviya et al. [80] proposed a vision transformer model 

utilizing CT data. The initial stage involved the classification of CT images from the dataset. 

To effectively tackle the initial training model's limitations, a segmentation method was utilized 

to partition the image into smaller patches. The image has been divided into smaller sections 

to efficiently process it using the transformer encoder. This approach allows the training 

process to proceed promptly while accounting for the variability in the images. The output of 

the transformer model has been designated as the multi-layer perceptron head. By employing 

the recommended model, the accuracy of 91.93% through rigorous training of 100 epochs is 

attained. The limitation of the recommended technique is its relatively lower level of precision 

when compared to other established methods. Another limitation is the computational expense 

associated with the function, which exceeds that of systems constructed using CNNs. 
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Similarly, Liu et al. [81] introduce a unique architectural framework, Res-trans networks, for 

classifying CT images for lung cancer. The authors employ various methodologies to 

investigate the research question. The utilization of local and global blocks was employed to 

extract features that efficiently maintain the interconnections among pixels. The researchers 

have devised residual blocks employing convolutional operations to extract local features. 

Furthermore, the construction of transformer blocks includes the utilization of self-attention 

processes to capture global properties efficiently. In addition, the Restrans network integrates 

a sequence fusion block that efficiently merges and extracts the sequence data produced by the 

transformer. The tenfold cross-validation results on the LIDC-IDRI dataset demonstrate that 

the suggested method achieves superior performance, with an AUC of 0.9628 and an Accuracy 

of 0.9292. However, a potential weakness of this study is the utilization of subjective malignant 

labeling to train the model. 

Wang et al. [82] also aim to classify lung nodules on CT images using a CT image-based 

transformer model, TransPND. The model uses a 2D Panning Sliding Window technique to 

enrich data, focusing on local features. The encoder component of TransPND can be subdivided 

into two distinct sections: the Self Attention Encoder and the Directive Class Attention 

Encoder. The self-attention process in the self-attention encoder resembles the conventional 

approach, but it integrates Local Diagonal Masking (LDM) as a means to determine the 

position of attention. The DCA method directs attention towards local features while reducing 

computational burden. The Weight Learning Diagonal Matrix regulates residual connections in 

both stages. Extensive tests on the LIDC-IDRI dataset show a precision rate of 93.33 %. 

2.5.2. Lung Cancer TNM Stage Classification 

A limited number of researchers have devised methodologies for classifying lung cancer stages. 

Several techniques in this research are derived from emphasizing basic image processing 

methods, explicitly emphasizing the T descriptor. These techniques involve calculating 

parameters such as area, perimeter, and eccentricity. These approaches have been previously 

discussed in references [83–85]. Additional strategies involve utilizing convolutional neural 

network (CNN) based algorithms specifically emphasizing T or N descriptors. The studies 

[86]propose a convolutional neural network (CNN) approach in a two-dimensional (2D) 

framework for the classification of T categories, specifically distinguishing between T1/T2 and 

T3/T4. The researchers employed FDG PET/CT data and obtained 82.6% average accuracy 

with cross-validation. The final model yielded a test accuracy of 69%. The current approach is 

limited to binary categorization and does not account for individual T-class distinctions. 



 

 

31 

 

Furthermore, since all three labels are required for accurate TNM staging, the above method 

omitted the N and M descriptors. 

To classify the T-stage of lung cancer, researchers have devised a method based on a double 

convolution neural network, as described in references [87]. Nevertheless, it may fail to 

account for certain T-phases and N, M stages. In their study, Paing et al. [88] provide a 

methodology for the identification and stage classification of lung cancer. This methodology 

utilizes five distinct methods: the Support Vector Machines, K-nearest neighbor, Neural 

Networks (NN), decision tree, and ensemble tree. The researchers employed four distinct 

datasets, and NN attained the highest accuracy of 90.6% for classifying a total of seven T-

stages. 

The study by Zhao et al. [89] proposes a novel approach that utilizes cross-modal 3D DL 

techniques to predict lymph node metastasis in patients diagnosed with clinical stage T1 

adenocarcinoma. The researchers integrate previous clinical characteristics acquired by 

combining the clinical data with the image features. The researchers conducted an experiment 

using a dataset obtained from a privately owned hospital, resulting in an accuracy rate of 87.6%. 

There is a limited availability of studies that suggest a comprehensive classification system for 

the TNM staging of lung cancer, with Moitra et al. [90] being the sole identified study that 

considers all three descriptors (T, N, and M) for this purpose. The researchers utilize an openly 

accessible dataset known as NSCLC-Radiogenomics [91]. The authors present a 1D CNN as a 

potential approach to classifying the lung cancer TNM stages and histological grading. The 

characteristics of the tumor have been derived from the delineation of PET/CT images of the 

patients.  

Tyagi & Talbar [92] aim to provide a new and effective method for categorizing the stages of 

lung cancer using the TNM criteria. A multi-level 3D deep CNN called Lung Cancer, Stage 

Classification Network, is recommended. The recommended network architecture has three 

classifier networks, each designed to classify T, N, and M-labels. Firstly, the data pre-

processing stage involves augmenting the CT images and processing the label files to extract 

the necessary TNM labels. The classification network employs a DCNN incorporating a 

contemporaneous squeezing and excitation element and asymmetric convolutions to categorize 

each label separately. The overall stage is determined by combining all three descriptors. The 

simultaneous squeeze and excitation unit improves the algorithm's classification accuracy by 

enabling it to concentrate on the crucial information in the image. Asymmetric convolutions 
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are utilized to reduce the computationally complex nature of the network. The average accuracy 

for the T-Stage classification was 96.23%, the N-Stage classification was 97.63%, and the M-

Stage classification was 96.92%. Furthermore, a classification accuracy of 97% is achieved for 

the overall stage categorization. 

The classification process necessitates some fundamental characteristics, followed by 

considering a one-dimensional aspect. The implementation of CNN obtains the final 

classification results. The researchers have attained a mean accuracy rate of 96%, indicating a 

commendable level of performance. This technique offers several benefits, including a 

streamlined model, reduced computational requirements, and exceptional precision. 

Nevertheless, this approach has certain disadvantages, including the need for extensive human 

pre-processing of the data before its application in a Convolutional Neural Network (CNN). 

Initially, the tumor regions undergo segmentation; then, characteristics are extracted from these 

regions. Subsequently, a manual selection process is employed to identify relevant features for 

classification. In addition, they used segmentation to isolate the tumor, which prevents 

examination of adjacent structures for staging purposes. In addition, it is imperative to consider 

various metastasis forms when assessing M-staging. In the case of brain metastasis, medical 

professionals choose to utilize a brain magnetic resonance imaging (MRI) scan. However, in 

the case of other forms of metastasis, such as adrenal metastasis and liver metastasis, a 

comprehensive CT scan is necessary to examine several organs for metastatic growth. 

Segmenting lymph nodes or liver tumors that have metastasized from lung cancer poses a 

significant challenge throughout lung tumor segmentation. Information about the T, N, and M 

stages cannot be adequately determined based only on the excised tumor region. The primary 

objective of this study was to rectify the insufficiencies identified in previous research about 

the categorization of lung cancer staging and forecasting of the overall stage.  The constraints 

observed in previous studies are attempted to address by employing direct overall stage 

prediction utilizing Vision Transformer architecture. 

2.6. Summary Of Research Gaps  

The literature review reveals several significant gaps in current research on lung disease 

diagnosis, tumor segmentation, and staging of lung cancer.  

 From the literature review, most existing studies focus on binary classification architectures 

for lung disease diagnosis using X-ray imaging (e.g., [19, 26, 28, 53]). While binary 
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classification provides effective results, it limits the model’s ability to learn complex patterns 

due to the reduced number of classes. This simplified approach makes the model less capable 

of capturing diverse patterns, and as the number of classes increases, the model's performance 

tends to degrade. Additionally, in binary classification, the starting baseline accuracy during 

testing is inherently 50% due to the limited number of outcomes. While this simplifies the 

classification task and often leads to seemingly high-performance metrics, it fails to challenge 

the model to learn the intricate and overlapping patterns that are critical in distinguishing 

between multiple diseases. This lack of complexity in binary architectures ultimately limits 

their applicability in scenarios requiring the accurate classification of multiple conditions, 

where precise differentiation is essential for timely and effective treatment. Although several 

attempts have been made to develop multi-class architectures for lung disease classification, 

including lung cancer, using CT scans, no existing work integrates lung cancer diagnosis into 

multi-class lung disease architectures based on X-ray imaging. This gap is critical, as X-rays 

are widely used as a first-line diagnostic tool globally. The overlapping characteristic patterns 

of lung cancer with other lung diseases such as similar shadowing, nodules, or opacity patterns 

on X-ray images can delay its detection due to misinterpretation or failure to distinguish 

between conditions. This delay can result in lung cancer being identified at more advanced 

stages, reducing the effectiveness of treatment and impacting patient outcomes. Thus, there is 

an urgent need for a comprehensive multi-class classification architecture that includes lung 

cancer alongside other lung diseases. This approach will allow for diagnosis at an earlier stage 

and the enhancement of treatment pathways, filling an important gap in the existing literature. 

Although the majority of the existing literature on lung tumor segmentation is concerned with 

primary lung tumors, metastatic tumors, especially soft tissue sarcoma that originate from 

outside the lung sites and metastasize to the lung, are rarely addressed. The imaging 

characteristics of primary and secondary lung tumors, are different. Primary tumors usually 

have borders that are well defined and follow a predictable standard pattern, and secondary 

metastatic STS, on the other hand, may be irregularly shaped with association of complex 

boundaries and have features of surrounding lung tissue. These differences make it impossible 

to use traditional segmentation methods in the accurate identification of metastatic STS. The 

challenges arise as a result of their heterogeneous appearance and tendency to integrate with 

adjacent lung tissue, which may result in potential misdiagnosis or segmentation failure. 

Therefore, specialized segmentation techniques are required that will address the intricacies of 

metastatic STS tumors to enhance their precise diagnosis and treatment 
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Utilizing the TNM system (Tumor, Node, Metastasis) for accurate staging of lung cancer is 

essential for determining appropriate treatment strategies and predicting patient outcomes. 

However, other research, for instance, [86, 88] have concentrated on tumor size (T), whereas 

they often ignore other important factors including the involvement of lymph nodes (N) and 

the presence of metastases in distant sites (M). The studies conducted by [89] which only 

concentrate on the N stage, do not address the disease in a comprehensive manner, which 

affects the stage classification accuracy. This can result in different treatment protocols being 

used that can have an adverse effect on the patients. Additionally, although some studies [90, 

92] succeed in implementing TNM-based models for stage prediction, they focus on 

demographic and clinical variables integration for which are important in order for staging to 

be accurate. Furthermore, most of the existing models segregate the T, N, and M stages and use 

individual branches for each stage prediction and then combine the output. This method 

introduces additional complexities in the model and increased computational time, which 

compromises the efficiency required for real time applications. In addition, multi-view CT 

imaging, which provides complete anatomic views improving the accuracy of staging, has not 

been adequately investigated with respect to TNM-based models. Hence, there is enough 

justification for developing a unified model that incorporates multimodal imaging including 

multi-view CT and clinical data to deliver an accurate overall stage prediction, behind only a 

reasonable computational demand in order to make it practicable in real time. 

To sum up, the existing research emphasize key gaps in multi-class classification, tumor 

segmentation, and TNM-based staging for lung cancer. Addressing these gaps through 

integrated, efficient, and specialized models will significantly improve diagnosis, treatment, 

and patient outcomes. 

2.7. Chapter Summary 

This chapter describes the comprehensive literature review and analysis for lung disease 

classification and segmentation, along with survival prediction. The chapter is divided into 

various sections to present a comprehensive overview of the existing research on the 

classification of lung diseases using deep learning techniques, specifically focusing on multi-

class classification. The literature on Lung Tumor Segmentation utilizing a combination of CT 

and Positron Emission Tomography (PET) Scans is also presented. It also contains an extensive 

review of the research on Non-Small Cell Lung Cancer TNM Classification and Overall Stage 

Prediction using Vision Transformers.  
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Chapter 3 

3. Deep Learning Architecture for Multi-Class 

Lung Diseases Classification Using Chest X-

ray (CXR) Images 

3.1. Introduction 

In 2019, the world experienced the rapid outbreak of the COVID-19 pandemic, which 

created an alarming situation worldwide. The virus targets the respiratory system, causing 

pneumonia with other symptoms such as fatigue, dry cough, and fever, which can be mistakenly 

diagnosed as pneumonia, lung cancer, or TB. Thus, the early diagnosis of COVID-19 is critical 

since the disease can provoke patients’ mortality. Chest X-ray (CXR) is commonly employed 

in the healthcare sector, where both quick and precise diagnoses can be made. Deep learning 

algorithms have proved extraordinary capabilities in terms of lung disease detection and 

classification. They facilitate and expedite the diagnosis process and save time for the medical 

practitioners. In this chapter, a deep learning (DL) architecture for multi-class classification of 

Pneumonia, Lung Cancer, tuberculosis (TB), Lung Opacity, and most recently COVID-19 is 

proposed.  

3.2. Proposed Methodology 

The human respiratory system is attacked by a variety of lung illnesses. These diseases 

include pneumonia, tuberculosis, lung cancer, and lung opacity, among others. These diseases 

can cause similar effects on human lungs; therefore, X-ray images are commonly employed for 

diagnosing these diseases. AI in the form of deep learning algorithms has increasingly played 

a key role in disease identification and classification. Deep learning facilitates the diagnosis 

process and saves time for healthcare providers. 

The study presents a multiclass deep learning classification model to identify the most 

common chest diseases. The aim of the research work is to design a deep learning framework 

and classify multi-classes of Pneumonia, Lung Cancer, TB, Lung Opacity, and most recently, 

COVID-19. A thorough search of the literature shows that this research is the first attempt to 

use the single deep learning framework, incorporating and classifying all these six classes at a 
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time. Figure 3.1. represents the proposed framework in a block diagram.  The framework is 

divided into three phases: pre-processing, feature extraction, and classification. X-ray scacns 

were used as inputs, and the categorization of the input X-ray image on a disease level was the 

final output of the model. 

 

Figure 3.1. The proposed framework for Multi-Class Lung Diseases Classification 

During the first phase, the input images undergo pre-processing functions such as 

normalization, resizing, and data image splitting into 80% training and 20% validation at 

random. Then, deep learning algorithms are used during the second and third stages. The 

second phase involves feature extraction, which is performed using VGG19 and CNN 

techniques. The fully connected network technique is employed during the image 

categorization step.   

3.2.1. DATASET 

For the experimental purpose, in addition to healthy cases, tremendous X-ray images of 

pneumonia, TB, lung cancer, lung opacity, and, most recently, COVID-19 were accessed and 

collected from reliable sources.  

To begin with, for COVID-19, 4189 CXR images [93] were included in this study. Secondly, 

7397 CXR images of pneumonia were extracted [93], which are publicly available for research 

purposes. Furthermore, [93] represents 6,012 CXR images of Lung opacity and 10,192 of 

Normal samples whilst [94, 95] indicates the dataset resource for a total of 10,000 X-ray images 

of lung cancer. Ultimately, a total of 4,897 X-ray images for tuberculosis [93] were collected 

and employed in the research. Over 42,000 specifies the total number of CXR images used in 



 

 

37 

 

the experiments. Samples of chest X-ray images for COVID-19, normal, pneumonia, TB, lung 

opacity, and lung cancer are shown in Figure 3.2. The number of patients for each disease 

dataset with respect to ages: ages were frequently between 38 and 65 for the COVID-19 dataset, 

26 and 62 for the pneumonia dataset, 28 and 58 for the lung cancer dataset, and for normal 

patients, the ages were between 33 and 58 years. 

 

Figure 3.2. Chest X-ray images: (a) Tuberculosis images, (b) Pneumonia images, (c) 

Normal images, (d) Lung Opacity images, (e) COVID-19 images, (f) Lung cancer 

images 

3.2.2. Dataset Pre-processing 

Some pre-processing processes were employed to adjust the input data to meet the 

requirements of the deep learning model: 1) The images were resized; 2) the images were 

normalized; 3) the images were converted to an array to be employed as input in the model’s 

next phase.  To ensure robust model evaluation and to prevent overfitting, the dataset was 

randomly divided into training, validation, and testing subsets, corresponding to 70%, 10%, 

and 20% of the total data, respectively. The test set was kept completely independent and used 

only for the final evaluation of the proposed model. This setup ensured that the high accuracy 

reported in Table 3.1. reflects the model’s generalization capability on unseen data. To meet the 

criteria of the framework, all images were scaled to 224*224*3. After normalizing each pixel 

in the image to the interval [0,1], all images were transformed into an array data representation.   
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3.2.3. Proposed Deep learning VGG19+CNN Model 

This research presents supervised deep learning for multiclass classification of the most 

common chest diseases. For classification, a pre-trained model, VGG19, is used, and CNN is 

used as a feature extraction model, which is fully connected. 

The choice of VGG19 [96]  as the feature extraction backbone in this study was motivated 

by its proven ability to capture multi-level hierarchical representations through deep 

convolutional layers with small receptive fields. VGG19 is particularly effective for medical 

images where subtle intensity changes are critical for identifying disease-specific features. 

However, to further enhance discrimination among multiple lung diseases, a dedicated CNN 

block was integrated after the VGG19 feature maps to refine spatial dependencies and 

strengthen classification sensitivity. This hybrid architecture leverages the transfer learning 

capability of VGG19 while retaining flexibility for domain-specific adaptation. The 

combination provided a robust balance between feature generalization, computational 

efficiency, and classification accuracy across six lung disease classes. 

A convolution layer with a ReLU as an activation function is included in each CNN block. 

Following these three CNN blocks, batch normalization and a max-pooling layer were applied, 

which were then followed by a dropout layer, as indicated in Figure 3.3.  

