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Abstract: The rapid spread of invasive plants such as Spartina alterniflora has emerged as a 

major ecological and economic threats to coastal wetlands, while existing management 

strategies often fail to adapt to dynamic invasion processes and limited financial resources. To 

address this challenge, this study develops a novel data-driven-simulation-optimization (DDSO) 

framework that enables dynamic and spatially explicit management of biological invasions. 

The core innovation lies in coupling data-driven ecological parameterization based on multi-

source observations with a simulation model that captures life-cycle transitions and spatial 

dispersal, and a mixed-integer optimization module that allocates control budgets and 

intervention intensities across space and time. By integrating heterogeneous environmental, 

biological, and management data, the framework constructs time-varying ecological parameters 

that reflect evolving invasion conditions and underlying ecological processes. The optimization 

component then generates cost-effective intervention schedules under fixed budget constraints. 

Comparative evaluation against system dynamics (SD) and simulation-optimization (SO) 

models shows that DDSO outperforms conventional approaches not only in budget efficiency, 

but also by revealing counterintuitive management logics: management effectiveness hinges 

more on the presence of a coordinated optimization framework than on investment scale, and 

economically efficient strategies inherently favor highly uneven spatial resource allocation. 

These mechanism-level insights underscore the importance of early intervention and cross-

regional coordination, establishing DDSO as a policy-relevant framework for adaptive invasive 

species management. 
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1. Introduction 

Biological invasions by non-native species are a major driver of global ecological 

degradation and biodiversity loss, while also imposing substantial economic and social costs 

through ecosystem service decline and rising management expenditures (Chen et al., 2016). 

The dynamic, uncertain, and spatially heterogeneous nature of invasion processes, combined 

with limited control resources, poses significant challenges for effective and cost-efficient 

management. Developing decision frameworks that can adapt to changing ecological 

conditions and support optimal resource allocation has therefore become a central issue in 

invasion management and environmental decision science. 

Spartina alterniflora (S. alterniflora) is among the most destructive invasive plants in coastal 

wetlands. Originally introduced for shoreline stabilization because of its tolerance to salinity 

and flooding, it has spread rapidly through vigorous clonal growth and high seed production, 

displacing native vegetation, altering hydrological processes, and degrading habitats for benthic 

organisms and migratory birds. Owing to these severe ecological impacts, S. alterniflora is 

listed among the world’s 100 worst invasive alien species, highlighting the urgent need for 

effective, adaptive, and resource-efficient management strategies. The Yancheng coastal 

wetlands along the central Yellow Sea provide a representative case for studying this invasion. 

As the largest mudflat ecosystem on the western Pacific coast and a core component of the 

UNESCO-listed Yellow (Bohai) Sea Migratory Bird Habitats, Yancheng supports high 

biodiversity and critical ecosystem services, yet its flat terrain and dynamic sedimentary 

environment make it particularly vulnerable to S. alterniflora expansion, offering an ideal 

setting for developing and validating adaptive, system-based management models for invasive 

species control. 

Managing invasive species is a complex decision problem involving resource allocation, 

intervention design, and cost-effectiveness. Operations research and management science offer 

valuable tools for addressing these challenges by integrating biological characteristics, invasion 

intensity, treatment costs, and expected effectiveness into optimization-based decision models. 

Previous studies have applied optimal control and mathematical programming models to 

analyze population dynamics and dispersal processes (Baker et al., 2019), identify effective 

intervention timing and strategies (Haight et al., 2023), and allocate limited resources to 

maximize ecological benefits under budget constraints (Howerton et al., 2024). Scenario-based 

modeling has further been used to assess the long-term performance of alternative management 

strategies, supporting evidence-based policy decisions (Kıbış et al., 2021). 

Despite substantial advances in invasion ecology and management modeling, important gaps 

remain. Most studies do not integrate real-time data with dynamic dispersal and adaptive 

control, and key ecological parameters are typically assumed constant despite pronounced 

spatiotemporal variability. In addition, feedbacks between species dynamics and management 



actions are often underrepresented, and optimal spatiotemporal allocation of limited control 

resources remains insufficiently explored. Recent advances in data-driven offer new 

opportunities to address these challenges by extracting dynamic ecological parameters from 

multi-source data and coupling them with simulation-optimization models, thereby enhancing 

adaptability, realism, and decision support for invasive species management. 