In the feature extraction step, the output was turned into a one-dimensional data vector, 

which was then used as an input in the classification stage after being modified through the 

flattening layer. The remaining components of the categorization step are comprised of three 

thick layers, each having 512, 256, and 128 neurons. It is a thick layer with six neurons, and 

the SoftMax activation function generates the final classification output. This layer is 

responsible for classifying the output image into one of the six chest disease classes: 

pneumonia, tuberculosis, lung cancer, and lung opacity. A total of 24,622,470 model parameters 

are span into two categories. First were the trainable parameters (24,622,342), which were 

revised throughout the training process. The best value for these parameters was required to 

ensure the training accuracy.  The second category was the untrainable parameters (128), which 

were those that did not change at the time of training. Figure 3.4. illustrates the pseudo-code 

for the proposed framework. 
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Figure 3.3. Model Architecture 

 

Figure 3.4. Pseudo-code for the proposed framework. 

3.3. Results  

A classification model for chest disease was created using Python 3 and the Keras 

framework. The model was simulated on a Google Colab Pro edition with 2 TB storage, 25 GB 

RAM, and CPU-P100. The ImageDataGenerator class in Keras was used during the pre-

processing stage, which included picture scaling, normalization, and conversion to an array of 

data.  

The suggested multi-chest illnesses classification deep learning model input was created 

using the outcome of the pre-processing step. An optimizer and appropriate fit algorithms were 

used with 5000 epochs to train and validate the model. Eight iterations and 32 batch sizes were 
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employed in each epoch. With the greatest precision, the performance metrics formulae were 

entered into the validation data outputs. The Adam [97] optimizer was employed, with a 

learning rate of 0.000001. This value was determined empirically through parameter tuning 

experiments to achieve stable convergence and minimize validation loss. The suggested deep 

learning model’s code was published on the GitHub website [98]. 

Precision, loss, F1-score, accuracy, AUC, and recall were used to evaluate the model’s 

performance. Accuracy was calculated as the proportion of correctly predicted instances to the 

total number of instances. Precision (positive predictive value) measures the ratio of correctly 

predicted positive samples to all predicted positives. The F1-score represents the harmonic mean 

of precision and recall, providing a balanced measure of both metrics. Recall (sensitivity) 

quantifies the proportion of actual positives correctly identified by the model. These metrics are 

defined in Equations (3.1)–(3.4) [99]: 

                              Accuracy = 
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛+ 𝐹𝑝 + 𝐹𝑛
                                                             (3.1) 

                                F1−score = 
2 𝑇𝑝

2 𝑇𝑝 + 𝐹𝑝 + 𝐹𝑛
                                                             (3.2) 

                                    Precision = 
 𝑇𝑝

𝑇𝑝+ 𝐹𝑝
                                                                 (3.3) 

                            Recall (Sensitivity) = 
𝑇𝑝

𝑇𝑝 + 𝐹𝑛 
                                                        (3.4) 

Where the actual positive and negative parameters are denoted by 𝑇𝑝 and 𝑇𝑛, respectively. 

The False positive and false negative values are denoted by 𝐹𝑝 and 𝐹𝑛, respectively. 

 

Figure 3.5. Performance metrics change with epochs in the training and validation 

In addition, a confusion matrix is computed for the proposed model. Figure 3.5. shows 

how the performance of the varying epochs during the training and validation phases. 
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3.3.1. Experimental Results 

The proposed VGG19 + CNN model was evaluated using the metrics defined in Equations 

(3.1)–(3.4). Table 3.1. presents the validation results obtained during the iteration that achieved 

the highest validation accuracy. The model achieved a loss of 0.1792, an accuracy of 96.48%, 

a precision of 97.56%, a recall of 93.75%, an F1-score of 95.62%, and an AUC of 99.82%. 

These results demonstrate that the proposed hybrid model provides a highly reliable and 

balanced classification performance across all evaluation metrics. 

Table 3.1. The performance validation of the VGG19+CNN model 

 

3.3.2. Comparative Analysis 

To the best of our knowledge, there is no recent existing research has employed a single deep 

learning model for evaluating and classifying the following chest diseases together: Tuberculosis, 

Pneumonia, Lung Opacity, Lung cancer, and COVID-19 images.  To show the effectiveness of 

the proposed model, Table 3.2. introduces a comparative analysis of fifteen existing works. The 

comparative analysis presented in this chapter has been expanded to clarify the fairness and 

relevance of performance evaluation. The proposed VGG19 + CNN model was trained using a 

unique dataset combination consisting of the Harvard Dataverse dataset [93]  for five lung 

diseases and the ChestX-ray8 and JSRT datasets [94, 95] for lung cancer samples. To the best of 

our knowledge, no existing research has included lung cancer alongside five other pulmonary 

diseases within a single multi-class classification framework. Consequently, previous studies 

used for comparison were selected on a conceptual and methodological basis rather than as direct 

dataset replications. Although their datasets differ, these works represent the most relevant state-

of-the-art approaches in deep learning-based lung disease classification. Thus, the presented 

comparisons aim to highlight architectural effectiveness and generalization capability rather than 

absolute numerical equivalence across datasets. 

 

 

 

 

Methods Loss Acc Pre AUC F1 Recall 

VGG19 + CNN  0.1792 96.48 97.56 99.82 95.62 93.75 
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Table 3.2. The comparison between the proposed model and existing related work 

Ref 
Number of 

Classes 
Method 

Medical 

Image 

Performance 

Acc. Prec. Sens. 

[56] 3 
VGG-16, ResNet-50, 

InceptionV3 
CXR+CT 93 91 90 

[57] 3 VGG-19+ ResNet-50 CT 94 95 90 

[55] 3 DRE-Net CT 86 96 93 

[53] 2 ResNet50 CXR 96.1 76.5 91.8 

[63] 2 ResNet32+DTL CT 93 95 91 

[58] 2 D-Resnet-10 network CT 81.4 79.8 87.5 

[33] 2 
Multi-layer Perceptron 

(MLP) 
CT 88.55 86.59 89.84 

[32] 2 CNN CT 84.15 84.32 83.96 

[25] 3 
CNN with pre-trained 

weights on ImageNet 
CXR 91 92 87 

[28] 2 RetinaNet and Mask R-CNN CXR 83.80 75.8 79.3 

[27] 3 Transfer learning CXR+CT 94.9 93 93 

[26] 2 CNN CXR 93.73 - - 

[18] 

1 Class with 

5 Levels of 

Severity 

 

Depth-ResNet CT 85.29 - 84.16 

[19] 2 
Ensemble (AlexNet, 

GoogleNet and ResNet) 
CXR 88.24 88.0 88.42 

Proposed 6 VGG19+CNN CXR 96.48 97.56 93.75 
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3.3.3. Architecture Performance 

Accuracy, precision, and recall (sensitivity) are the major parameters used to measure the 

performance of the model. The accuracy of the proposed framework produced the highest results, 

with 96.48, overcoming the rest of the models in Figure 3.6. 

As revealed in Figure 3.7., the best precision value was 97.56 with the proposed model. 

However, Figure 3.8. confirms that the proposed model achieves the highest sensitivity of 93.75 

compared to others. 

As presented in Figure 3.9., various architectures of individual pre-trained models, 

transfer learning, and ensemble techniques based on deep learning have been investigated and 

compared with the multi-class proposed framework. The results show that the proposed VGG19-

CNN achieved the best performance. ResNet50 [53] was better than Transfer Learning [27]. 

However, the Ensemble model  [19]records the lowest.  

 

Figure 3.6. Competitive analysis based on Accuracy 

 

Figure 3.7. Competitive analysis based on Precision 
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Moreover, Table 3.2. illustrates the proposed multi-class framework used to classify six 

classes of the most popular chest diseases: tuberculosis, pneumonia, lung opacity, lung cancer, 

and COVID-19, in addition to normal cases. The model significantly outperformed binary classes 

presented by [19, 28, 33, 53]. Likewise, the model got over multi-class as observed by [25, 27, 

57, 100]. The confusion matrix for the VGG19+CNN proposed model is shown in Figure 3.10, 

revealing that the VGG19+CNN model can successfully classify the six chest diseases with the 

highest ratio to COVID-19, starting from lung opacity, normal chest, lung cancer, pneumonia, 

and lastly the tuberculosis disease. 

 

Figure 3.8. Competitive analysis based on Sensitivity 

 

Figure 3.9. Competitive analysis is based on a variety of utilized deep learning 

approaches. 
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Figure 3.10. The confusion matrix 

A multiclass deep learning classification model has been used in this work to incorporate and 

classify six classes of COVID-19, lung opacity, TB, lung cancer, and pneumonia using the 

VGG19+CNN approach. The architecture of the model was based on VGG19+CNN for feature 

extraction and a fully linked network for classification. The recall, accuracy, AUC, F1 score, and 

precision of the suggested model were all tested. The findings showed that the VGG19+CNN 

provided satisfactory classification performance with 96.48% accuracy, as shown in Table 3.2. 

Based on X-ray images, the VGG19+CNN can identify various chest disorders with 96.48% 

accuracy, 93.75% recall, 97.56% precision, 95.62% F1 score, and 99.82% AUC. It is expected 

that the deep learning model will contribute to the development of a model for diagnosing chest 

disorders from CXR chest pictures, improving patient outcomes, and saving lives. 

3.4.  Discussion 

In this chapter, a multi-class chest disease classification based on a deep learning architecture 

was developed and evaluated for classifying TB, lung opacity, lung cancer, pneumonia, normal, 

and COVID-19 using CXR images. In terms of classification, a pre-trained model, VGG19, 

followed by three blocks of convolutional neural network (CNN) as feature extraction and a fully 

connected network at the classification stage, was introduced. The experimental results revealed 

that the proposed VGG19 +CNN outperformed other existing work with 96.48% accuracy, 

93.75% recall, 97.56% precision, 95.62% F1 score, and 99.82% area under the curve (AUC).    

As Figure 3.5. shows, the training process demonstrated a robust convergence pattern with 

the train accuracy and validation accuracy scores, indicating that the model's learning trajectory 

is generally effective. Initially, both training and validation accuracy showed gradual 
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improvement over the first 1000 epochs, reflecting the model's ability to begin identifying 

patterns in the data. As training progressed, training accuracy maintained a steady upward trend, 

consistently achieving slightly higher values than validation accuracy. This discrepancy is 

expected due to the model's exposure to training data more frequently, which can result in a 

marginally higher accuracy. 

From epoch 2000 onward, training accuracy continued to rise, reaching a plateau near 98.5% 

at the final epochs. Meanwhile, validation accuracy exhibited minor fluctuations but stabilized 

around 96.48%, indicating that the model generalized well to unseen data and did not experience 

significant overfitting.  

The fluctuations observed in validation accuracy were minimal, suggesting the model’s 

resilience to overfitting and confirming effective generalization across different classes. The 

slight disparity between training accuracy and validation accuracy in the final epochs suggests 

an optimal balance between bias and variance, resulting in accurate and consistent performance 

across classes. 

Additionally, the confusion matrix in Figure 3.10. offers a granular view of the model’s 

performance across the six classes: TB, pneumonia, normal, lung opacity, COVID-19, and lung 

cancer. Most predictions align closely with true labels, reflecting high specificity and sensitivity 

across classes. For instance:  TB and pneumonia classes had modest misclassification rates, with 

TB showing some confusion with normal cases and COVID-19 (6.64% and 19.22%, 

respectively). Normal cases were predicted with 87.93% accuracy, though misclassifications 

occurred primarily with TB and pneumonia. Lung opacity achieved a high true positive rate at 

92.84%, with minimal misclassification, emphasizing the model's capability to distinguish it 

accurately. COVID-19 was particularly well-classified, with a true positive rate of 98.8%, 

suggesting the model's vital feature extraction for this class. Due to their similar visual features 

on chest X-rays, lung cancer had the highest misinterpretation rate, with significant overlap with 

pneumonia and tuberculosis. 

When these results are considered together with the performance measures (96.48 percent 

accuracy, 93.7 percent recall, 97.5 percent precision, and 95.6 percent F1 score), it is clear that 

the model is effective in the multi-class categorization of chest disorders. The model's ability to 

confidently distinguish between classes is emphasized by the AUC score of 99.82%, which is 

essential for real-world diagnostic applications. Its stability and high accuracy demonstrate the 

model's practicality for clinical applications during both the training and validation phases. 
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CT scans can accurately detect aberrant patterns even before symptoms appear. Therefore, 

employing a combination of CXR and CT images is a potential enhancement parameter for future 

work. Moreover, the identification of the region of interest (ROI) in conjunction with the 

classification of severity levels based on a powerful segmentation model is another direction for 

future work exploration. 

3.5.  Summary 

In this chapter, a deep learning (DL) architecture for multi-class classification of 

Pneumonia, Lung Cancer, tuberculosis (TB), Lung Opacity, and most recently COVID-19 is 

proposed. Tremendous CXR images of 4189 COVID-19, 6012 Lung opacity, 7397 Pneumonia, 

10,000 lung cancer, 4897 tuberculosis, and 10,192 normal images were resized, normalized, 

and randomly split to fit the DL requirements. The proposed model integrated a pre-trained 

VGG19 backbone with three convolutional neural network (CNN) blocks for feature extraction 

and a fully connected layer for final classification. Experimental results demonstrated that the 

proposed VGG19 + CNN framework outperformed existing methods, achieving 96.48% 

accuracy, 93.75% recall, 97.56% precision, 95.62% F1-score, and 99.82% area under the curve 

(AUC). 

These promising outcomes confirm the potential of deep learning–based diagnostic 

systems for accurate and automated identification of multiple lung conditions from chest X-

ray images. However, while classification models provide effective detection at the image 

level, they do not offer detailed information about the exact location, shape, or extent of 

tumours, which are critical for clinical assessment and treatment planning. To address this 

limitation, the next chapter focuses on lung tumour segmentation using multimodal CT–PET 

imaging, enabling precise delineation of tumour regions and paving the way for advanced 

diagnostic and prognostic analysis. 
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Chapter 4 

4. Hyper-Dense -Lung-Seg: Multi-modal fusion 

based Modified U-Net for Lung Tumour 

Segmentation using Multimodality of CT-PET 

Scans 

4.1. Introduction 

The majority of cancer-related deaths globally are due to lung cancer, which also has the 

second-highest mortality rate. Segmentation of lung tumors, treatment evaluation, and tumor 

stage classification have become significantly more accessible with the advent of PET/CT 

scans. With the advent of PET/CT scans, it is possible to get both functioning and anatomic 

data during a single examination. However, integrating images from different modalities can 

indeed be time-consuming for medical professionals and remains a challenging task. This 

challenge arises from several factors, including differences in image acquisition techniques, 

image resolutions, and the inherent variations in the spectral and temporal data captured by 

different imaging modalities. Artificial Intelligence (AI) methodologies have shown potential 

in the automation of image integration and segmentation. To address these challenges, multi-

modal fusion approaches-based U-Net architecture (early fusion, late fusion, dense fusion, 

hyper-dense fusion, and hyper-dense vgg16 U-net) are proposed for lung tumor segmentation. 

4.2. Contribution 

The significant contributions of this research are given below. 

• The inputs to the proposed architecture are PET and CT scans. Here, dense connections 

happen along the same pathways that process each modality individually. Last, their 

features are joined together at a high layer to finish separating them.  

• Five deep models based on U-net architecture are suggested for lung cancer 

segmentation in multimodal image scenarios: Early fusion, Late fusion, Dense fusion, 

Hyper dense fusion, and Hyper dense VGG-16 U-net. 
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• The performance of the suggested models was evaluated using three types of loss 

functions: binary, dice, and focal loss functions. 

4.3. Proposed Methodology 

The selection of a U-Net-based architecture for tumour segmentation was driven by its 

strong suitability for medical imaging tasks that require precise localization. U-Net’s encoder–

decoder structure effectively captures both global context and fine structural boundaries, which 

are essential for accurate lesion delineation. The proposed Hyper-Dense VGG16 U-Net extends 

this capability by integrating dense cross-modal connections between PET and CT feature 

maps, allowing the network to exploit complementary spatial and metabolic information. The 

use of VGG16 as the encoder improves representational depth and feature reuse while 

maintaining manageable computational complexity. This design ensures stable gradient flow, 

improved boundary recovery, and enhanced tumour segmentation consistency across imaging 

modalities. 

 

Figure 4.1. Block diagram for the lung cancer segmentation framework 

The proposed architecture for lung cancer segmentation is shown in Figure 4.1. It depicts 

the three main stages of the framework: (1) image pre-processing, (2) multimodality U-net 
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segmentation, and (3) medical image post-processing. The pre-processing, augmentation, and 

post-processing methods are discussed in the following subsections. 

4.3.1. Images Processing 

4.3.1.1. Image Pre-processing 

The intensity levels of the image’s pixels were normalized to remove any potential for 

ambiguity. In addition to resizing each image, the pixel scale value was changed from (0 - 255) 

to (0 -1) to reduce the level of complexity of the images. To simplify model training, the 

resolution of the CT and PET scans is reduced in the dataset to 256 x 256 pixels. The dataset 

was divided as follows, at random: 46 examples were used for training, and another five were 

used for testing. 

4.3.1.2. Data Augmentation 

The CT-PET images are augmented throughout this phase to prevent overfitting, which 

helps in enhancing the performance of the model. In addition, the implementation of 

augmentation techniques, such as random rotations, flips, and cuts, can enhance the model's 

ability to maintain invariance towards variations in feature position and orientation within the 

image. This feature proves to be particularly advantageous when working with real-world 

images that may exhibit variations in object orientation or spatial arrangement.  

 

Figure 4.2. Some examples of the augmentation process of CT and PET images for 

STS: (a) the main CT-PET, (b) rotating the CT-PET by 90 degrees clockwise, (c) 

flipping the CT-PET upside down, and (d) left-mirroring the CT-PET. Red arrows 

indicate the tumor region. 

Images are augmented in three ways, as shown in Figure 2: rotating the CT-PET by 90 

degrees clockwise (2b), flipping the CT-PET upside down (2c), and left-mirroring the CT-PET 

(2d) as shown in Figure 4.2. 
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4.3.1.3. Image post-processing 

The suggested framework’s ultimate stage uses a morphological change and a basic 

thresholding technique. A morphological gradient accounts for the structure of the input picture 

to lessen the impact of noise. Its effect is analogous to the difference between expanding and 

contracting an image. 

While Equation (4.1) defines dilation [101] as the process of removing pixels (noises) from 

object boundaries, Equation (4.2) describes erosion [102] as the process of adding pixels 

(negative noises) to object boundaries. 

(4.1) 𝐴⨁𝐵 =∪𝑏∈𝐵 𝐴𝑏 

(4.2) 𝐴 ! 𝐵 = {𝑧 ∈ 𝐸|𝐵 ⊆ 𝐴} 

Where 𝐴 is a set of pixels, and B is a structuring element.  

The thresholding technique is defined as: 

(4.3) 𝑓(𝑥) = {
1, if 𝑥 ≥ 𝑡
0, otherwise.

 

where 𝒙 represents the predicted pixel value and 𝒕 is the threshold used to separate tumour 

pixels from the background. A value of  𝒕 = 𝟎. 𝟓 was employed, meaning pixels with predicted 

values equal to or greater than 0.5 are considered tumour regions. This post-processing step 

ensures crisp binary segmentation boundaries and effectively reduces false positives near 

object edges. 

Figure 4.3. depicts the last stage in processing predicted masks, in which tiny false positive 

values and blobs at the borders are removed. 

 

Figure 4.3. Two samples show post-processing effects: (a) predicted mask and (b) 

image after mask post-processing. 

 

(a) 

(a) 

(b) (a) (b) 
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4.3.1.4. Multimodal Feature Fusion 

A feature fusion strategy is deployed in medical imaging to generate a higher-quality final 

image. Professionals in the medical field view fusion processes as a helpful resource. Feature 

extraction, classification, and making decisions are the three main pillars of any supervised 

learning-based method. To broaden the types of features recovered and better understand their 

relationships, the early and late sequences of feature fusion are employed in the encoder portion 

of the core U-net design. Features from different imaging modalities, like PET and CT, are 

fused serially to characterize lung tumors better. 

4.3.1.5. Early fusion 

In early fusion, each medical image scan (CT and PET) has a single input path that contains 

two CNN layers with 64 units and a Relu activation function. Then, these two paths are 

concatenated into a single path, which is processed through a unique path in the down-sampling 

U-net path. This path contains three groups of CNN architecture; each group has three CNN 

layers with 128, 256, and 512 units, followed by a max-pooling layer. All CNN activation 

functions are Relu functions. Figure 4.4. shows the Early fusion architecture. 

 

Figure 4.4. Early Fusion Architecture 
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4.3.1.6. Late fusion 

In contrast to most architectures like U-Net, the encoding path is divided into N streams 

that serve as input for each imaging modality. Each modality learns a unique feature set using 

images from the other. The two modalities’ feature maps are combined at each network’s high-

level feature layer. This process solves the problem of early fusion strategy. These feature sets 

are combined into one feature set and then subjected to the last phase of a multimodal 

classifier’s training. The U-net down-sampling path contains four groups of CNN layers. Each 

group contains three sequential CNNs with several units, 64, 128, 256, and 512 units, 

respectively, followed by a max-pooling layer. All CNNs have a Relu activation function. At 

this point, the two paths are concatenated to generate the input of the U-net Up-sampling path. 

Figure 4.5. shows the late fusion architecture. 

 

Figure 4.5. Late Fusion Architecture 

4.3.1.7. Dense fusion 

For lung cancer segmentation, the Dense fusion-based U-net provides two down-sampling 

routes, one for CT and one for PET images. Eight CNN deep learning building blocks are used 

along each possible route. All the layers preceding the current layer are inputs to the current 

CT Images PET Images
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CNN layer. A max-pooling layer follows each pair of consecutive CNN layers. The dimensions 

of the CNN layer are (in order) 64, 128, 256, and 512. The Relu activation function is standard 

in all CNNs. The input to the U-net Up-sampling path is generated by concatenating the outputs 

of the paths following the design described in each path. The dense fusion architecture is shown 

in Figure 4.6. 

 

Figure 4.6. Dense Fusion Architecture 

4.3.1.8. Hyper dense fusion 

Deep learning is essential when an application requires a deep layer to function effectively 

and efficiently. Reducing the overfitting impact is one of several benefits of using dense 

architecture for multimodality U-net medical image segmentation. The layers in the same input 

path provide inputs to all net layers for dense design, which is necessary for U-nets with 

multiple input paths. Each layer feeds its immediate successor and those in adjacent input 

channels in hyper-dense fusion. As the network learns the intricate connections between the 

modalities at each level of abstraction, the hyper-dense connectivity produces a more robust 
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feature representation than early/late fusion in a multimodal situation. The hyper-dense fusion 

layout is depicted in Figure 4.7. 

 

Figure 4.7. Hyper-Dense Fusion Architecture 

4.3.2. Loss Functions 

In the proposed method, a thorough investigation and comparison of the models using a 

variety of loss functions is performed. Segmenting an image is essentially a pixel-level 

classification problem. Each pixel in an image contributes to the overall image, and specific 

clusters of pixels define particular aspects. Semantic image segmentation is a technique that 

divides these pixels into their respective components. While designing intricate, deep learning 

architectures for image segmentation, choosing the loss/objective function is crucial. Loss 

functions can be broken down into several types based on distribution, region, boundary, and 

compound. The proposed analysis uses three distinct loss functions, i.e., binary cross-entropy, 

dice, and focal. The representation as the network discovers the many interconnections between 

modalities at every level of abstraction, rather than the binary early/late fusion approach.  
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4.3.2.1. Binary Cross-Entropy 

The Binary Cross-Entropy (BCE) loss function [103] is widely employed for binary 

segmentation tasks to measure the difference between predicted probabilities and ground truth 

labels. It is defined as in Eq. (4.4). 

(4.4) 𝐿𝐵𝐶𝐸 = −
1

𝑁
∑[𝑦𝑖log (𝑦̂𝑖) + (1 − 𝑦𝑖)log (1 − 𝑦̂𝑖)]

𝑁

𝑖=1

 

 

where 𝑵denotes the total number of training samples, 𝒚𝒊 ∈ {𝟎, 𝟏} represents the true 

label for each sample, and 𝒚̂𝒊 ∈ [𝟎, 𝟏] is the predicted probability obtained using a 

sigmoid activation function: 

𝑦̂𝑖 =
1

1 + 𝑒−w⋅x𝑖
 

The BCE loss penalizes large deviations between predicted probabilities and the 

corresponding true labels. It is averaged across all samples and backpropagated to 

update the model weights during training, ensuring optimal discrimination between 

tumour and non-tumour regions. 

4.3.2.2. Focal Loss 

The Focal Loss (FL) [104] can be defined as a modification of the Binary Cross-Entropy 

loss to address class imbalance by focusing more on hard-to-classify samples. The equation is 

expressed as in Eq. (4.5). 

𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾log (𝑝𝑡)                                                   (4.5) 

where 𝒑𝒕 represents the predicted probability of the true class, 𝜶𝒕 is a weighting factor that 

balances the contribution of different classes, and 𝜸 > 𝟎 is the focusing parameter that reduces 

the loss contribution from well-classified examples. When 𝜸 = 𝟏, the loss reduces to the 

standard Binary Cross-Entropy loss. In this study, 𝜶𝒕 was set according to the inverse class 

frequency, and 𝜸 = 𝟐 was used following common practice in imbalanced segmentation tasks. 

4.3.2.3. Dice Loss 

The Dice Loss (DL) is derived from the Dice coefficient, which quantifies the overlap between 

predicted and ground truth masks [105]. The loss is formulated as in Eq. (4.6). 

𝐿𝐷𝑖𝑐𝑒 = 1 −
2 ∑ 𝑦𝑖

𝑁
𝑖=1 𝑦̂𝑖 + 𝜖

∑ (
𝑁

𝑖=1
𝑦𝑖 + 𝑦̂𝑖) + 𝜖

 
(4.6) 
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where 𝒚𝒊 represents the ground truth label for each pixel, 𝒚̂𝒊 denotes the predicted probability, 

𝑵 is the total number of pixels, and 𝝐 is a small constant added for numerical stability. This 

formulation penalises low overlap and encourages better alignment between the predicted and 

true segmentation regions. 

Hyper Dense VGG16 U-Net Segmentation Proposed Model 

In various computer vision problems, shortcut connections between layers have become 

increasingly popular since the emergence of residual learning [106]. Unlike in conventional 

networks, these links back-propagate gradients immediately, which helps prevent gradient-

vanishing issues and allows for more complex architectures. The idea of shortcut connections 

was expanded upon by DenseNet [107], which specified that each layer’s inputs should 

correspond to the outputs of all the layers that came before them. Densely connected 

convolutional neural networks (CNNs) are built using the feed-forward principle, which entails 

adding direct connections from any layer to all succeeding layers. Deep networks are more 

accessible and more accurate to train because of this connectivity. This section proposes 

independently expanding U-Net to support DenseNet connections within the same multiple N 

streams of PET and CT modalities. Higher-level layers of the proposed extension will also use 

the late fusion strategy.  

The inspiration for this comes from three separate observations. First, all architectural 

feature maps are connected by short paths, enabling implicit deep supervision. Second, the 

network’s information and gradients are better able to flow because of the direct connections 

between all layers. Finally, the regularizing effect of dense connections makes it less likely that 

training data will be too small for a given task.  

Using dense and hyper-dense connections has been demonstrated to have many benefits 

when segmenting medical images. When the VGG architecture is used for feature extractions, 

more information can be gleaned from medical images. A multimodality U-net medical image 

segmentation model is proposed using hyper-dense connections and the VGG16 model. 

The primary objective was to refine an existing deep-learning model for lung cancer 

segmentation. To do this, the U-Net design is modified and used as the starting point. The 

encoder and the decoder are both CNNs, making up the basic U-Net architecture. The encoder 

extracts features by first performing convolutional operations and then down-sampling. The 

usual convolutional processes follow the up-sampling and concatenation layer of the decoder 
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branch. Connecting feature maps from the encoder network is made possible via a skip link 

that connects the same-level layers of the decoder and encoder, with the up-sampled feature 

map conveying coarse global context information. It helps with recovering local characteristics 

after down-sampling. According to this model, U-net takes data via two distinct input paths, 

one for each image type. The architecture of both paths is VGG16, with dense and hyper-dense 

connections between them. This architecture was proposed so that image classification and 

segmentation tasks may take advantage of VGG, dense, and ultra-dense networks—the 

suggested VGG16 U-net model’s components are given in Figure 4.8. 

 

Figure 4.8. The proposed hyper-dense VGG16 U-Net model architecture 

Figure 4.8. depicts his proposed Hyper dense VGG16 U-Net model, built upon the U-Net. 

Both CT and PET images can be fed into the model. The segmented image of lung cancer is 

the product of the model. In the suggested approach, input images for both CT and PET were 

128x128. Each image input type has its dedicated input path, each with 16 CNNs (the number 

of CNNs in VGG16). Each data set was processed through CNNs of varying sizes (64, 128, 

256, and 512). Both input paths are incredibly well-connected, and there are also many 

connections between the two. All convolutional neural networks used ReLU activation. The 

decoder’s structure comprises four groups of convolutional neural networks (CNNs) of varying 

sizes (1024, 512, 256, and 128). 
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4.4. Experiments 

The efficiency of the proposed U-Net models for segmenting lung tumors was measured 

across various performance criteria. The STS dataset was used for both training and testing the 

models. Experiments compared the newly developed models to benchmarked models widely 

utilized on the same dataset and other datasets. 

4.4.1. Experimental Setup 

All experiments were run on servers in the Google Colaboratory environment, and the 

recommended models for segmenting lung tumors were built using a TensorFlow and Keras 

backend with an NVIDIA Tesla P100 -PCIE GPU and 32.0 GB RAM. For the training phase, 

the Adam optimizer is employed with the following settings: learning rate=0.0001, 1=0.9, 

2=0.999, and epsilon=1 × 10−8. One hundred epochs of training were used. The intensity levels 

of the image’s pixels were normalized to remove any potential for ambiguity. The dataset was 

arbitrarily divided into 70% for training, 20% for validation, and 10% for testing. 

4.4.2. Dataset Description 

The proposed models are trained on data from a study of soft tissue sarcomas (STSs) [108]. 

STS includes many types of scans: CT, PET, and MRI, but in this research, CT and PET were 

used only. In this dataset, a cohort of 51 patients with histologically proven soft-tissue sarcomas 

(STSs) of the extremities was retrospectively evaluated. With 38,328 images (each patient has 

around 200-300 images). It included 27 females and 24 males, ranging in age from 16 to 83 

years. Also, with various cancer degrees: low, intermediate, and high. The PET slice volumes 

had a thickness of 3.27 mm and a median in-plane resolution of 5.47 mm x 5.47 mm (range: 

3.91–5.47 mm). All images used in the tests were downsized to 128 pixels on the longest 

dimension.  

4.4.3. Performance Metrics 

The efficiency of the suggested approach was assessed using the most commonly employed 

metrics for evaluating segmentation tasks[109]: the Dice score (𝐷𝑖𝑐𝑒), the most crucial 

segmentation performance measure. It is defined by Equation (4.5). 

(4.5) 𝐷𝑖𝑐𝑒 =
(2 ∗  𝑇𝑝)

(2 ∗  𝑇𝑝 +  𝐹𝑝 +  𝐹𝑛)
 

In addition, measures of accuracy, sensitivity, and specificity. Equations (4.6) to (4.8) also 

provide definitions for them. 
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(4.6) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝 +  𝑇𝑛

𝑇𝑝 +  𝑇𝑛 +  𝐹𝑛 +  𝐹𝑝
 

(4.7) 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑝

𝑇𝑝 +  𝐹𝑛
 

(4.8) 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑛

𝑇𝑛 +  𝐹𝑝
 

Where the four primary blocks for computing these metrics were defined as true positive 

(𝑇𝑝), true negative (𝑇𝑛), false positive (𝐹𝑝), and false negative (𝐹𝑛) values. 

4.5. Results 

The effectiveness of the proposed models is discussed in this section. In this section, the 

results of the model assessments are reported and divided into four categories: loss function 

comparisons, same-dataset comparisons, cross-dataset comparisons, and cross-model 

comparisons. Dice, IoU, Accuracy, Spectral Sensitivity, and Area under the Curve (AUC) were 

utilized as performance measures. 

4.5.1.    Loss Functions-Based Comparison 

Adjustments to the loss functions form the basis for a new comparative evaluation of the 

models. Focal loss functions, dice, and binary cross entropy are employed in this research. 

These operations are among the most well-known and often used in deep learning for image 

segmentation. The outcomes are displayed in Tables 4.1.- 4.3. for Binary, Dice, and Focal loss 

functions. 

 

Table 4.1. Binary Cross-Entropy 

 Dice IOU ACC Sen Spec 

Late 0.67882 0.53651 0.98516 0.73885 0.99068 

Early 0.68066 0.54075 0.98397 0.73816 0.99083 

Dense 0.69569 0.54016 0.98095 0.68401 0.99225 

Hyper 0.71851 0.57818 0.98381 0.72302 0.99284 

Hyper+VGG16 0.72532 0.58687 0.98278 0.69209 0.99423 
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Table 4.2. Dice Loss Function 

 Dice IOU ACC Sen Spec 

Late 0.51479 0.69734 0.97806 0.64604 0.99048 

Early 0.51465 0.69671 0.97993 0.65452 0.99135 

Dense 0.51485 0.51191 0.98112 0.67253 0.99112 

Hyper 0.64081 0.69725 0.98295 0.67958 0.99046 

Hyper+VGG16 0.66828 0.52222 0.98048 0.69506 0.99102 

 

Table 4.3. Focal Loss Function 

 Dice IOU ACC Sen Spec 

Late 0.71217 0.5704 0.98347 0.71046 0.99327 

Early 0.66112 0.51011 0.97943 0.6351 0.99232 

Dense 0.71554 0.57403 0.98198 0.70131 0.99347 

Hyper 0.72713 0.58717 0.98436 0.71786 0.99339 

Hyper+VGG16 0.73011 0.55664 0.98103 0.67472 0.99362 

 

Figures 4.9.-4.11. depict the findings using various loss functions, like cross-entropy, focal 

loss, and dice loss. In contrast, the performance measures for the proposed models using the 

metrics Dice, IoU, Accuracy, Sensitivity, and Specificity are given in Figures 4.12.-4.16., 

respectively. 

 

 

  Figure 4.9. Binary Cross-

Entropy Function 

Figure 4.10. Dice Loss Function 
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The suggested hyper-dense VGG16 model outperforms the other models in Dice for all 

types of loss functions, as seen in Tables 4.2.-4.4. The Focal loss function is the only option if 

you want the best dice performance possible. Figures 4.9.– 4.16. offer graphical representations 

of the evaluation outcomes.  

Figure 4.11. Focal loss function Figure 4.12. Dice Metric 

Figure 4.13. IOU Metric Figure 4.14. Accuracy Metric 

Figure 4.15. Specificity Metric Figure 4.16. Sensitivity Metric 
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Figure 4.17. The comparison of lung tumor segmentation results, along with the 

segmentation outcomes for corresponding enlarged tumor regions, using the proposed 

hyper-dense VGG16 model with various loss functions (“Binary,” “Dice,” and 

“Focal”). The green contours outline the “Ground Truth” segmentation, and the blue 

contours outline the results from the proposed model.  
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The five presented models are compared in Figures 4.9.–4.12. regarding the binary cross 

entropy, dice, and focused loss functions used as performance indicators. Figure 4.9. shows 

that the suggested hyper VGG16 model outperforms the others in terms of dice accuracy 

(improved by 7%), IOU accuracy (improved by 9%), and specificity accuracy (improved by 

0.4%). However, the late fusion model’s accuracy and sensitivity are unparalleled. The results 

of the dice loss function are shown in Figure 4.10., and it is evident that the suggested model 

outperforms the previously introduced models in terms of dice, specificity, and sensitivity. 