To overcome these limitations, we develop a Data-Driven-Simulation-Optimization (DDSO) 

framework that integrates time-varying parameter estimation, ecological simulation, and 

optimization-based control. The framework is validated through a case study in the Yancheng 

coastal wetlands, integrating multi-source environmental data to simulate invasion dynamics 

and to optimize spatial resource allocation for Spartina alterniflora management. Scenario 

analyses with different budget levels and invasion intensities are further conducted to evaluate 

management effectiveness. 

The remainder of this paper is organized as follows: Section 2 reviews related work on 

optimization-based invasive species management. Section 3 presents the problem formulation 

and DDSO framework. Section 4 reports computational experiments and scenario analyses. 

Section 5 discusses key insights and management implications, and Section 6 concludes the 

paper. 

2. Literature review 

Recent advances in invasive species research reflect a growing integration of field ecology, 

remote sensing, and computational modeling. Traditional field surveys rely on capture-

recapture techniques, isotopic and genetic tracing, and GPS-based monitoring to estimate 

population size and spatial distribution (Fancourt et al., 2021). Complementing these efforts, 

remote sensing and UAV-based image analysis have enabled large-scale monitoring using 

machine learning algorithms such as Random Forest, Support Vector Machines, and 

Convolutional Neural Networks (Aota et al., 2021; Wang et al., 2025; Luo et al., 2026). Recent 

studies further combine these algorithms with GIS and Google Earth Engine platforms to map 

invasion dynamics with high spatial and temporal resolution (Wu & Wu, 2023; Min et al., 2023). 

Beyond monitoring, ecological modeling has evolved from static niche-based approaches 

(e.g., BIOCLIM, CLIMEX, GARP, MAXENT) toward dynamic, scenario-driven frameworks 

that explicitly represent population processes and spatial spread (Tanga et al., 2021). Methods 

such as cellular automata, integro-difference equation models, reaction-diffusion and 

competition systems, Markov decision processes, Bayesian inference models, and agent-based 

simulations have been used to reconstruct invasion trajectories, simulate population transitions, 

and evaluate control strategies (Hudgins et al., 2020; Eppinga et al., 2021; Barnes et al., 2023). 

Compared with traditional niche-based models, scenario-driven dynamic approaches, such as 

system dynamics (Bushaj et al., 2022), can not only reproduce invasion trajectories 

(Yemshanov et al., 2017) but also simulate population changes (Carrillo et al., 2023), construct 



dynamic control processes (Rosso & Venturino, 2023), and describe population variations 

through mathematical formulations (Dia et al., 2020). These models provide quantitative 

insights into invasion extent and speed, offering a theoretical foundation for designing effective 

management and control strategies. 

Given the complexity and heterogeneity of biological invasions, optimization has emerged 

as a promising tool for allocating limited management resources. Scholars have applied multi-

objective optimization (Büyüktahtakın et al., 2014), robust optimization (Jafari et al., 2018), 

stochastic dynamic programming (Kumar et al., 2022), Bayesian hierarchical models 

(Nishimoto et al., 2021), scenario simulations (Liu et al., 2023), and various mathematical 

programming approaches-including linear programming (Zhang et al., 2025), 0-1 integer 

programming (Hultberg et al., 2020), mixed-integer programming (Haight et al., 2021), mixed-

integer linear programming (Kıbış & Büyüktahtakın, 2017) and mixed-integer nonlinear 

programming to allocate limited management resources effectively (Marangi et al., 2023). 

These models typically incorporate management costs and budget constraints to allocate 

resources across prevention, monitoring, and control actions, aiming to reduce ecological and 

economic losses or enhance post-control benefits (Yemshanov et al., 2019). Notably, Onal et al. 

(2020) and Yemshanov et al. (2020a) have integrated simulation with optimization to address 

spatiotemporal decision-making under uncertainty, demonstrating the advantages of 

coordinated, time-phased, and spatially explicit control strategies. 