Finally, the proposed model outperforms the other established models regarding the focused 

loss function performance, achieving 73% for Dice. Figures 4.10.-4.13. presented visual 

representations of the performance above metrics about the loss function employed. Figure 

4.13. demonstrates that the most outstanding value for the focused loss function is found with 

the dice metric. The segmentation results of the proposed model for various loss functions are 

displayed in Figure 4.17. The lung tumor segmentation results generated by hyper-dense 

VGG16 are compared to the ground truth, employing various loss functions such as binary, 

Dice, and focal. The observations from Figure 4.17. indicate that the focal loss function yields 

the most accurate predictions, capturing even the segmentation of small tumor portions and 

producing a predicted segmentation mask that closely aligns with the ground truth 

segmentation. Conversely, when utilizing the binary cross-entropy loss function, the 

segmentation results tend to be slightly larger. The Dice loss function, however, provides the 

least accurate predictions, as it fails to segment small tumor portions and produces a larger 

overall segmentation compared to the ground truth. 

To comprehensively evaluate the performance of the proposed Hyper-Dense VGG16 

architecture, five fusion strategies—Early, Late, Dense, Hyper-Dense, and the proposed Hyper-

Dense VGG16—were tested and compared using both the STS dataset and other benchmark 

datasets. As presented in Table 4.4., all five fusion models achieved superior Dice coefficients 

compared with the two reference studies (Fu et al. [72] and Bi et al. [79]), which are the only 

published works that applied their segmentation models to the same STS dataset. The Dice 

coefficient is recognized as the most significant and widely used metric for medical image 

segmentation, particularly in tumour delineation, as it measures the spatial overlap between 

predicted and ground-truth regions. The superior Dice performance of all five fusion 

methods—including the proposed Hyper-Dense VGG16—demonstrates the effectiveness of 

multimodal PET–CT feature fusion in improving lesion boundary accuracy. 
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Table 4.4. Comparison of The Proposed and Benchmarked Models on The STS 

Dataset 

  Dice IOU ACC Sen Spec 

Fu et al. [72] 0.6226 - - 0.6474 0.997 

Bi et al. [79] 0.6636 - - 0.6993 0.9969 

Late 0.712171 0.5704 0.98347 0.71046 0.99327 

Early 0.661116 0.51011 0.97943 0.6351 0.99232 

Dense 0.715539 0.57403 0.98198 0.70131 0.99347 

Hyper 0.72713 0.58717 0.98436 0.71786 0.99339 

Hyper+VGG16 0.730109 0.55664 0.98103 0.67472 0.99362 

 

 

Figure 4.18. Dice 
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Figure 4.19. Accuracy 

 

Figure 4.20. Specificity 

 

Figure 4.21. IOU 

 

Figure 4.22. Sensitivity 
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Although the proposed Hyper-Dense VGG16 model achieved the highest Dice (0.7301) 

and excellent specificity (0.9936), it did not always outperform the other tested strategies across 

all secondary metrics. For example, the Hyper-Dense model achieved slightly higher sensitivity 

(0.7178) and IoU (0.5871), while the Late Fusion model achieved marginally better accuracy 

(0.9834). These differences arise from the trade-off between feature abstraction and pixel-level 

recall. The integration of the VGG16 encoder in the proposed model deepens spatial 

representation and strengthens global context learning, resulting in smoother, more consistent 

segmentation boundaries and fewer false positives. However, this same regularization effect 

may slightly reduce recall for subtle or irregular tumour edges, lowering sensitivity and IoU. 

Conversely, shallower configurations such as Hyper-Dense or Late Fusion respond more 

directly to local intensity variations, improving sensitivity but at the cost of over-segmentation 

or reduced generalization. Figures 4.18.- 4.22. show visual representations of the performance 

metrics that were used in the performance evaluation and comparison of the proposed models. 

4.5.2. Different Datasets in the State-Of-The-Art 

 To further validate generalizability, a cross-dataset comparison was conducted using Table 

4.5., which evaluates the same five fusion models against Fu et al. [72] and Kumar et al. [75], 

where Fu et al.  [72] used both the STS and an additional dataset, and Kumar et al.  [75] applied 

its method to a completely different PET–CT dataset. These studies were included because they 

represent the most relevant state-of-the-art multimodal segmentation frameworks, enabling a 

fair methodological benchmark despite dataset differences. Once again, all five tested models 

substantially outperformed both reference studies in terms of Dice coefficient, reaffirming that 

the proposed fusion approaches—especially Hyper-Dense VGG16—are capable of achieving 

accurate tumour segmentation across varied imaging conditions. Similar to the STS dataset 

results, the proposed model did not lead in every secondary metric: Hyper-Dense showed 

slightly higher sensitivity (0.7178), and Late Fusion marginally exceeded it in accuracy 

(0.9834). These small variations reflect dataset-specific image characteristics such as tumour 

size, intensity distribution, and PET–CT registration consistency. The proposed model’s deeper 

cross-modal connections provide strong generalization and denoising ability, ensuring stable 

Dice and specificity scores across datasets, while occasional minor reductions in sensitivity 

result from its smoother boundary regularization. Figures 4.23.-4.27. show visual 

representations of the performance metrics used in performance evaluation and comparison of 

the proposed models. 
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Overall, the proposed Hyper-Dense VGG16 model consistently achieved the highest Dice 

coefficient and maintained strong performance across all other metrics on both the STS and 

different datasets. These results confirm that while the model prioritizes balanced precision–

recall trade-offs rather than overfitting to a single metric, it remains the most robust and 

generalizable architecture for multimodal lung tumour segmentation, outperforming existing 

state-of-the-art approaches in clinical relevance and stability.  

Table 4.5. Comparison of The Proposed and Benchmarked Models on Different 

Datasets 

 

 

Figure 4.23. Dice 

 Dice IOU ACC Sen Spec 

Fu et al. [72] 0.6783 - - 0.999 0.7616 

Kumar et al. 

[75] 

0.6385 - - - - 

Late 0.712171 0.570397 0.983471 0.710462 0.993269 

Early 0.661116 0.510114 0.979428 0.635095 0.992316 

Dense 0.715539 0.57403 0.981976 0.701314 0.993468 

Hyper 0.72713 0.587171 0.984362 0.717861 0.993387 

Hyper+VGG16 

0.730109 

 

0.556635 

 

0.981034 

 

0.674717 

 

0.99362 
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Figure 4.24 Accuracy 

 

Figure 4.25. Specificity  

 

Figure 4.26. IOU 
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Figure 4.27. Sensitivity 

4.6. Discussion 

A CT-PET dataset of 51 STS samples was used to assess the five fusion models based on 

U-Net: Early Fusion, Late Fusion, Dense Fusion, Hyper Dense Fusion, and Hyper Dense VGG-

16. A broad category of malignant tumors that start in the body's connective tissues, including 

muscles, fat, and fibrous tissue, are known as soft tissue sarcomas (STS). When these tumors 

spread to the lungs, they make imaging-based segmentation more difficult because they have 

different shapes, fuzzy tissue edges, and a tendency to look like lung tissue around them. 

Metastatic STS tumors, in contrast to primary lung tumors, necessitate specific methods for 

accurate delineation since they frequently exhibit distinct radiographic features that make 

conventional segmentation methods more challenging.  

Several augmentation strategies were used to incorporate heterogeneity and improve 

model resilience, considering the relatively small size of the CT-PET dataset. The images were 

left-mirrored, rotated 90 degrees, and inverted as part of the augmentations. These additions 

made the models more accurate at predicting a wider range of tumor types because they 

mimicked the natural variety that can be found in clinical settings. In order to improve the 

model's performance and prevent overfitting, these strategies artificially increased the variety 

of the training set. This was especially helpful while working with a small number of STS 

samples. 
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Figure 4.28. Training and Validation Accuracy and Loss Curves for hyper-dense 

VGG16 

The Hyper Dense VGG-16 model demonstrated the best results with a Dice of 0.73 in 

handling the complexities associated with STS segmentation. Its deep, layered structure, in 

combination with the VGG-16 backbone, enabled it to more accurately capture the fine details 

of STS tumor boundaries, which are often difficult to distinguish from surrounding healthy 

tissue. This model's success underscores the importance of balancing depth with feature 

retention, a critical aspect hence dealing with the heterogeneous and irregular shapes of 

metastatic tumors in CT-PET imaging.  

As shown in Figure 4.28., the training and validation accuracy and loss curves for the 

Hyper Dense VGG16 model reveal a steady improvement in performance over time. The Dice 

coefficient, which is a critical metric for segmentation tasks, demonstrated consistent growth 

during training. Training accuracy showed a significant learning curve, rising from an initial 

value of roughly 0.05 to over 0.83. Although progress was initially slow, the model's capacity 

to stabilize and generalize effectively was demonstrated by the fact that accuracy had reached 

a plateau at approximately 0.82 by the 50th epoch. On the other hand, there was a more 

noticeable variation in the validation accuracy, which started at 0.21 and steadily increased to 

0.73 by the end of training. Even though there were some changes in the middle epochs, the 

overall trend showed that the model fit the data excellently, even though there were some 

problems with generalization. These variations are common among deep learning models, 

especially when fine-tuning is necessary for hard segmentation tasks. However, the model's 

ultimate convergence to a greater accuracy highlights how reliable it is at identifying significant 
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traits. The consistent growth in the Dice coefficient, as well as the stability of both training and 

validation accuracy, strongly suggest that the Hyper Dense VGG16 model, which combines 

the Hyper Dense design with the VGG16 backbone, is effective at segmenting lung cancer. 

With a Dice score of 73%, it clearly performs exceptionally well and could improve 

segmentation accuracy and lead to new ways for early identification of lung cancer in medical 

image analysis.  

This study examines four distinct fusion strategies—late, early, dense, and hyper-fusion—

to enhance lung cancer segmentation. With a Dice score of 0.73, the Hyper Dense VGG-16 

fusion model performed better than all of the others, according to the tests and results. This 

proves that it is capable of effectively managing the complexity of STS segmentation. Because 

of its deep, layered design and VGG-16 backbone, the model detected small tumor borders that 

are difficult to distinguish from healthy tissue. The level of detection and preservation of 

features must be balanced in order to segment heterogeneous and irregular metastatic tumors 

using CT-PET imaging. 

In the studies, we employed three loss functions—Binary Cross-Entropy, Focal Loss, and 

Dice Loss—to assess their influence on model performance. Focal Loss yielded the most 

favorable outcomes, particularly in the context of class imbalance and the model's capacity to 

concentrate on regions that are challenging to classify, which is crucial when managing small 

or irregularly shaped tumors. 

When compared to the other fusion strategies—Early Fusion (Dice = 0.661), Late Fusion 

(Dice = 0.712), Dense Fusion (Dice = 0.715), and Hyper Fusion (Dice = 0.72)—the Hyper 

Dense VGG-16 fusion model emerged as the most effective despite its complexity. The Early 

Fusion model's efficacy was diminished as a result of the increased computational complexity, 

which was exacerbated by its difficulty with feature alignment. Late Fusion fared well in terms 

of merging final predictions, but it did not completely benefit from model synergies. Although 

Dense Fusion outperformed Late Fusion to a small degree, it necessitated more computing 

power and meticulous regularization to prevent overfitting. However, Hyper Fusion, with 

sophisticated methods including attention mechanisms, demonstrated excellent results but 

increased architectural complexity, which could lead to overfitting if not regulated. 

Based on these findings, Hyper Dense VGG-16 fusion was selected as the most suitable 

model due to its superior balance of accuracy, computational efficiency, and model complexity. 

Critical strategies such as data augmentation, dropout, and regularization mitigated the 
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overfitting risks associated with more intricate models like Hyper Fusion despite their more 

intricate architecture. As a result of its performance and generalizability to new data, this 

method is ideal for STS tumor segmentation in CT-PET scans. 

4.7. Summary 

This chapter proposes multi-modal fusion approaches based on U-Net architecture (early 

fusion, late fusion, dense fusion, hyper-dense vgg16 U-net) for lung tumor segmentation. The 

findings prove that the Dice score of 73% is obtained for the hyper-dense vgg16 U-net, which 

is superior to the other four proposed models. These results confirm that hyper-dense fusion 

effectively captures complementary information from both PET and CT modalities, leading to 

improved tumour boundary delineation. 

The proposed segmentation framework provides a crucial step toward automated tumour 

quantification, supporting radiologists in early detection and treatment planning for lung 

cancer. However, while segmentation identifies the precise tumour location and shape, it does 

not by itself provide information about tumour stage or progression, which are critical for 

clinical decision-making and prognosis. Therefore, the next chapter focuses on TNM 

classification and overall stage prediction using Vision Transformer (ViT) models, extending 

the proposed framework from spatial segmentation to disease staging for comprehensive lung 

cancer assessment. 
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Chapter 5 

5. Non-Small Cell Lung Cancer TNM 

Classification and Overall Stage Prediction 

Using Vision Transformers 

5.1.  Introduction 

This chapter seeks to apply accurate classification of non-small cell lung cancer (NSCLC) 

stage using deep learning, and in particular, Vision Transformers. Attention is also paid to the 

historical TNM classification, variables of clinical importance associated with the staging of 

the disease, and motivation for the use of Transformers for such a task. The aims of this study 

include a detailed knowledge of lung cancer staging, the development of new approaches, and 

an emphasis on the benefits of Vision Transformers in this important area of medicine. This 

chapter describes the main objectives of the study, paying utmost attention to the TNM staging 

and the prediction of the overall cancer stage. Advanced techniques in deep learning, such as 

Convolutional Neural Networks (CNNs) and Vision Transformers, have been implemented for 

precise classification. Particular attention should also be given to addressing class imbalance 

and improving the performance of the model. The second core objective identifies the 

importance of the direct pathway in predicting the overall stage of lung cancer patients, 

incorporating the details of the patients. 

5.2. TNM Staging System    

The TNM Staging System is used in the field of oncology and refers to the characterization of 

size related to the tumor, the presence of cancer in the lymph nodes, and whether the disease 

has metastasized to other organs.  The UICC was the first organization to develop it. At the 

moment it operates through UICC and the American Joint Committee on Cancer [110]. The 

method of staging for each kind of cancer is universally recognized on a global scale. The 

foundation of this argument rests upon three fundamental factors 
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● The size and extent of the primary tumor, as indicated by the T category, refers to the 

dimensions of the cancer and the degree to which it has infiltrated adjacent tissues. 

● The spreading of lymph nodes (N) is a category that details the extent of spread to the 

lymph nodes in close proximity.  

● Metastasis, denoted by the M category, refers to the occurrence of cancer spreading to 

distant organs or other regions of the body.  

The samples of T and N descriptors are given in Figures 5.1. and 5.2. respectively. 

 

Figure 5.1. T descriptor examples from NSCLC-Radiomics dataset. 

 

Figure 5.2. N descriptor examples from NSCLC-Radiomics dataset. 

The TNM classification 8th edition outlines the four stages of lung cancer [111] as given in 

Table 5.1. Stage 0 represents an additional stage distinguished by the TNM descriptors Tis, N0, 

and M0. The term "tis" is used to denote a tumor in situ, characterized by its non-malignant 

nature but with the potential to progress into a malignant state at a later stage. The terms N0 

and M0 indicate the absence of metastasis to lymph nodes or distant organs. A diagnostic 

method frequently utilized for assessing lung cancer stage is CT scanning, sometimes 

accompanied by a fluorodeoxyglucose (FDG) positron emission tomography (PET) scan. 
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Table 5.1. Lung cancer staging based on TNM classification 8th edition. 

 

The CT scan images accurately determine the dimensions and spatial coordinates of the 

tumor within the pulmonary region. Nevertheless, detecting cancer in lymph nodes is a 

significant challenge for proficient radiologists due to difficulty locating tumors using CT scan 

pictures. A distinct magnetic resonance imaging (MRI) scan is necessary for brain metastasis, 

explicitly targeting the brain [48]. The treatment strategy for individuals diagnosed with lung 

cancer is contingent upon various aspects, including the specific classification of the cancer, 

namely SCLC or non-small cell lung cancer NSCLC.  

5.3. Research Objectives 

The primary aim of this study is to delineate the fundamental research objectives, which 

encompass two pivotal components: TNM stage classification and overall stage prediction. 

These objectives are driven by the overarching goal of improving the accuracy and 

effectiveness of lung cancer staging, ultimately contributing to enhanced patient care and 

treatment outcomes. 

Objective 1: TNM Stage Classification 

The first core research objective centers on refining and advancing the TNM stage 

classification process for lung cancer. This objective encompasses several sub-goals: 

• Develop and Implement Deep Learning Models: The research aims to develop and 

implement deep learning models, including Convolutional Neural Networks (CNNs) 
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[112] and Vision Transformers [113], to accurately classify the TNM stages of lung 

cancer based on medical imaging data. 

• Address Class Imbalance: The methods address class imbalance class imbalance within 

those in input dataset is reduced to facilitate training so that the models are effective in 

learning from all TNM stage categories, hence mitigating bias associated to models 

attaining a potentially 100% accuracy on dominant classes.  

• Optimize Model Performance: The goal is to enhance the performance of these models, 

increasing their accuracy in categorizing lung cancer patients into specific TNM stages. 

This optimization entails refining model topologies, investigating innovative loss 

functions, and maximizing classification accuracy. 

Objective 2: Direct Overall Stage Prediction 

Establishing a straightforward approach for estimating the general stage of lung cancer patients 

is the second focus of core research. The following main sub-goals comprise this aim: 

● Leverage Vision Transformer Architecture: The features of Vision Transformer (ViT) 

architectures are used to improve the general accuracy of stage prediction even further. 

ViTs provide a more complete knowledge of the development of the disease since they 

are quite good in capturing long-range dependencies inside medical images. 

● Incorporate Patient-Specific Information: Understanding the importance of patient-

specific elements, such age and gender, in lung cancer staging, the aim is to smoothly 

include this demographic information into the prediction process. This addition 

guarantees a more exact and customized evaluation of the general performance. 

All discussed, the research goals of this work address class imbalance issues, refine TNM 

stage classification utilizing state-of- the modern deep learning models, and provide a direct 

overall stage prediction method. By means of these goals, it is aspired to expand the accuracy 

and clinical utility of lung cancer staging, thereby helping patients by means of therapy 

recommendations and enhancement of prognostic assessments. 

5.4. Research Questions    

Keeping with the research goals, this section presents carefully thought-out research 

questions that will be used as guidelines for the whole study. The goal of these questions is to 

find important new information and progress in the field of lung cancer staging and aiming to 

get more critical details.  
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RQ 1. How can the TNM classification method is applied to accurately predict the overall 

stages of lung cancer? The question also answers about the most important clinical and 

pathological factors. 

This question investigates the clinical and pathological factors which have significant impact 

on how well the TNM classification can predict the overall stage.  

RQ 2. How can additional imaging and biomarker methods can help the TNM classification 

system to increase the prediction of the general stages of lung cancer? This questions also 

identifies the factors which has important role in the staging process. 

This study investigates the impact of adding extra imaging and biomarkers methods to the 

TNM classification system which may improve the general process of predicting the stage of 

a cancer. The goal is to show the benefits of combining different sources of knowledge. 

RQ 3. How does the predictive accuracy of TNM overall stage classification method varies 

across the different subtypes of lung cancer (e.g., Age/Gender/histology)? 

   This question focuses on assessing the variability in predictive accuracy when applying the 

TNM classification system to different subtypes of lung cancer. It aims to uncover how factors 

such as age, gender, and histological characteristics influence staging outcomes. 

RQ4. What is the correlation between lung cancer TNM overall stages and key clinical and 

demographic factors, including survival rate, patient age, gender, and tumour histology? 

   This inquiry seeks to establish the correlations between TNM overall stages and critical 

clinical parameters, including survival rates and subtypes of lung cancer. It aims to provide 

insights into the prognostic value of TNM staging. 

RQ 5. Which specific TNM stage parameters (T, N, and M) have the most impact on overall 

stage prediction and survival outcomes? 

   This research question investigates the relative importance of individual TNM stage 

parameters, namely T (the primary tumor), N (lymph nodes), and M (metastasis), in both 

overall stage prediction and the prediction of survival outcomes. It aims to identify the most 

influential factors. 

RQ 6. How do different subtypes of lung cancer (e.g., Age/Gender/histology) affect the 

correlation between overall stages and survival prediction? 
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   Building upon Question 3, this question further explores how different subtypes of lung 

cancer, categorized by factors like age, gender, and histology, influence the relationship 

between overall stages and survival prediction. It aims to discern nuanced patterns within 

specific subpopulations. 

RQ 7. What are the potential limitations and challenges associated with predicting overall 

stages of lung cancer using the TNM classification system, and how can these be addressed? 

   This final question critically examines the limitations and challenges inherent in predicting 

lung cancer's overall stages through the TNM classification system. It endeavors to identify 

potential obstacles and strategies for mitigating them, paving the way for more accurate and 

reliable staging. 

RQ 8. Can the overall stage prediction model effectively address the limitations and challenges 

associated with the TNM classification system? 

   Building on the previous question, it is assessed whether the direct overall stage prediction 

model can effectively circumvent the identified limitations and challenges of the TNM 

classification system. This indicates that the proposed model has the potential to address these 

concerns. 

RQ 9. What are the possible constraints of direct overall stage prediction models?  

When examining the direct forecast of the entire stage, this research questions investigates the 

disadvantages and limitations that may arise in this alternate technique. It is essential to 

acknowledge these limits in order to conduct a thorough evaluation. 

RQ 10. Does a transformer-based design surpass convolutional neural networks in the domain 

of lung cancer staging? 

    Transformer-based designs are evaluated against convolutional neural networks (CNNs) in 

the context of computational techniques for lung cancer staging. This question directs the 

assessment of the optimal model structure for this crucial medical application. 

Ultimately, the research question focuses on exploring the clinical, radiological, and 

computational components of lung cancer staging, motivated by these specific research themes. 

The aim is to improve the understanding and precision of lung cancer staging methods by 

addressing these problems, thereby benefiting both patients and healthcare providers. 
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5.5. Motivation for Transformers 

The application of Transformers, particularly Vision Transformers (ViTs), in the domain of 

medical image analysis, such as the prediction of various stages of Non-Small Cell Lung 

Cancer (NSCLC), is driven by their distinctive attributes. This section explores the rationale 

for choosing Transformers instead of standard Convolutional Neural Networks (CNNs) for this 

important application.  

Key attributes of modeling:  

1. Long-Range Dependency: Transformers have an exceptional ability to grasp large 

interconnections within data. The Multi-Head Self-Attention (MSA) module facilitates 

the systematic connecting of data patches. This property has similarity to a graph neural 

network (GNN) [114]enabling Transformers to generate extensive theoretical and 

efficient receptive fields. In medical imaging, this ability can be very useful because it 

leads to the comprehension of contextual information and extensive connections that go 

beyond those exhibited by Convolutional neural networks (CNN).  

2. Elaborate Modeling: CNNs generally use pooling and strided convolutions to modify 

the scales while reducing the feature, whereas Transformer employs MLPs to gradually 

enhance and adapt embeddings without altering the scale. Because of the well-modeled 

and learned feature fusion within the Transformer architecture, subtle and semantic 

details of the images are captured even as deeper levels of the model are accessed. 

Maintaining intricate information is essential in the field of medical image processing 

to ensure that correct classifications are made.  

3. Inductive Bias: It should be noted that convolutional neural networks (CNN) take into 

account some strong inductive biases that are closely related to the concept of pixel 

locality. This means it consistently applies the same set of weights across the entire 

image. Although this bias can enhance the rate of convergence and the performance 

attended on small data sets, it also limits adaptability during more challenging scenarios. 

In contrast, Transformers exhibit a reduced inclination to construct assumptions relying 

on previous information because of their utilization of global self-attention mechanisms. 

The primary inductive bias in Vision Transformers (ViTs) is generated from the 

positional embedding. Transformers experience heightened computational demands and 

training challenges as a result of their amplified data prerequisites. Nevertheless, they 

possess the capacity to exhibit more resilience while handling extensive datasets, a 

crucial aspect to take into account when forecasting the overall stage of NSCLC.  
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4. Loss Landscape: Transformers generally generate a flatter loss landscape, even when 

employed with CNN models. This characteristic enhances the efficiency and capacity to 

apply the model to new data in contrast to Convolutional Neural Networks (CNNs) 

trained under comparable circumstances. This characteristic can be highly advantageous 

when working with medical image data that is characterized by noise or variation.  

5. Noise Robustness: The application of the Transformer models has exhibited resilience 

against a more common set of data imperfections and disturbances such as blurring, 

motion, contrast variations, and noise. Their long-lasting reliability makes them a good 

fit for medical image processing, a field that often struggles with noisy input data. 

Computational factors to consider:  

6. Transformers have demonstrated consistent scaling behavior in both Natural Language 

Processing (NLP) and Computer Vision (CV). Better outcomes are obtained if the scale 

of processing resources, model size, and dataset volume are raised simultaneously. 

Because of this scalability, these approaches are well adapted to handling complex 

problems such as predicting the overall stage of NSCLC, which involves handling large 

volumes of medical images and meeting considerable accuracy requirements. 

In conclusion, the unique architecture and computational aspects of Transformers, particularly 

the Vision Transformers (ViTs), make these networks suitable for the assessment of medical 

images. With regard to predicting various stages of NSCLC, describing long-range 

dependencies, performing holistic modeling, resisting interference, and easy scalability present 

an opportunity to enhance the performance of lung cancer staging and its application. The 

properties of these materials are very compatible with the needs of this important medical 

application and, therefore, very reasonable to include in the study. 

5.6. Main Contributions of This Study 

This research study makes a contribution to the Non-Small Cell Lung Cancer (NSCLC) 

staging prediction, including the use of deep learning techniques and novel approaches. The 

main contributions of the study are as follows: 

• Novel Deep Learning Architecture for TNM Stage Classification: This work presents a 

new deep learning architecture that is constructed with a special focus on increasing the 

effectiveness and accuracy in the TNM stage classification of non-small cell lung 

cancer (NSCLC). By utilizing 2D medical images as an input, this architecture shows 
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tremendous variance in TNM classification with respect to conventional methods. This 

method offers a more detailed and data-centric approach to determining the stage of a 

tumor by exploiting the complex patterns and spatial relationships embedded in the 

images. 

• Vision Transformers for TNM Stage Classification: This study employs transformer 

technology to harness the advantages offered by Vision Transformers (ViTs) for 

assessing the TNM stage. ViTs, which are effective in obtaining long-range 

relationships of distant objects and contextual understanding of particulars in images, 

are applied to improve the accuracy of precise TNM classification. This novel 

application of ViTs advances the boundaries of deep learning in the area of medical 

image analysis by providing a more robust and accurate prediction of the TNM stage.  

• Direct Model for Overall Stage Prediction with Multi-Input Structure: This study 

proposes a direct modeling approach to improve the performance of the overall stage 

classification task. The system leverages a Vision Transformer architecture, which can 

accommodate different input structures and features additional information such as the 

patient’s age and gender. This model highlights the importance of demographic 

attributes in the categorization and, at the same time, integrates them into the prediction 

task without any effort. By pursuing this aim, the current research contributes to the 

existing body of knowledge regarding the predictions of the overall stage of NSCLC 

reviewed so far from a broader perspective of disease advancement. 

• To address the class imbalance problem of the dataset, efficient augmentation strategies 

are employed. 

• A comparison examination of the suggested methodology utilizing various state-of-the-

art classification networks is conducted for overall stage classification. 

5.7. Methodology 

5.7.1. Data Collection and Preprocessing   

5.7.1.1.  Dataset 

The NSCLC-Radiomics dataset [115], which can be obtained from both the National 

Biomedical Imaging Archive (NBIA) and the Cancer Imaging Archive (TCIA), is an excellent 

tool for performing research regarding Non-Small Cell Lung Cancer (NSCLC) of such type. 

The aim of this dataset is to offer a comprehensive collection of clinical and imaging-related 

data for researchers and healthcare providers who are interested in NSCLC. The NSCLC-

Radiomics data set discerns 422 records, each of which is comprised of 10 attributes. The 
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dataset includes a brief explanation of every column. Below is an outline of the size and 

structure of the NSCLC-Radiomics dataset. 

PatientID: Each patient in the dataset is given a unique identification. 

Age: This attribute indicates the patient’s exact age in terms of the calendar year when the data 

or information was collected. Age is a significant demographic variable that can impact 

multiple aspects of cancer diagnosis and treatment. 

Clinical.T.Stage: This refers to the clinical stage of the tumor in patients. The T stage offers 

details regarding the dimensions and scope of the primary lung tumor. 

Clinical.N.Stage: Indicates the clinical lymph node (N) stage of the patients. This stage reflects 

the extent of lymph node involvement by the cancer. 

Clinical.M.Stage: Represents the clinical metastasis (M) stage. This stage identifies whether 

the cancer has spread to distant sites in the body. 

Overall.Stage: Reflects the overall cancer stage, which is often determined by combining 

information from the T, N, and M stages. It provides a comprehensive assessment of the 

disease's severity. 

Histology: Specifies the histological type of the lung cancer. Lung cancers can have different 

histological subtypes, each with distinct characteristics. 

gender: Indicates the gender of the patients, typically categorized as male or female. Gender is 

another demographic factor that may have relevance in cancer research. 

Survival.time: Represents the time (in some specified units, e.g., months) from the initial 

diagnosis or treatment to a specific event, such as death or the end of the study period. This 

column is essential for survival analysis. 

deadstatus.event: A binary column indicating whether a patient has experienced the event of 

interest (e.g., death) during the study period. It is commonly used in survival analysis as an 

outcome variable. 

Figure 5.3. shows the clinical data sample. Out of 422 patients, 302 were selected for training, 

50 for validation, and 70 for testing purposes. 
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Figure 5.3. Sample of a clinical data CSV file for the NSCLC-Radiomics dataset 

5.7.1.2. Pre-processing 

The NSCLC-Radiomics dataset used in this study consists of CT and PET-CT scans with 

sizes 512 × 512. To better computation performance and develop a memory-efficient approach, 

the data is resized to size 224 × 224. Furthermore, the images are rescaled with the help of the 

normalization technique. Normalization is required to maintain the general distribution in the 

dataset and make the convergence of gradient descent faster and smoother.  

The data shows a class imbalance problem because the number of patients in each class 

differs slightly (Figure 5.4.). Data augmentation techniques can be used to tackle this issue. 

Data augmentation is defined as a technique that is used to create more data samples from 

existing data. As discussed, many augmentation techniques are available. For the data, scaling 

and flipping are used to balance the data belonging to each class. In the flipping technique, 

horizontal flipping and up-scaling are used, and downscaling operations are used. 
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Figure 5.4. Data distribution among different classes. 

5.7.1.3.  Data analysis 

An extensive analysis of the NSCLC-Radiomics dataset is conducted from the Cancer 

Imaging Archive (TCIA) to gain insights into overall stage prediction for Non-Small Cell Lung 

Cancer (NSCLC) patients.  

In this analysis, key predictors of mortality rates are identified. Age has emerged as a 

significant risk factor, highlighting its critical role in prognosis. Additionally, it was found that 

incorporating demographic factors, such as age and gender, along with imaging data has 

improved the accuracy of the overall stage prediction models. This also stresses the need for 

incorporating demographic information alongside clinical information to improve the accuracy 

of the models. 

In addition, the study found an interesting pattern in subgroup analysis, as can be seen in 

Figures 5.5. and 5.6. More specifically, higher model accuracy is noted for individuals aged 65 

or older as compared to others. This infers that age is related to predicting the preponderance 

of the disease in the context of older patients and hence suggests the requirement for improving 

intervention strategies for this population. The gender analysis indicates that the model was 
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slightly more accurate in the male group than in the female group. Despite the fact that there 

have been no apparent gender-related variations in prognosis for NSCLC, as depicted in Figure 

5.7., it is, however, essential to delve deeper into understanding the causes that lead to these 

differences, with the aim of achieving better treatment outcomes. 

Additionally, the analysis refers to the effect the clinical N stage has on predicting the overall 

stage. With this characteristic, the clinical N stage proved to be the most significant factor 

impacting the predictions. This underlines the importance of clinical N-stage information in 

understanding the progression, stage, treatment, and outcome of the disease. 

 

Figure 5.5. Mortality rate distribution within different age groups and overall stages.   

Deadstatus = (1) denotes deceased patients, while Deadstatus = (0) represents patients 

who remained alive. 
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Figure 5.6. Average survival time within different age groups. 

 

 

Figure 5.7. Average survival time within male and female groups, including TNM 

stages. 

In summary, age, gender, and histology are essential factors contributing to the overall 

prediction of the stage and survival of patients with NSCLC. These characteristics are amenable 

to improvement when machine learning models are applied so that more targeted patient 

management is achieved. However, these factors, along with clinical, demographic, and other 

variables, must be taken into account to attain robust predictive models. Furthermore, 

continuous study is necessary to enhance the comprehension of these connections and enhance 

the quality of patient care. 
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5.7.2. TNM Stage Classification 

5.7.2.1.  Deep Learning Architecture for TNM Stage Classification 

The proposed neural network design for TNM (Tumor, Node, Metastasis) stage 

classification incorporates a novel model that is based on the principles of dense connection 

[107].The input layer is initialized with a shape of size (224, 224), which corresponds to the 

typical dimensions of medical photographs. The proposed architecture has a convolutional 

layer with 164 filters, each possessing a kernel size of 5x5. The Rectified Linear Unit (ReLU) 

activation function is utilized to introduce non-linearity. Batch normalization is added after 

each convolutional layer for faster convergence.  

Max-pooling with a pool size of 2x2 is used to reduce the feature maps following the initial 

convolutional layers. To minimize overfitting, dropout with a rate of 25% is implemented. The 

following convolutional blocks follow this pattern, progressively augmenting the number of 

filters while preserving the dense connectivity between layers, as depicted in Figure 5.8. and 

Figure 5.9. 

Following the initial convolutional layers, max-pooling with a pool size of 2x2 is applied to 

downsample the spatial dimensions, and dropout with a rate of 25% is introduced to prevent 

overfitting. The subsequent convolutional blocks continue this pattern, gradually increasing the 

number of filters while maintaining the dense connectivity between layers as shown in Figure 

5.8 and Figure 5.9. 

The architecture incorporates three branches, each dedicated to predicting T, N, and M 

stages. Each branch follows a similar convolutional block structure but operates independently, 

allowing the model to capture stage-specific features. The convolutional blocks are 

interspersed with max-pooling and dropout layers to enhance the network's ability to discern 

hierarchical features at different scales. 

Upon the convolutional blocks, a flattening layer is introduced to transform the 

multidimensional tensor into a flat feature vector. This vector is then passed through fully 

connected layers, incorporating ReLU activation, batch normalization, and dropout, fostering 

non-linearity, stability, and regularization, respectively. 

The final layer of each branch employs a SoftMax activation function to generate the 

probability distribution over the respective TNM classes (Eq. 5.1). The probability that a 

sample i belongs to class k is computed as: 
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𝑃(𝑖, 𝑘) =
𝑒𝑧𝑖,𝑘

∑ 𝑒𝑧𝑖,𝑗𝐾
𝑗=1

 
(5.1) 

                           
 

where 𝒛𝒊,𝒌 represents the model’s logit output for class k, and 𝑲 is the total number of classes. 

These softmax probabilities are then used to calculate the Categorical Cross-Entropy Loss (Eq. 

5.2): 

𝐿𝐶𝐶𝐸 = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑘log (𝑝𝑖,𝑘)

𝐾

𝑘=1

𝑁

𝑖=1

 

(5.2) 

 

where 𝒑𝒊,𝒌 = 𝑷(𝒊, 𝒌), 𝑵 is the number of training samples, and 𝒚𝒊,𝒌 denotes the true one-hot 

encoded class label. This loss function penalises incorrect predictions proportionally to their 

confidence and serves as the optimization objective for training the TNM classification model. 

 

Figure 5.8. Architecture of proposed model for T, N, M stage classification. 

 

Figure 5.9. Dense Block 
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Importantly, the architecture adopts a unified decision-making approach, where the predictions 

from the T, N, and M stages are collectively fed into a decision tree algorithm. This algorithm 

synthesizes the individual predictions to yield the overall stage classification. The decision tree 

enhances interpretability and provides a comprehensive strategy for aggregating stage-specific 

information. The model is trained end-to-end using the Adam optimizer with a learning rate of 

0.0001. 