Recent years have witnessed a growing interest in integrating big data, simulation, and 

optimization to address complex resource-constrained decision problems. In invasive species 

management, spatial optimization under fixed budgets has been used to identify cost-effective 

surveillance and control strategies across heterogeneous landscapes, with budget constraints 

and spatial heterogeneity shown to strongly affect marginal management returns (Yemshanov 

et al., 2020b; Lampert & Liebhold, 2023). Reviews of operations research approaches further 

highlight budget-constrained, spatiotemporal resource allocation as a core analytical paradigm 

(Büyüktahtakın & Haight, 2018). More recent work applies cost, benefit optimization and 

dynamic threat, response models to prioritize spatial control under limited funding (Salgado-

Rojas et al., 2025). Together, these studies demonstrate the potential of combining data-driven 

estimation with simulation-optimization under budget constraints. However, existing 

approaches have not yet integrated time-varying ecological parameters estimation, dynamic 

invasion simulation, and mixed-integer optimization within a unified Data-Driven-Simulation-

Optimization (DDSO) framework for ecological invasion management. This study addresses 

this gap. 

Despite these advances, important gaps remain. Most studies rely on single data sources or 

standalone algorithms, with limited integration of multi-source monitoring data into intelligent 

decision-support frameworks. Although multi-sensor time-series imagery (e.g., Sentinel-2 and 



GF-1) has improved monitoring of S. alterniflora, its potential to inform adaptive, optimization-

based resource allocation remains underexplored. In addition, ecological niche models often 

assume static or simplified environmental conditions, limiting their ability to capture dynamic 

invasion processes. Existing optimization approaches likewise tend to adopt static parameter 

settings and rarely incorporate time-varying ecological information derived from real 

observations. Given that invasion dynamics and environmental conditions evolve continuously, 

there is a clear need for integrated frameworks that can assimilate updated ecological data to 

enhance the realism and effectiveness of management decisions. 

Building on these insights, our study makes the following key innovations: 

(1) Multi-source data integration and intelligent processing: Satellite remote sensing is 

combined with image recognition and Random Forest and K-Nearest Neighbors methods on 

platforms such as Google Earth Engine and Python to quantify the spatiotemporal spread of S. 

alterniflora, improving monitoring accuracy and efficiency through data fusion. 

(2) Environmental parameter learning and environmental response functions: Data-

driven models based on KNN and RF are used to estimate key ecological parameters and 

construct dispersal and migration rates, capturing the interactions between environmental 

conditions and interregional spread dynamics. 

(3) Explicit coupling of ecological process simulation and optimization: By integrating 

spatial dispersal mechanisms with optimization-driven control decisions within an ecological 

simulation, this study overcomes the conventional separation between process-based modeling 

and resource allocation. The framework provides a coherent representation of invasion 

dynamics, spanning life-cycle transitions and interregional spread pathways, and supplies a 

dynamic foundation for spatiotemporally explicit optimization. 

(4) Integrated data-driven-simulation-optimization framework: To address the key 

challenges of invasive plant management–namely data scarcity, latent ecological parameters, 

and complex decision-making–we propose a systematic framework spanning the entire DDSO 

chain. The framework achieves full-link integration from constrained latent parameter 

inference, through stage-structured ecological simulation, to spatiotemporally explicit 

optimization. 

(5) An extensive case study for real-world management: Scenario-based analyses across 

varying budgets, invasion intensities, intervention timings, and other key parameters are 

conducted to assess management performance beyond static or single-scenario approaches. 

3. Data-Driven-Simulation-Optimization model (DDSO model) 

3.1 Modeling framework 

This study establishes an integrated modeling framework that quantitatively links multi-

source environmental information with optimal management strategies for controlling Spartina 

alterniflora invasions in coastal wetlands. Decision granularity is defined at the site-year level, 



where the optimizer determines when and where to implement control, and treatment costs are 

determined by current infestation abundance. Accordingly, the study area is divided into spatial 

units r ∈ R, time is discretized into decision periods t ∈ T, and k ∈ K represents the life cycle 

stage. 

 

Figure 1. Schematic framework of the Data-Driven-Simulation-Optimization model 
As illustrated in Figure 1, the framework consists of two major components: (i) a data-driven-

based ecological parameterization module and (ii) a simulation-optimization module. The data-

driven module integrates heterogeneous data sources, including remote sensing imagery 

(Sentinel-2, Landsat-5/8), and statistical datasets covering climate, soil, topography, and 

hydrodynamic conditions. By applying RF and KNN algorithms, this module extracts 

distribution data and estimates key ecological and dispersal parameters, such as reproduction 

rate ξr,t
 s , ξv,t

 d , natural mortality rate φr,t
 k-1 and dispersal coefficient βi→r

 θ , interregional migration 

rate λr,t. The integration of these time-varying parameters captures the spatial and temporal 

heterogeneity of species growth, dispersal, and environmental conditions, thereby enhancing 

the realism of subsequent simulation and optimization analyses. 