5.7.2.2. Enhancements and Extensions of the TNM Stage Classification Architecture: 

In the pursuit of refining and extending the TNM stage classification architecture, two key 

enhancements are introduced: a multi-image approach and the inclusion of demographic 

features, specifically age and gender. These adaptations are geared towards fortifying the 

model's robustness, leveraging additional information to improve accuracy and generalize 

across diverse patient populations. 

1. Multi-input Architecture: 

The architecture is expanded to accept several image modalities, notably axial and coronal 

views, to acknowledge the multi-input nature of medical imaging data. This expansion gathers 

additional information from several imaging planes, which will enhance our understanding of 

the tumor's geographic distribution and features. 

For this augmentation, distinct branches are combined for each image modality. The 

convolutional blocks within each branch independently process the separate image inputs, 

enabling the model to distinguish stage-specific features that are present in axial and coronal 

views. These branches possess the identical convolutional block structure as the original 

design, but they function on their individual picture inputs. The ensemble approach integrates 

the final predictions from these branches, leveraging the strengths of both axial and coronal 

viewpoints to achieve a more comprehensive TNM stage categorization. 

2.  Inclusion of Demographic Features: 

The inclusion of a layer to the design that incorporates gender and age data highlights the 

importance of demographic characteristics in cancer prognosis (Figure 5.10.). The fully 

connected layers receive the flattened output from the convolutional blocks, and these 

demographic features are then added to it. With this update, we hope to give the model a better 

chance of picking up on gender and age-related subtleties in TNM stage prediction. 
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Because of its well-documented importance in cancer prediction, including age is very 

relevant. The ability to learn age-related patterns gives the model a leg up when it comes to 

identifying how various age groups show unique traits in imaging data.  

Gender is ignored in traditional medical imaging models, which introduces a new 

dimension for analysis. This new dimension allows for the identification of possible gender-

based variations in the TNM stage. 

Such demographic features are also treated as additional input channels during the model's 

training, enabling the model to learn from additional demographic data and images. The 

implemented approach not only improves the model’s interpretability but also helps make 

better TNM stage predictions. 

 

Figure 5.10. Multi-input architecture. 

Training and Evaluation: 

The extended architectures that incorporate multi-image modalities and demographic 

features are trained end-to-end using the same categorical cross-entropy, which maintains 

uniformity in the learning goals. The models are evaluated on comprehensive datasets, 

assessing their performance across diverse patient cohorts. 

These innovations represent progress in the effort towards more precise and refined TNM 

stage classification. The multi-image approach has the unique structure of using different 

imaging views at one time, and adding demographic features is a step towards personalizing 

cancer treatment. These improvements enhance the model's prediction ability and facilitate a 

comprehensive knowledge of the complex aspects affecting TNM staging in Non-Small Cell 

Lung Cancer. 
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1. Advantages of Vision Transformer Integration: 

Applying ViT architecture is advantageous in many ways. In the realm of images, ViT 

excels at identifying intricate structures and contextual cues, hence generating a more 

comprehensive feature set for TNM stage classification. Large-fine datasets and high-

resolution images can be handled with consummate ease. Therefore, it is appropriate for 

detailed and extensive medical imaging research. Its versatility also allows integration with 

almost all types of modality and data. 

Integrating the Vision Transformer Architecture to TNM stage classification is excellent 

progress. It provides the model with the expected accuracy and robustness as it combines 

demographic data with the powerful extraction features of ViT. By improving TNM stage 

classification, this development visualizes a more focused cancer prognosis, flagging the 

potential of transformer systems in medical imaging and cancer treatment. 

5.7.3. Overall Stage Prediction 

5.7.3.1. Deep learning architecture for overall stage prediction. 

An effective predictive model is important for predicting the overall stage in the field of 

Non-Small Cell Lung Cancer prognosis. This section addresses the deep learning architecture 

that has been custom-developed for this purpose. 

Overview of Architecture: 

In this stage of architectural development, it is stated that the first step is an input layer. 

An input layer is one that is intended to receive three-dimensional data, specifically axial and 

coronal views of medical images. The dimension of the input shape is (224,224). The primary 

convolutional layer with 64 filters having a kernel of 7x7 serves well as a feature extraction 

unit with great efficiency in obtaining complex structures from the input data. To facilitate the 

stability of the model and place the model in a non-linear regime, batch normalization is 

performed, followed by a rectified linear unit (ReLU) activation. The purpose of the pooling 

techniques is to decrease the size of spatial dimensions, which enhances the efficiency of the 

computations and makes it possible to retrieve critical features. The particular feature of the 

architecture is composed of compact blocks, each made up of several convolution layers with 

a known expansion rate. Such blocks provide significant opportunities for capturing 

hierarchical elements that are essential for the recognition of complex patterns from medical 

images. 
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Transition blocks are implemented rather seamlessly to attain a desirable balance between 

the model's accuracy and overfitting to many features. These blocks combine batch 

normalization, ReLU activation, and convolutional layers to reduce the number of filters 

effectively. In the transition blocks, the reduction parameter is critical in controlling the flow 

of information between the layers, thus determining the effectiveness of the model. 

As the network expands in size, the global average pool layer aids in dimension reduction 

and high-level feature extraction. The fully connected layers, augmented by ReLU activation, 

serve as effective classifiers. The second-to-last dense layer with 1000 units functions as a 

feature extractor and captures sophisticated features. The softmax-activated last dense layer 

classifies the data into several discrete classes and thoroughly predicts the general stage of 

NSCLC. 

Exploration of Multiple Inputs: 

The research centered on the architecture's capacity to accommodate diverse data sources 

to enhance predictive performance. The architecture in the model was altered in a manner that 

allowed extensive use of axial and coronal views of images. This adjustment was due to the 

fact of the introduction of these various sources of information as illustrated in figure 5.11. The 

aim of this research is to investigate if the accuracy of prediction could be improved by the use 

of several images with different views. 

Integration of Demographic Features: 

Apart from image data, age, and gender description were given as additional input 

parameters. In their case, the same design principles as the architecture were adopted, and these 

features were tested to find out whether such information may significantly enhance the model's 

prediction accuracy. This investigation was premised on the fact that knowledge of the specifics 

of individual patients can be very important to provide a precise forecast. 

In conclusion, the proposed architecture is feasible for the deep learning model that aims 

to predict the general stage of non-small cell lung cancer (NCLC). It is based on the DenseNet 

principles and can alter demographic factors to other inputs, indicating that it offers accurate 

and precise estimations. This comprehensive analysis provides a framework for 

comprehending the complexities of the architecture, facilitating future enhancement and 

optimization in the pursuit of a better NSCLC prognosis. 
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Figure 5.11. Multi-view architecture for overall stage prediction 

5.7.3.2. The Vision Transformer-based architecture.    

Integration of advanced deep learning architectures becomes essential in the persistent 

search for better prognostic models for non-small cell lung cancer (NSCLC). This part explores 

the subtleties of a new method: the multi-input structure based on Vision Transformer (ViT). 

This innovative design presents a comprehensive framework for general stage prediction, so 

transforming the area. 

Intended initially for general-purpose picture classification, the Vision Transformer [113], 

has shown amazing adaptability among several computer vision applications. ViT depends on 

self-attention mechanisms [116] obtained by the Transformer architecture, unlike traditional 

Convolutional Neural Networks (CNNs). The basic concept considers the input image as a 

sequence of linearly embedded, fixed-size patches, which are transformed into vectors. 

Transformer blocks process the input sequence formed by these vectors as well as spatial 

embeddings. 

Self-attention layers enable each Transformer block to capture long-range dependencies 

inside the sequence. Discerning complex patterns in medical images depends on the model's 

capacity to simultaneously pay to several areas of the input sequence, hence improving its 

awareness of spatial linkages. This self-attention mechanism greatly helps the ViT be efficient 

in feature extraction and representation learning. 

ViT Pipeline Overview 
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The architecture of a Vision Transformer (ViT) typically comprises of a Transformer 

encoder, and task-specific decoder as shown in Figure 5.12. Taking image processing as an 

example, the initial step involves dividing the image 𝑋 ∈ R𝐶×𝐻×𝑊 into a sequence of non-

overlapping patches {𝑋1, 𝑋2, ..., 𝑋𝑁 }, where 𝑋𝑖 ∈ R𝐶×𝑃 ×𝑃, with 𝐶 denoting the number of 

channels, [𝐻, 𝑊] representing the image size, and [𝑃, 𝑃] indicating the resolution of a patch. 

Subsequently, each patch undergoes vectorization and linear projection into tokens: 

                               𝐱 ̂ = {𝑋1𝐄,𝑋2𝐄,...,𝑋𝑁𝐄}, 𝐄 ∈ R𝐶𝑃2×𝐷                                    (5.3) 

where 𝑫 denotes the embedding dimension, which was set to 768 in this study following the 

standard ViT-Base configuration. This dimension determines the size of the feature vector 

representing each patch after linear projection, providing a balanced trade-off between 

representational richness and computational efficiency. 

 

Figure 5.12.  Transformer Encoder 

Following this, a positional embedding, 𝐄𝑝𝑜𝑠, is added to preserve the positional information 

𝑝𝑜𝑠 of the patches: 

                                             𝐱=𝐱̂+𝐄𝑝𝑜𝑠, 𝐄𝑝𝑜𝑠 ∈R𝑁×𝐷                                       (5. 4) 
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The resultant tokens are then input into a Transformer encoder, comprising 𝐿 stacked base 

blocks. Each base block consists of multi-head self-attention and a multi-layer perceptron 

(MLP), incorporating Layer-Norm (LN). The feature is expressed as follows: 

                    𝑍𝑙′ = MSA(LN(𝑍𝑙−1)) + 𝑍𝑙−1, 𝑙 ∈ [1, ... , 𝐿]                                     (5.5) 

                        𝑍𝑙 = MLP(LN(𝑍𝑙′)) + 𝑍𝑙′, 𝑙 ∈ [1, ... , 𝐿]                                          (5.6) 

Generation of Non-Overlapping Patches 

In the context of Vision Transformer (ViT) implementation in visual tasks, the generation of 

patches {𝑋1 , ... , 𝑋𝑛 } follows a non-overlapping approach as shown in Figure 5.13. The 

adoption of this non-overlapping style is aimed at minimizing modifications to the standard 

Transformer architecture. This choice, however, introduces a partial disruption of the internal 

structure of an image, as noted by Han et al. (2021a) [117]. To address this challenge, Multi-

Head Self-Attention (MSA) blocks are employed to consolidate information from diverse 

patches, mitigating the impact of the disruption. Simultaneously, the use of non-overlapping 

patches ensures the absence of computational redundancy when inputting data into the 

Transformer model.   

Positional Embedding Explanation 

In the case of Transformers, the processing involves tokenizing and analyzing each patch 

independently, leading to the unintended consequence of losing positional information 

concerning the overall image. This is undesirable because understanding the context in the 

image requires knowledge of the position of each patch. Positional embeddings are proposed 

to encode such information into every patch so that the positional context is preserved all along 

the network and helps to solve this problem. Additionally, positional embeddings serve as a 

manually introduced inductive bias in Transformers. Generally, there are three types of 

positional embeddings: sinusoidal, learnable, and relative. The first two encode absolute 

positions ranging from 1 to the number of patches, while the last type encodes relative positions 

or distances between patches. The subsequent subsections provide a brief overview of each 

type of positional embedding.  
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Sinusoidal Positional Embedding 

In the context of encoding the position of each patch, a straightforward approach might involve 

assigning an index value between 1 and the total number of patches to each patch. However, a 

notable challenge emerges when dealing with a large number of patches, as this may lead to a 

substantial disparity in index values, adversely affecting network training. The pivotal concept 

here is to represent distinct positions using sinusoids with varying wavelengths. For a given 

patch position 𝑛, the sinusoidal positional embedding is defined as per the formulation 

introduced by Vaswani et al. (2017) [116]: 

    

                                                  𝐸𝑠𝑖𝑛(𝑛, 2𝑑) = 𝑠𝑖𝑛(
𝑛

100002𝑑/𝐷)                                  (5.7) 

𝐸𝑠𝑖𝑛(𝑛, 2𝑑 + 1) = 𝑐𝑜𝑠(
𝑛

10000
2𝑑/𝐷

) 

where 𝒅 = 𝟏, … , 𝑫𝟐, and 𝑫𝟐 = 𝑫/𝟐 = 𝟑𝟖𝟒 in this study. The constant 10,000 acts as a 

wavelength scaling factor to ensure smooth variation of sinusoidal functions across embedding 

dimensions. Although this constant was initially introduced for sequence modelling in natural 

language processing (Vaswani et al., 2017) [116], it has been widely adopted in Vision 

Transformer (ViT) architectures for image-based tasks (Dosovitskiy et al., 2020) [113]. The 

formulation remains effective for encoding spatial positions of image patches, as it provides a 

stable numerical range and preserves relative positional relationships across tokens in the 

image sequence. 

Learnable Positional Embedding 

Rather than encoding precise positional information directly onto the patches, a more direct 

approach involves the use of a learnable matrix denoted as 𝐄𝑙𝑟𝑛. In this method, the network 

is tasked with learning the positional information autonomously. This is commonly referred to 

as learnable positional embedding.      

Relative Positional Embedding 

In contrast to utilizing a fixed embedding for each location, as seen in sinusoidal and 

learnable positional embeddings, relative positional embedding captures the relative 

information based on the offset between elements in 𝑄 and 𝐾 being compared within the self-
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attention mechanism [118]. Various approaches to relative positional embedding have been 

developed, and it remains an active area of research. Nonetheless, the fundamental principle 

remains consistent, wherein they encode information about the relative position of 𝑄, 𝐾, and 𝑉 

through a learnable or hard-coded additive bias during the self-attention computation. 

Multi-Layer Perceptrons 

In the conventional Transformer architecture, such as in the original Vision Transformer (ViT) 

by Dosovitskiy et al. (2020) [113] and the Transformer model proposed by Vaswani et al. 

(2017) [116], the Multi-Layer Perceptron (MLP) follows each self-attention module. 

 

Figure 5.13. ViT-based Architecture for Overall Stage Prediction 

The MLP plays a crucial role by introducing inductive bias into the Transformer, addressing 

the absence of inductive bias in the self-attention operation. This distinction arises from the 

fact that the MLP is both local and translation-equivariant, while self-attention computation is 

a global operation. The structure of the MLP consists of two feed-forward networks with an 

activation function (typically a Gaussian Error Linear Unit, GeLU) in between: 

              𝑀𝐿𝑃(𝑥) = 𝜙(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2                                       (5.8) 

Here, x represents the input, and W and b denote the weight matrix and bias of the 

corresponding linear layer, respectively. The dimensions of the weight matrices, W1 and W2, 

are typically set as D x 4D and 4D x D. As the input is a matrix of flattened and tokenized 
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patches, applying W to x is akin to employing a convolutional layer with a kernel size of 1x1. 

Consequently, the MLPs in the Transformer exhibit high localization and equivariance to 

translation. 

Integration of Multi-Input Structure: 

The multimodal architecture represents a dynamic synergy between ViTs and textual data, 

blending medical imaging and patient-specific information as shown in Figure 5.14. This novel 

method takes advantage of ViTs' ability to record complex visual patterns and long-range 

dependencies inside images. 

The architecture of the proposed model consists of below elements: 

1. Axial and Coronal View Imaging Data: Two-dimensional axial and coronal view 

medical imaging data is accepted as input by the model. These pictures provide a 

complete picture of the internal components of the lung, which helps the ViT to identify 

minute visual signals related with cancer development.  

2. Backbone Vision Transformer (ViT): The ViT model is the foundation of the design; it 

has shown remarkable ability in managing medical imaging duties. ViTs use multi-head 

self-attention systems to help to represent complex interactions among picture patches. 

These ViT models are made to recognise and encode the spatial aspects of the axial and 

coronal view images.  

3. Gated Fusion: A gated fusion system is included to harmonise the insights obtained 

from axial and coronal views. By combining the information from the two views, this 

fusion approach improves the general interpretative power of the model. Gated fusion 

guarantees appropriate integration of the subtleties from every view, therefore 

producing a more accurate prediction. 

4. Textual Data Inclusion: Acknowledging the value of patient-specific data, age, and 

gender, we now present textual elements. These features are included into the model to 

improve personalisation and identify differences in lung cancer development depending 

on demographic elements. In the framework of lung cancer, age and gender are crucial 

factors; their inclusion enhances the prediction ability of the model.  

5. Concatenation of Visual and Textual Data: The gated fusion output—which shows a 

harmonic blending of axial and coronal view data—is concatenated with the textual 

data (age and gender). Combining visual and demographic qualities, this composite 

feature vector captures the whole patient's condition.  
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The multimodal architecture enables highly informed forecasts regarding the general stage 

of lung cancer by means of the complicated interaction between the Vision Transformer's 

comprehension of complex spatial patterns in medical images and the incorporation of patient-

specific knowledge. Combining various modalities gives the model a sophisticated knowledge 

of the illness and its development, which eventually helps to produce more exact and 

individualised stage prediction.  

This adaptive technique is expected to advance the field of lung cancer overall stage 

prediction and usher in a new era of precision and personalising in the field of oncology. The 

multimodal architecture is a significant advancement toward improving patient treatment 

planning and care, influenced by the Vision Transformers. 

 

Figure 5.14. Multi-input ViT architecture for overall stage prediction 

5.8. Experimental Results 

5.8.1. Experimental Setup 

This section offers a full description of the experimental setup including information 

regarding the data splitting procedure, evaluation measures and the training process. During 

the experiments, Google Colab was utilized for the purpose of accelerating the training times, 

particularly through the use of its strong T4 GPU. 
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5.8.1.1. Model Training 

The training processes for the CNN and ViT models demonstrate notable differences in 

methodology and performance, particularly in the context of both TNM stage and overall stage 

classification models. 

In the CNN-based architecture, independent models are trained for the TNM classification 

and the overall stage classification. Each model is optimized using the Adam optimizer [97] 

with a learning rate of 0.0001, chosen for its ability to balance effective optimization and 

convergence stability.  The categorical cross-entropy loss function is used in all models during 

the training and provides uniformity in the optimization for classification tasks. While CNNs 

can be trained relatively easily, their architecture does not reach high accuracies when trained 

on complex multi-modal datasets. This shortcoming is observed acutely wherein the trained 

architectures fail to outperform their ViT counterparts even when the training process is stable.   