The simulation-optimization module integrates a plant growth and dispersal simulator with 

a resource allocation optimization model to characterize the dynamic invasion trends of S. 

alterniflora under multiple scenarios. The simulation component is formulated as a stage-

structured system dynamics model, in which key ecological parameters estimated by data-

driven are incorporated as exogenous drivers. Through biologically informed transition 

dynamics, the model represents the full life cycle of S. alterniflora, including seed bank 

dynamics, growth, reproduction, dispersal, and migration. Based on the simulated ecological 



evolution, the optimization component identifies the most cost-effective spatial and temporal 

allocation of control resources under budget constraints. The binary decision variable xr,t 

represents whether control is implemented in region 𝑟𝑟 at time 𝑡𝑡, while ATr,t
 k   denotes the 

remaining S. alterniflora population in stage 𝑘𝑘 after intervention. Notably, ATr,t
 k  functions as a 

coupling variable linking the simulation and optimization modules, serving simultaneously as 

the output of ecological dynamics and a constraint input for treatment decisions (see Eq. (9)). 

Through the integration of data-driven parameter estimation, system dynamics simulation, 

and optimization-based decision analysis, this framework provides a unified platform for 

evaluating where and when to implement control measures, thereby supporting evidence-based 

and cost-effective management of coastal invasive species. 

3.2 S. alterniflora control optimization model 

Building on the framework in Section 3.1, this section formalizes the S. alterniflora control 

optimization model by specifying the key ecological processes, management actions, and 

decision constraints that link population dynamics with management interventions: 

(1) Simulation of the growth and diffusion 

1) Dispersal dynamics 

Seeds of S. alterniflora can disperse over long distances via waves and tides. For any region 

r, the quantity of seeds migrating from neighboring regions i∈M(r) to region r at time t+1 

can be expressed as: 

ADr,t+1= � � λi,t+1βi→r
 θ ATi,t

 k

i∈M(r)

N

k=1

Si
 k      ∀ r, t (1) 

Here, λi,t+1 denotes the proportion of seeds leaving region i at time t+1 via waterborne 

dispersal (migration rate). βi→r
θ  represents the probability of seeds from neighboring region 

i∈M(r)  dispersing to region r  in wave direction θ , and M(r)  is the set of all neighboring 

regions of r. ATi,t
k  denotes the post-control number of plants in stage k in region i at time t, 

and Si
 k represents the number of seeds produced by stage-k plants in region i. 

Some seeds remain within region r rather than dispersing outward due to hydrodynamic 

conditions, expressed as: 

ARr,t+1=ωr,t+1 � ATr,t
 k

K

k=1

Sr
 k      ∀ r, t (2) 

where ωr,t+1 is the proportion of seeds retained in region r after dispersal at time t+1. 

2) Seed bank dynamics 

The retained seeds in region r, together with seeds dispersed from neighboring regions, form 

the seed bank. The constraint for the seed bank is thus defined as: 



ABr,t+1=ADr,t+1+ARr,t+1      ∀ r,t (3) 

3) Population transition dynamics 

S. alterniflora reproduces both sexually (via seeds) and asexually (via rhizomes and plant 

fragments). Seeds in the seed bank and asexually propagated rhizomes germinate into seedlings 

at specific rates. As seedlings grow, natural mortality occurs at each stage. Mature plants then 

produce seeds. The state transition equations are: 

APr,t+1
 k =σπrξr,t+1

 s ABr,t+1+τ(1-φr,t+1
 k-1 )ATr,t

 k-1P kξr,t+1
 d    k=1 and ∀ r,t (4) 

APr,t+1
 k = �1-φr,t+1

 k-1 � ATr,t+1
 k-1 +τ(1-φr,t+1

 k-1 )ATr,t+1
 k-1 P kξr,t+1

 d    k=2 and ∀ r,t (5) 

APr,t+1
 k = �1-φr,t+1

 k-1 � ATr,t+1
 k-1    k=3,…,K and ∀ r,t (6) 

Here, APr,t+1
 k   denotes the number of stage-k  plants in region r  at time t+1 , ξr,t+1

 s   is the 

seed survival rate. πr is the seed germination rate, σ is the seed-to-seedling transition rate, τ 

is the vegetative propagation rate from rhizomes. P k is the number of rhizomes produced by 

stage-k  plants. ξr,t+1
 d   is the rhizome survival rate, and φr,t+1

 k-1   represents the natural attrition 

during the transition from stage k-1 to stage k. 