The ViT models go a step further and utilize an advanced training strategy due to their 

transformer-based architecture, which helps them in working with multi-modality data. They 

apply a learning rate of 2e-5 to fine-tune the pre-trained weights in order to enjoy stable 

convergence during training. In order to accelerate the training on a T4 GPU, mixed-precision 

training with fp16 is applied while both high accuracy and low computational overhead are 

hoped to be achieved. Given its design, it is clear that the ViT model inherently is better in 

regard with learning complex dependencies in data and therefore performs well in TNM as 

well as overall stage classification. Training and validation accuracy improves for both models 

steadily across epochs with less divergence and overfitting. These features emphasize the 

strength of ViT in solving complex classification challenges such as stage of lung cancer. 

5.8.1.2.  Loss Function 

The categorical cross-entropy loss function is used for model optimization for multi-class 

classification problems. The categorical cross-entropy loss quantifies the dissimilarity between 

the predicted probability distribution and the true distribution of class labels. Its formula is 

given by: 

𝐿(𝑦, 𝑦̂) = − ∑ 𝑦𝑖

𝐶

𝑖=1

log (𝑦̂𝑖) 

(5.9) 

Here (𝑦) is the true class distribution; (𝑦^) is the predicted probability distribution, and (C) is 

the number of classes. 
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5.8.1.3.  Evaluation Metrics 

The main benchmark used to evaluate the models' performance is accuracy. The accuracy of 

classification is termed as the ratio of events predictively matching the actual observation over 

a total number of instances and is expressed mathematically as: 

                                      𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                   (5.10) 

In addition, the confusion matrix and classification reports are employed to gain an 

understanding of the model’s performance. Such classification reports include performance 

metrics of precision, recall, and F1 score for all classes, thereby aiding an understanding of the 

model’s discrimination of the various levels of cancer. A confusion matrix, which is illustrated 

in Figure 5.15., is used to assess the efficiency of a developed classification technique. 

 

Figure 5.15.  Confusion Matrix (a) for testing data using multi-input ViT model for 

Overall stage and (b) multi-input ViT TNM model. 

5.8.1.4.  Data Splitting and Cross-Field Validation 

We use stratified data-splitting technique to guarantee the dependability and fairness of the 

model evaluations. This approach kept the distribution of several general phases across the test, 

validation, and training sets, therefore avoiding a distorted representation that would have 

biased the model.  

Moreover, cross-field validation is used to firmly evaluate the generalization capacity of the 

suggested models. This included splitting the dataset into several folds and iteratively training 

and assessing the model on many combinations of training and validation sets. More thorough 
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evaluation of the performance of the model over several data subsets is offered by cross-field 

validation. Figure 5.16. shows the five-fold cross-validation; Table 5.2. shows its accuracy at 

every split. 

 

Figure 5.16. Dataset split for cross-validation analysis. 

Table 5.2. Validation accuracy using multi-input ViT model for overall stage 

prediction. 

CV Split 
Validation accuracy using 

overall stage ViT model 

Split 1 97.88 

Split 2 98.26 

Split 3 98.65 

Split 4 98.75 

Split 5 97.76 

Average 98.28 

 

To summarize, the experimental design was meticulously designed to ensure the models' 

integrity and effectiveness for NSCLC staging. Together with Google Colab's T4 GPU's 

processing capability, innovative designs, suitable loss functions, and comprehensive 

evaluation metrics establish a strong basis for the subsequent study of the data. 

5.8.2. Results for TNM Stage Classification 

Results of the TNM stage classification demonstrate the performance of two different 

architectures: a vision transformer and a deep learning model. Various input setups ranging 

from single-view images to including multiple views (axial, coronal and sagittal) and extra 

demographic data were used to assess these structures. 

For the deep learning model, the accuracy scores varied across different input scenarios. 

Notably, the model achieved a 78% accuracy when trained on single-view images. Introducing 

multi-view data (axial and coronal) led to an improvement, resulting in an accuracy score of 
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81%. Further enhancements were observed with the inclusion of demographic features, where 

the model achieved an accuracy score of 83% for the combination of axial view with age and 

gender. The highest accuracy of 85% was attained when incorporating both axial and coronal 

views alongside age and gender information. 

For the deep learning model, the accuracy scores varied across different input scenarios. 

Notably, the model achieved 78% accuracy when trained on single-axial-view images. 

Introducing multi-view data (axial and coronal) led to an improvement, resulting in an accuracy 

score of 81%. Further enhancements were observed with the inclusion of demographic features, 

where the model achieved an accuracy score of 83% for the combination of axial view with 

age and gender. The highest accuracy, which is 85% was attained when incorporating both axial 

and coronal views alongside age and gender information. 

Table 5.3. Accuracy scores for TNM stage models 

 

 

Model 

 

 

Axial  

 

 

Coronal  

 

 

Sagittal  

 

 

Multiview 

 

 

Axial + Demo 

 

Axial + 

Coronal + 

Demo 

CNN 78 72 69 81 83 85 

Vision Transformer 83 75 71 85 86 90 

 

As seen in Table 5.3., the vision transformer regularly outperforms the deep learning 

model across all conditions. The vision transformer obtained an accuracy score of 83% upon 

given single-axial-view images. With multi-view data and an accuracy score of 85%, the vision 

transformer's advantages become clearer. Including demographic characteristics kept 

improving performance; axial view combined with age and gender had an accuracy score of 

86%. Including axial and coronal views with age and gender information produced the most 

notable improvement, yielding an amazing accuracy score of 90%.  

Especially in using multi-modal input data, these results highlight the relative strengths 

of the vision transformer design. The findings show how much it might improve TNM stage 

classification accuracy. Furthermore, underlined in the study is the need of incorporating 

several input configurations, including demographic data, to improve cancer staging predictive 

models. 

5.8.3.  Overall Stage Prediction Results 

Two different architectures, Deep learning, a CNN model, and a vision transformer, are 

evaluated to demonstrate the performance of the stage prediction model. The accuracy scores 
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are presented for several input configurations, ranging from single-view images to multiple 

views, i.e., axial and coronal, along with other demographic data. 

Depending on the input data provided, the deep learning model had varying levels of 

accuracy. While the model was trained solely with images taken from an axial view, accuracy 

was achieved at the level of 79%. The use of multi-view images (axial and coronal images) 

greatly improved the accuracy and achieved a score of 83%. The addition of demographic data 

achieved further improvement in the model with an accuracy score of 86% for combined axial 

view with age and gender. When both axial and coronal views, along with age and gender, are 

all combined, an accuracy of 87% is achieved, as shown in Table 5.4.  

Table 5.4. Accuracy scores for Overall stage prediction 

 

 

Model 

 

 

Axial  

 

 

Coronal  

 

 

Sagittal  

 

 

Multiview 

 

 

Axial +Demo 

 

Axial + 

Coronal +  

Demo 

 

CNN 79 73 70.5 83 86 87 

Vision Transformer 98.65 81.5 78 97.92 97.55 98.75 

Among all scenarios, the outcome of predicting the overall stages was the best for the 

vision transformer as compared to the deep learning, i.e., the CNN model. For single-axial-

view images, an accuracy score of 98.65% was achieved for the vision transformer. As the 

number of views increases in using multi-view images, the accuracy score drops to 97.92% for 

the vision transformer implementation. Gender and age features were included along with both 

the axial and coronal views, which resulted in an astonishing accuracy of 98.75%. 

These results demonstrate the effectiveness of the vision transformer architecture in 

overall stage prediction which shows the superior accuracy compared to the deep learning 

model. It emphasizes the promise of the vision transformer when it comes to using multi-modal 

inputs and demographic information for more accurate predictions of the overall stage of cancer 

in patients. 

5.8.4. Comparison with Existing Methods 

5.8.4.1. TNM Classifier vs. Overall Stage Classifier 

Several notable remarks signify how efficient and comprehensive the workings of the 

TNM stage classifier and the general stage classifier are when their findings are compared. The 

TNM stage classifier, integrated into a unified decision-making process through a decision tree 

algorithm, comprises distinct deep learning models for the categorization of T, N, and M stages. 
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This method seeks to improve interpretability by combining predictions tailored for different 

stages. The models obtained variable accuracy ratings; their performance varied significantly 

depending on the input arrangement.  

Using both visual transformer architectures and deep learning, the general stage classifier 

concentrated on holistically predicting the cancer state. When multi-view data and 

demographic information were included, the deep learning model showed small but consistent 

accuracy gains. Emphasizing its robustness in using multi-modal data and demographic 

information, as shown in Figure 5.17., the vision transformer routinely exceeded the deep 

learning model across all scenarios. 

 

Figure 5.17. Comparative analysis of TNM classifier with Overall stage classifier 

Although the TNM stage classifier explores the minutiae of tumor, node, and metastatic 

classifications, generally the stage classifier offers a more complete picture considering the 

whole cancer staging. Especially in general stage prediction, the vision transformer constantly 

outperforms the deep learning model in terms of flexibility to multi-modal input and 

demographic information. 

5.8.4.2. Competitive analysis of Overall stage and TNM stage classifier based on CNN 

architecture 

The deep learning-based models for both the Overall stage and the TNM stage 

performed differently depending on how the inputs were set up. To figure out the overall stage, 

the accuracy scores were: 79% for a single axial view, 73% for a single coronal view, 70.5% 
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for a single sagittal view, 83% for multi-view, 86% for an axial view plus demographic data, 

and 87% for axial and coronal views plus demographic data (87%). These results show that 

estimates are much more accurate when different points of view and demographic data are 

used. The better accuracy shows that looking at the imaging data from more than one angle 

seems to help us understand the tumor's traits better. This proves that using more than one view 

makes the model work better. In the same way, adding demographic information helps the 

model learn trends that are unique to each age group and gender. This makes it even better for 

prediction. 

The TNM stage model did much better than the Overall stage model after multi-view 

and demographic data were added, but still it needs improvement 

There were seven different types of accuracy scores: 78% for a single axial view, 72% for a 

single coronal view, 69% for a single sagittal view, 81% for a multi-view, 83% for an axial 

view with demographic data, and 85% for axial and coronal views with demographic data. The 

experimental findings show the importance of multi-modal inputs and demographic data 

together for improving the deep learning model's accuracy in identifying different stages of 

tumors, lymph nodes, and metastases. Even it is hard to capture the details of each stage 

automatically, the TNM stage model gains from the extra data provided by inputs. 

Table 5.5. Comparative Performance and Computational Requirements of CNN 

Architectures for Overall Stage and TNM Stage Classification 

 

As shown in Table 5.5., the Overall stage model clearly does better than the TNM stage 

model across all measures when comparing the two CNN classifiers. With multi-view and 

CNN Overall stage TNM 

Number of layers 39 117 

Number of parameters 102 814 661 308 443 983 

Training time 6 hr 18hr 

Testing time 30 ms 90 ms 

Accuracy 87 80 

Hardware requirements CPU CPU 
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demographic data added, the Overall stage predictor is much more accurate having accuracy 

of 87% than 80%, and its performance is greatly improved. The Overall stage model is also 

simpler, with 39 layers instead of 117 and 102,814,661 parameters instead of 308,443,983. This 

means that it takes less time to train, i.e., 6 hours as compared to 18 hours and compute (30 ms 

vs. 90 ms). The Overall stage model is more accurate and efficient, even though it has fewer 

parameters. This makes it a better choice for real-world uses. For both models, training and 

testing were done using CPU hardware, which made them easy to use. 

5.8.4.3. Competitive analysis of Overall stage and TNM stage classifier based on ViT 

architecture 

The Vision Transformer (ViT) architecture exhibited greater performance in comparison 

to CNN-based models, highlighting its increased capacity to handle intricate medical imaging 

data. The performance validity of the ViT model was quite impressive when it came to 

forecasting the overall stage. These scores were as follows: the Accuracy was 98.65 for the 

single axial view, 81.5 for the single coronal view, 78% for the single sagittal view, 97.92% for 

the multi-view approach, 97.55% for the combination of axial view with demographic data and 

98.75% for the combination of axial and coronal view with demographic data. The enhanced 

accuracy attained through ViT architecture can be attributed to its capability to gather 

comprehensive context and detailed patterns within the entire image. The use of a multi-view 

approach enhances the performance of the model by combining different views, which is 

beneficial. Enhancement of the ViT model is made possible by the addition of demographic 

data, as it allows the ViT to learn age and gender-oriented features during the classification 

stages. 

By adding the ViT structure into the TNM stage model, the classification accuracy scores 

have significantly risen: 83% for single axial, 75% for single coronal, 71% for single sagittal 

views, 85% for multiple views, 86% for axial and demographic data and 90% for axial, coronal 

and demographic data. The outcomes depict the efficiency of ViT architecture in handling the 

multi-modal input and demographic data with resilience and flexibility. The ViT consistently 

outperforms deep learning models in all scenarios due to the large datasets and high-resolution 

images, as well as its adaptability to include various data sources. It also performs exceptionally 

well, demonstrating its potential to provide more accurate and customized cancer staging, 

which will ultimately improve patient outcomes in the oncology domain. 
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In every criterion, the overall stage model outperforms the TNM stage model when 

compared to the ViT classifiers. The stage classifier shows a considerably higher accuracy of 

98.75% as compared to 90%, indicating the exceptional performance of the ViT in this field. 

Table 5.6. shows that the Overall stage model requires a shorter training time of 10 hours as 

compared to 30 hours of computing time of 60 ms as compared to 180 ms, although having 

fewer layers of 32 as compared to 96) and parameters of 171,605,002 as compared to 

514,815,006. The complex design and high processing demand of the ViT make GPU hardware 

necessary. However, its outstanding accuracy and efficacy in handling multi-modal inputs and 

demographic information make it the preferred choice for cancer staging applications. 

Table 5.6. Comparison of ViT Classifiers for Overall Stage and TNM Stage Prediction 

ViT Overall stage TNM 

Number of layers 32 96 

Number of parameters 171 605 002 514 815 006 

Training time 10hr 30hr 

Testing time 60 ms 180 ms 

Accuracy 98.75 90 

Hardware requirements GPU GPU 

 

5.8.5.  Compare the Proposed Approach with Existing Methods in the Literature. 

The comparative results presented in this chapter have been refined to ensure 

transparency and fairness in evaluation. The proposed TNM and overall stage prediction 

models were developed using the NSCLC-Radiomics dataset [115], which was selected 

because it provides a comprehensive set of CT images and detailed clinical information, 

including patient age, gender, and tumour characteristics. Incorporating these clinical features 

significantly improved the predictive accuracy of the proposed model, achieving 98.75% 

accuracy and outperforming existing approaches, as shown in Table 5.7. 

It is important to note that only a limited number of prior studies have attempted TNM 

stage prediction using similar data sources. Paing et al. [88] utilized the same NSCLC-

Radiomics dataset [115], but their work focused solely on T-stage classification, without 

addressing the complete TNM staging system. In contrast, Moitra et al. [90] and Tyagi et al. 
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[92] applied their models using the NSCLC-Radiogenomics dataset [91], which differs from 

the dataset used in this study and contains limited demographic and clinical variables. These 

two studies were therefore included as comparative references to maintain a fair evaluation of 

the complete TNM classification framework, since they are among the few works addressing 

all TNM components. 

Table 5.7. Comparison with other TNM classification approaches. 

Method Dataset  Classification task Accuracy (%) 

Krienko et al. 

[86] 

Private T-stage as T1/T2 and T3/T4 82.6 

Paing et al. [88]  LIDC-IDRI [119] 

NSCLC-Radiomics 

[115] NSCLC-

Radiomics-Genomics 

[120] 

NSCLC 

Radiogenomics [91] 

T-stage as 7-stage classification 90.6 

Zhao et al. [89] Private N-stage 87.6 

Moitra et al. [90] NSCLC 

Radiogenomics [91]  

TNM stage 96 

Tyagi, et al. [92] NSCLC 

Radiogenomics [91]  

TNM stage 96.6 

The proposed 

work 

NSCLC-Radiomics 

[115] 

TNM stage 98.75 

Consequently, the comparisons presented in Table 5.7. are based on methodological 

relevance rather than direct dataset equivalence. The superior results achieved by the proposed 

model demonstrate that integrating both imaging and clinical features from the NSCLC-

Radiomics dataset provides more comprehensive and clinically aligned predictions for TNM 

and overall stage assessment. 
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Notably, Tyagi et al. [92] achieved 96.6% accuracy in overall stage classification; 

however, their method required unique TNM stage classifications and extensive preprocessing 

due to highly imbalanced T, N, and M data distributions. Additionally, their approach relied on 

computationally expensive 3D CT scans. In contrast, the proposed model leverages Vision 

Transformers to efficiently learn discriminative features from 2D CT images captured in 

multiple views. This design enhances feature representation while significantly reducing 

computational cost and processing time, leading to improved classification accuracy. 

5.9.  Discussion 

The adoption of the Vision Transformer (ViT) and CNN-based architectures for TNM 

stage prediction was guided by the need to effectively capture both local imaging cues and 

global contextual relationships. Traditional CNNs are powerful for extracting spatially 

localised tumour characteristics from axial, coronal, and sagittal views, whereas ViTs enable 

long-range dependency modelling through self-attention mechanisms. This combination 

facilitates holistic feature representation, allowing the network to integrate morphological and 

clinical information (e.g., tumour size, lymph node spread, and metastasis indicators). The ViT-

based design thus provides superior interpretability and scalability for multimodal, multi-view 

TNM classification and overall stage prediction. This chapter uses CNN and ViT architectures 

to compare and implement TNM stage classification with direct overall stage classification to 

improve lung cancer staging. The outcomes, as shown in Tables 5.3. and 5.4., offer a thorough 

analysis of the model's performance in various input configurations. 

 In terms of TNM stage and total stage predictions, ViT architecture continuously 

outperforms the CNN models. The results indicate that for TNM stage classification as given 

in Table 5.3., the ViT performed better than the CNN in all input configurations, with the 

greatest accuracy of 90% reached when using combined axial and coronal views with 

demographic data. Similarly, using the identical input configuration, the ViT achieved an 

astounding 98.75% accuracy for total stage prediction, as given in Table 5.4, substantially 

surpassing the CNN, which only achieved 87%. 