4) Carrying capacity and actual population 

Since each region r  contains S. alterniflora at different life stages, plants compete for 

limited resources such as soil and living space. The carrying capacity Lr  specifies the 

maximum population that region r  can sustain, and is estimated from field survey data 

reported in Liu et al. (2017). As the population approaches Lr, survival and growth become 

increasingly suppressed. Thus, the pre-control population of stage-k plants in region r, BTr,t
 k , 

is defined as: 

BTr,t+1
 k =min�APr,t+1

 k ,Lr�       k=K and ∀ r,t (7) 

BTr,t+1
 k =min�APr,t+1

 k ,Nr,t+1
 k �       k=1,…,K-1 and ∀ r,t (8) 

We adopt a Lotka-Volterra competition framework to model inter-stage suppression, where 

the population dynamics Nr,t+1
 k  detailed in the supplementary (see supplementary material S1). 

(2) Treatment mechanism 

To mitigate the damage caused by invasive species, government agencies periodically 

implement control measures against S. alterniflora. In this study, based on the local context, we 

adopt combined physical and chemical control method to control for region r. After treatment, 

the population of stage-k plants in region r at time 𝑡𝑡+1, ATr,t+1
 k , can be expressed as: 

ATr,t+1
 k =BTr,t+1

 k ×�1-γxr,t+1�     ∀ r,t,k (9) 

Here, γ is the effective control rate, and xr,t is a binary decision variable indicating whether 



control is applied to region r at time t. 

(3) Budget constraint 

Since the budget for controlling S. alterniflora is limited, the total expenditure across the 

planning horizon must satisfy: 

� � C*SAr,t*xr,t

R

r=1

T

t=1

≤ B (10) 

where C includes labor and machinery costs, SAr,t is the area of S. alterniflora in region r 

at time t , obtained from GEE and machine-learning-based monitoring, and B  is the total 

budget. 

(4) Objective function 

The goal of the model is to minimize the total damage caused by S. alterniflora across all 

regions and time periods within the planning horizon (obstruct waterways, destroy habitats, 

etc.). Let Er,t  denote the expected economic benefits of region r  at time t . The objective 

function thus minimizes invasion-induced economic losses subject to budget constraints 

through optimized control strategies, and is formulated as follows: 

Min � � Er,t �� ATr,t
 k

K

k=1
� Lr�

T

t

R

r

(11) 

3.3 Data-driven parameterization for invasion dynamics simulation 

To address the limitations of conventional field- and laboratory-based monitoring, this study 

adopts a data-driven parameterization framework that integrates multi-source observations with 

a process-based dispersal-control model. Specifically, the data-driven approach serves two 

purposes: (i) reconstructing the spatiotemporal distribution of Spartina alterniflora from 

historical environmental and remote-sensing data, and (ii) inferring environmentally driven, 

time-varying invasion parameters by learning nonlinear relationships between environmental 

factors and biological processes. These data-derived parameters are then embedded into the 

process-based simulation model, providing dynamically updated inputs that enhance the 

realism and adaptability of invasion dynamics representation (see Supplementary Material S2). 

3.3.1 Remote sensing-based data extraction using GEE and Python 

Using multi-source data, including remote sensing, climate records, and statistical surveys, 

this study examined the dynamic evolution of S. alterniflora in the coastal areas of Yancheng 

from 1990 to 2022. On the Google Earth Engine (GEE) platform, we extracted vegetation and 

water indices from Sentinel-2 and Landsat-5/8 imagery, including Normalized Difference 

Vegetation Index, Enhanced Vegetation Index, and Normalized Difference Water Index. 

Random Forest classifiers was then employed to identify different growth stages of S. 

alterniflora and to derive the initial invasion maps (Figure 2). 



 
Figure 2. Spatial distribution of S. alterniflora in selected years from 1990 to 2022 

3.3.2 Ecological environmental parameters inference 

Because direct observation of seed survival, vegetative sprouting, and natural mortality is 

challenging, corresponding dispersal parameters were represented as latent process variables. 

These are jointly driven by multi‑source environmental predictors and bounded by ecological 

constraints informed by prior studies (Liu et al., 2017; Wang et al., 2021). To appropriately 

capture the distinct ecological processes represented by each parameter, we implemented 

tailored strategies. Cross-validation results indicate that the data-driven parameterization 

achieves consistently high explanatory power (mean R2 ranging from approximately 0.79 to 

0.88) with low prediction errors, supporting the internal consistency and stability of the inferred 

spatiotemporal patterns (Table S1). All models operate under strict ecological boundary 

constraints and are intended to represent the relative structure and spatiotemporal heterogeneity 

of parameter responses to environmental change, rather than to estimate unobservable true 

parameter values. The resulting outputs provide ecologically plausible, time-varying inputs for 

the simulation-optimization framework (see supplementary material S3). 

(1) Reproductive rate of S. alterniflora 

Let the proportional contribution of seed-based reproduction be fs  and that of rhizome-

based reproduction be fd, satisfying fs+fd=1. 



The seed survival rate ξr,t
 s  is regulated by an environmental adaptability coefficient αr,t: 

ξr,t
 s =𝛼𝛼𝑟𝑟,𝑡𝑡

𝑠𝑠  fs      ∀ r,t (12) 

𝛼𝛼𝑟𝑟,𝑡𝑡
𝑠𝑠 =g(T,S,Nasoil,P,∆T)     ∀ r,t (13) 

Here, g(·) denotes a K-Nearest Neighbor (KNN) regression model based on temperature 

(T), salinity (S), soil exchangeable sodium ( Nasoil ), precipitation (P), and temperature 

variability (∆T), with its output normalized to [0, 1]. 

ξr,t
 d=𝛼𝛼𝑟𝑟,𝑡𝑡

𝑑𝑑  fvAnew(t)     ∀ r,t (14) 

The rhizome survival rate ξv,t
 d  is also governed by an environmental adaptability coefficient 

αv,t, with key drivers including silt content (Silt), seawater flow velocity (U), and PH. 

ξv,t
 d =𝛼𝛼𝑟𝑟,𝑡𝑡

𝑑𝑑  fv     ∀ r,t (15) 

𝛼𝛼𝑟𝑟,𝑡𝑡
𝑑𝑑 =h(Silt,S,U,Nasoil,PH,P)     ∀ r,t (16) 

(2) Natural attrition rate 

The attrition rate at growth stage k, φr,t
 k , is modeled as a function of environmental factors. 

Using Random Forest models for stage-specific estimation, we impose the constraint 

∑ φr,t
 kK

k=1 ≤1. 

φr,t
 k =a(T,S,Nasoil,∆T,PH,P)     ∀ r,t (17) 

3.3.3 Quantification of migration and dispersal dynamics 

(1) Migration rate 

Hydrodynamic conditions are the primary drivers of long-distance seed dispersal for S. 

alterniflora in coastal regions. We introduce a hydrodynamic index to characterize seed 

migration probability, incorporating both water flow velocity and wind strength (see Eq. 18). 

To standardize migration rates, the hydrodynamic index is normalized (Eq. 19) to derive seed 

migration rates for each region: 

MPr,t= �
WSr,t(k)·WVr,t(k)

K

K

k=1

   ∀ r,t (18) 

λr,t=
MPmax,t-MPr,t

MPmax,t-MPmin,t
   ∀ r,t (19) 

Here, MPr  denotes the average hydrodynamic intensity in region r  over the planning 

horizon T. WSr,t and WVr,t are the average wind speed and water flow velocity in region r 

at time t , respectively, and MPmax  and MPmin  are the maximum and minimum average 

hydrodynamic intensities across all regions. λr  is the normalized hydrodynamic index 

representing the seed migration rate in region r. A larger λr indicates weaker hydrodynamic 

conditions and thus a lower probability of seed movement from region i to region r. 