Tables 5.5. and 5.6. provide a detailed analysis of the CNN and ViT model comparisons 

for the two staging approaches. The ViT models were more sophisticated and required GPU 

hardware, even though they had fewer layers and parameters than their CNN equivalents. This 

was demonstrated by the longer training times and higher computational resources needed. 
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Nonetheless, the significant improvements in accuracy and the capacity to efficiently handle 

intricate, multi-modal input data justify this computational expenditure. 

There were some important differences in how the CNN and ViT models were trained for 

overall and TNM stage classifications. Figures 5.18a and 5.18b show the train and validation 

accuracy and loss curves for each model, which show these changes.  

 

Figure 5.18. Training and Validation Accuracy and Loss Curves for Overall Stage (a) 

and TNM Stage Models (b) Using ViT Architecture 

The training accuracy of the Overall Stage Model begins at about 25% and steadily improves, 

reaching more than 99% by the end of training. The validation accuracy, on the other hand, 

begins at 20% and rises gradually, with notable spikes around the mid-epochs, reaching a peak 

of about 98.7%. This pattern suggests that the model is gradually acquiring features that are 

pertinent to the overall classification of lung cancer stages, with periods of accelerated 

performance improvement. The train and validation loss curves show the same trend. The 

initial high training loss of about 2.07 drops slowly to under 0.05, showing that the model is 

learning well and convergent. At the completion of training, validation loss lowers and levels 

off at 0.02. This model is well-suited for clinical deployment where it must remain stable over 
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unseen data because the train and validation metrics are quite similar, indicating effective 

regularization and robustness with minimal overfitting. 

The ViT model demonstrates strong performance in the TNM Stage Model. Consistent with 

the general stage model, both training and validation accuracy steadily rise across epochs; 

however, validation accuracy does experience small swings before settling near 90-92% at the 

conclusion. The training process generalizes well to the validation set because the validation 

loss is very close to the training loss across all epochs. This demonstrates that the ViT model 

is capable of rapidly processing complex multi-modal data, such as fluctuations in TNM stages, 

without experiencing significant overfitting. 

In general, the effectiveness of ViT for both TNM and general lung cancer staging tasks is 

underscored by the models' consistent and seamless convergence during training. When it 

comes to lung cancer, the ViT model is an invaluable resource for precise and personalized 

treatment planning due to its high reliability and accuracy in staging the disease. Despite the 

fact that it requires a lot of processing power, this is demonstrated by the high accuracy of the 

validation and low loss at the end of the training process. 

Figure 5.15. depicts the confusion matrices for the Overall and TNM stage models adjacent 

to each other. This study enables us to evaluate each model's classification accuracy and stage-

specific discrimination capabilities. 

The confusion matrix shows that all of the stage labels in panel (a), which shows the Overall 

stage model, are very accurate. In particular, 100% accuracy was achieved in the classification 

of stages I, II, and IIIa. Stage IIIb had a 97% classification accuracy, with only one example 

misclassified from stage IIIa, demonstrating the model's superior performance in detecting later 

stages. 

Panel (b) shows the TNM stage model, which is also accurate across all levels. Stage I was 

correctly identified 94% of the time; only once was it wrongly identified as stage II. Stage II 

attained a classification accuracy of 86%, with misclassifications occurring in stages I, IIIa, 

and IIIb. On the other hand, stages IIIa and IIIb had high recognition rates of 88% and 100%, 

respectively. 

Overall, the comparison of the confusion matrices shows that the Overall stage model does 

a good job of classifying things with few mistakes. The results show that the multi-input ViT 

model can categorize stages well, which suggests it could be helpful in clinical settings where 

it is important to identify stages precisely. 

The choice of suitable treatment strategies for patients depends much on the correct 

classification of lung cancer stages. Using the strength of learning at several stages, the 
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suggestion of a multi-input Vision Transformer network has demonstrated excellent promise in 

enhancing performance. The creation of an autonomous lung cancer overall stage classification 

system has great potential to help medical professionals in developing more exact and 

customized treatment strategies for lung cancer patients. 

This work represents significant progress in the application of the most advanced 

machine learning approaches, including Vision Transformers, particularly in lung cancer stage 

diagnosis. Besides stressing the importance of proper stage identification, the proposed work 

also accentuates the importance of automating the process. This would greatly enhance the 

ability of the medical doctor to make decisions and, hence, improve patient care. 

This is because, as evidenced by this study, lung cancer staging is a developing field, and 

more advancements and improvements can still be made. With regard to the model expansion, 

clinical validation and the inclusion of additional sources and modalities seem to be the priority 

directions for development. The cause for the further improvement of the more effective, more 

accurate staging of lung cancer is a never-ending pursuit, and the expectation work presents 

progress toward that aim. 

5.9.1. Key Findings 

The exploration of deep learning, i.e., CNN and visual transformer architectures, has 

revealed interesting results concerning the classification of TNM stages and the prognosis of 

patient stages. These findings are quite basis for understanding and treating this type of cancer. 

Granularity vs. Holistic Perspective: 

The TNM stage classifier provides a deeper understanding or analysis of the progress made in 

the progression of cancer by categorizing the T, N, and M stages into their corresponding 

subdivisions, thus creating new means of viewing various aspects of the disease. An 

understanding of the whole is crucial, especially for the customization of treatment and for 

assessing the peculiarities of the disease effects in the region. Conversely, the comprehensive 

stage prediction model, especially utilizing the vision transformer, evaluates the entire cancer 

staging from a holistic perspective.  This comprehensive approach enhances the global 

understanding of the pattern of evolution of diseases over a time frame. 
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Model Performance Disparities: 

Within the domain of deep learning, the performance of the vision transformer was 

comparatively better than the conventional deep learning model with varied input 

configurations. As such, the vision transformer's strong points include its ability to incorporate 

multi-modal data and demographic factors, which proves useful in predicting the cancer stage. 

Multi-Modal Advantage: 

Axial, coronal, and demographic information has improved the accuracy of both TNM and 

overall stage classifiers. This means that using additional information enhances the accuracy 

of the estimation of the cancer stage. However, the vision transformer performed better than 

the traditional deep learning model because it was designed to comprehend multimodal data. 

Clinical Implications: 

The current study findings highlight the need for personalized treatment approaches that 

consider specific nuances derived from TNM staging, particularly for localized therapies. At 

the same time, overall stage prediction bolstered with a vision transformer architectural 

approach remains an effective approach to comprehensively evaluating the burden of NSCLC 

and planning appropriate management. 

Path Forward: 

The implementation of vision transformer architectures within cancer staging models indicates 

the possibility of revolutionary progress in medical imaging. Further research could focus on 

enhancing the predictive models by incorporating additional clinical and molecular information 

to improve our understanding of the disease and allow treatment tailoring. 

In conclusion, the principal findings reveal the interplay of details and holistic perspectives in 

cancer staging. The vision transformer, with its astounding performance, provides avenues for 

future studies in the use of transformer-based deep learning models for improved medical 

image analysis and cancer prediction. 

5.9.2.  Research Questions Revisited 

During the evaluation, several critical factors were identified that have an impact on the 

mortality rates of patients with NSCLC. Age appears to be one of the factors that is important, 

which seems to be critical in the diagnosis of lung cancer. Furthermore, the inclusion of 

demographic factors such as age and gender combined with imaging data significantly 
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improved the accuracy of the overall stage diagnosis. This underlines the need to integrate 

clinical data with demographic observations to improve the accuracy of predictive models. 

The subgroup studies we conducted revealed interesting patterns, particularly indicating a 

higher level of model accuracy in individuals who are 65 years or older, with an accuracy score 

of 99.3%. This underscores the significance of age as a prognostic indicator, especially among 

the senior cohort, necessitating tailored treatment and support strategies for this specific group. 

Among individuals under the age of 64, a significant accuracy score of 98.2% has been 

reported. With respect to gender, there was a slight-fine variation in model accuracy between 

the males and females, with values of 98.2% and 98.85%, respectively. 

The study revealed no notable differences in the prediction accuracies among the 

histological diagnoses. It would appear that in spite of the diversity that exists in histological 

types such as large cell, adenocarcinoma, and squamous cell carcinoma, the accuracy measures 

were similar, around about 98.5%. Such an observation will imply that the presented predictive 

model is effective in predicting regardless of the histological subtypes employed and thus is 

likely to be useful to improve overall stage prediction outcomes. 

Moreover, the investigation included an evaluation of how the clinical N stage impacts 

overall stage prediction. In predictive model building, the clinical N stage turned out to be the 

most dominant feature, with a significant impact on accuracy. It is important to note that the 

clinical N stage is critical in assessing how the disease progresses, what therapeutic options 

should be taken, and the prognosis of patients with non-small cell lung cancer (NSCLC). 

In conclusion, it should be stressed that the forthcoming research concerning the stage of 

non-small cell lung cancer will be of significant importance in age and gender definition factors 

affecting patients’ stage perceptions and survival rates. Machine learning models are able to 

utilize these variables to increase the accuracy of prediction and personalized patient treatment. 

Diagnostic imaging studies and treatment with these factors necessitate the need to combine 

their use with other clinical and demographic factors to build holistic and robust predictive 

models. Relative to this last factor, more work needs to be done with regard to understanding 

these relationships accurately and enhancing patient management. 

5.10. Summary 

In conclusion, this chapter is a pioneering initiative in the prediction of NSCLC stages. This 

study substantially enhances NSCLC staging techniques by presenting a novel deep learning 



 

 

117 

 

architecture for TNM stage classification, employing Vision Transformers to improve TNM 

classification, and creating a direct model for overall stage prediction with a multi-input 

framework. The integration of these advanced techniques significantly improves the accuracy 

and interpretability of lung cancer staging, offering a more precise and personalised framework 

for clinical decision-making. These contributions demonstrate how deep learning can bridge 

the gap between tumour segmentation and clinical staging, establishing a foundation for 

automated, end-to-end cancer assessment. 

Building upon these results, the next chapter provides the overall conclusion and future 

research directions, summarizing the key outcomes from all three technical chapters and 

outlining how the proposed AI-based solutions can be further developed for real-world clinical 

integration. 
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Chapter 6 

6. Conclusion  

6.1.1. Thesis Summary 

The primary objective of this thesis is to classify Chest X-ray images based on lung 

problems, segment lung tumors using CT and PET images, and predict the overall stage of lung 

cancer. The primary contribution of this study is the implementation of an efficient deep-

learning framework for the precise classification of lung diseases, including pneumonia, lung 

cancer, tuberculosis, lung capacity, and COVID-19. The design employs a pre-trained VGG16 

model and three convolutional neural network blocks for classification. The U-Net-based deep 

models are employed to segment lung cancer in PET and CT images, effectively identifying 

and separating lung cancer across various data types. The structures have profound 

consequences for comprehending and managing NSCLC. The study also examines the 

classification of the TNM stage and predicts the overall stage, evaluating the suggested 

segmentation and prediction models using well-established performance measures. The 

discoveries have substantial ramifications for comprehending and managing NSCLC. 

The thesis is organized into six chapters, with Chapter 2 offering a thorough analysis of 

existing studies on lung diseases utilizing medical imaging techniques, primarily focusing on 

Chest X-ray pictures. The literature's second portion looks at segmentation methods used with 

multi-modality images, specifically CT and PET scans. The third section emphasizes on studies 

for classifying lung cancer stages using clinical and imaging data. Several methods have been 

studied in the literature that make use of applied pre-processing, transfer learning, deep 

learning, and ML 

Chapter 3 presents a novel deep-learning system that utilizes chest X-ray images to 

classify Pneumonia, Lung Cancer, tuberculosis (TB), Lung Opacity, and COVID-19. There is 

also a thorough explanation of the pre-processing procedures that were done on the dataset and 

the open-source dataset that was used. The architecture of the proposed model is provided for 

the suggested method. There is also an explanation of the mathematical notations used for the 

performance indicators. Moreover, a thorough presentation and discussion of the accuracy and 

loss graphs, together with the results, are provided. The chapter concludes with a discussion of 
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future directions and possibilities for categorizing chest X-ray images into various lung 

disorders, including lung cancer. 

In Chapter 4, the recommendation is to utilize a powerful deep-learning architecture 

known as U-net for accurate segmentation of lung cancer. This approach utilizes several types 

of imaging data, mostly CT and PET scans, to obtain accurate outcomes. The proposed models 

exhibit intricate structures that incorporate various fusion approaches, such as early, late, dense, 

hyper-dense, and hyper-dense VGG16 U-Net. Each model's benefits and drawbacks are 

highlighted. All model's results are compared with those of the benchmark models. The 

experiments with various loss functions are performed in model training, and their performance 

is compared. The predicted segmented image of each model is compared with the matching 

ground truth, and a performance evaluation is performed using standard performance metrics. 

Chapter 5 introduces an innovative method for classifying the overall stage of non-small 

cell lung cancer (NSCLC) by employing advanced deep-learning algorithms, including Vision 

Transformers. This approach entails the examination of a dataset that has many inputs, such as 

radiological and clinical data. This considers the conventional TNM approach in staging, 

investigates the stage determining clinical variables, and justifies the application of 

Transformers in the medical sector. The stage predictions performed using the TNM staging 

classifier are compared with the overall stage classifier and the benchmarked models. 

6.1.2.  Limitations and Future Work 

6.1.2.1. Multi-class Lung Disease Classification 

The research emphasized the categorization of different types of chest diseases using CXR 

images and achieved remarkable results. However, there are some drawbacks and some 

prospects for further research. 

The primary limitations pertain to the quality and representativeness of the training data. 

Biases within the dataset may potentially affect the model’s generalizability, particularly with 

respect to classes that are underrepresented. Furthermore, the model's performance may differ 

among various populations or imaging protocols not included in the training data. 

Future studies may focus on integrating multi-modal imaging data (e.g., combining CXR 

and CT scans) with additional clinical and demographic information such as patient age, 

gender, histopathology, and genetic markers. Such integration can enhance diagnostic accuracy 

and improve predictive modelling for lung disease progression and treatment outcomes. 
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Moreover, the development of more sophisticated segmentation models aimed at identifying 

specific ROIs in the chest images may aid the classification model. Nailing specific structures 

or pathological abnormalities inside an image may enhance algorithm performance. 

6.1.2.2.  Lung Tumor Segmentation Using Multimodality of CT-PET Scans 

The deep learning techniques for lung tumor segmentation, as demonstrated in this study, 

have been successfully utilized. There are some limitations and possibilities for future scope to 

be considered. All trained systems depend on the availability and size of annotated datasets, 

which in turn defines the maximal performance of the segmentation model. In such conditions, 

the small data size may induce overfitting and restrict the ability of the model to generalize. 

Furthermore, inconsistency in the imaging protocols and the annotating standards among 

different datasets may also bring challenges during the training and validation of the model. 

Future research could apply multiple data sources to overcome these challenges and make 

further progress in the investigation. The segmentation model would improve heterogeneous 

lung tumor treatment and delineation using complementary imaging datasets. Moreover, 

segmentation performance could be enhanced by optimizing the loss functions, for example, 

by examining the combination of binary and Dice loss functions. Using the loss functions to 

address class imbalances or specific properties of lung tumor variants may help alleviate some 

complications arising from data variability and noise. In conclusion, systematic 

hyperparameter tuning experiments could improve segmentation performance even further. 

Investigating different hyperparameter values and testing them on different datasets would 

achieve optimum performance in a variety of imaging conditions. 

6.1.2.3. Non-Small Cell Lung Cancer TNM Classification and Overall Stage Prediction 

Using Vision Transformers 

To enhance lung cancer staging using the aforementioned Vision Transformer-based 

multimodal architecture, it is essential to appreciate the current shortcomings and indicate 

avenues for future exploration. The study notes that firstly, it relies on one data source, which, 

although useful, is likely to be insufficient to achieve the full variability of data necessary for 

an in-depth model. The representation of a few stages in the dataset may still be inadequate, as 

class imbalance has been addressed systematically with the use of data augmentation. More 

studies, therefore, need to be done to understand possible ways in which this challenge can be 

addressed. 
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In addition, although Vision Transformers are effective in identifying visual patterns, the 

challenge of understanding their workings persists. Future research should prioritize enhancing 

the model's transparency in its decision-making procedures. Additionally, the present model 

utilizes age and gender solely as textual features. Future work should be geared towards 

increasing specificity and prognostic accuracy by accommodating a wider variety of data 

concerning patients. 

Further studies can focus on conserving more nuanced approaches that incorporate 

clinical records, genetic information, and other similar attributes to aid in understanding the 

progression of lung cancer. The performance of the model should also be assessed in clinical 

settings based on a larger and more diversified data set than the one used to develop the model. 

Such prerequisite validation will be designed to involve medical institutions and healthcare 

practitioners to prove the applicability of the model in practice. It also recommends developing 

approaches to explainable AI to ease the model's acceptance in clinical settings by explicating 

the model's decision. Future work should concentrate on improving the computational cost of 

the Vision Transformer models to expand their usage in more health care settings. One 

important aspect is the design of a real-time support system for decision-making for 

oncologists. This needs study into streamlining the model for rapid diagnosis and treatment 

planning. 

In conclusion, the limitations of the study include factors such as the lack of diversity in 

the datasets and poor generalizability across populations and imaging options. Small annotated 

datasets and class imbalance add more benefits but also encompass threats to the model 

performance, hence posing an overfitting risk. Moreover, the interpretability of deep learning 

models is a major barrier to their clinical implementation because conditions of a non-

transparent “black box” lead to considerable discomfort among clinicians regarding the 

reliability of predictive capabilities. Future clinical models should concentrate on integrating 

multi-modal data, encompassing clinical and imaging information alongside patient-specific 

data, such as genomics, to enhance predictive accuracy. Also, advanced explainable artificial 

intelligence (XAI) diagnostics derived from these models can be incorporated along with 

accelerating processing speed to ensure the clinical applicability of the diagnoses.  These 

advancements will improve both the performance and efficiency of AI in lung cancer detection 

and its practical deployment.  
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