(2) Diffusion rate 

Beyond hydrodynamic intensity, water flow direction and the spatial distance between 

neighboring regions also influence seed dispersal. We define β i→r
θ   as the probability of S. 

alterniflora seeds dispersing from region i to region r along migration direction θ, given by: 

μi→r=
1

1+( �Sidi→r
ε )

2 (20)
 

βi→r
 θ =

μi→r
∑ μi→ri∈M(r)

(21) 

Here, Si  represents the mudflat area of region i . di→r  denotes the distance between the 

geographic centers of mudflats in regions i  and r , and ε  is the diffusion coefficient. As 

expressed in Eq. (20), larger mudflat areas and greater interregional distances both reduce the 

proportion of seeds migrating from region i to region r. 

3.4 Linearization of the DDSO model 

Because constraints (7) and (8) contain minimum operators, we employed Big-M 

formulations with binary variables to linearize the constraints, transforming them into a mixed-

integer programming (MIP) model ((7a)-(7d) and (8a)-(8d)). Likewise, constraint (9) was 

linearized into equivalent sub-constraints (9a-9d). The auxiliary upper bounds used in these 

linearizations are defined as Ur
1=1.5Lr  and Ur

2=1.5Nr
 k . These values provide biologically 

plausible, conservative bounds that improve the conditioning of the MIP. Thus, the DDSO 

model is expressed by equations (1)-(6), (7a)-(7d), (8a)-(8d), (9a)-(9e), and (10)-(11). 

(DDSO)      Obj (11) 

             s.t.: 

BTr,t+1
 k ≤APr,t+1

 k    k=K and ∀ r,t (7a) 

BTr,t+1
 k ≤Lr   k=K and ∀ r,t (7b) 

BTr,t+1
 k ≥APr,t+1

 k -Ur
1(1-zr,t+1

1 )  k=K and ∀ r,t (7c) 

BTr,t+1
 k ≥Lr-Ur

1zr,t+1
 1    k=K and ∀ r,t (7d) 

BTr,t+1
 k ≤APr,t+1

 k    k=1,…,K-1 and ∀ r,t (8a) 

BTr,t+1
 k ≤Nr,t+1

 k    k=1,…,K-1 and ∀ r,t (8b) 

BTr,t+1
 k ≥APr,t+1

 k -Ur
1(1-zr,t+1

1 )   k=1,…,K-1 and ∀ r,t (8c) 

BTr,t+1
 k ≥Nr,t+1

 k -Ur
1zr,t+1

1    k=1,…,K-1 and ∀ r,t (8d) 

wr,t+1
 k ≤γBTr,t+1

 k    ∀ r,t,k (9a) 

wr,t+1
 k ≤γUr

2xr,t   ∀ r,t,k (9b) 

wr,t+1
 k ≥γBTr,t+1

 k -γUr
2(1-xr,t)   ∀ r,t,k (9c) 



wr,t+1
 k ≥0   ∀ r,t,k (9d) 

AT r,tk =BTr,t+1
 k -wr,t+1

 k    ∀ r,t,k (9e) 

(1)-(6), (10). 

By incorporating data-driven, time-varying parameters estimated from multi-source 

observations and remote-sensing inversions as exogenous inputs, the proposed DDSO 

framework tightly integrates a mechanistic stage-structured simulation with a rigorously 

linearized deterministic MIP formulation. This integration enhances ecological realism while 

preserving computational robustness and model reproducibility. In the following section, we 

apply this framework to a case study of S. alterniflora invasion control across six severely 

affected coastal areas of Yancheng, Jiangsu Province, China, where a scenario-based analysis 

is conducted to examine optimal control strategies under alternative invasion and budget 

conditions. 

4. Case study 

4.1 Parameter settings 

This study focuses on six coastal regions in Yancheng, Jiangsu Province–Xiangshui (XS), 

Binhai (BH), Sheyang (SY), Tinghu (TH), Dafeng (DF), and Dongtai (DT)–to validate the 

computational feasibility and rationality of the proposed DDSO model. Drawing upon peer-

reviewed literature, government reports, and expert consultation, and integrating Yancheng’s 

regional environmental characteristics with multi-source datasets, key parameters governing 

population dynamics and management interventions were calibrated. Table 1 summarizes the 

initial population structure and model parameters, while Figure 3 illustrates the growth 

dynamics parameters derived from multi-source data. 

We adopt a scenario-based comparative framework to assess management performance 

across a range of plausible invasion conditions, using alternative invasion scenarios to examine 

how management outcomes vary with invasion intensity and spatial extent. Invasion scenarios 

are defined according to the severity of S. alterniflora infestation, characterized by two key 

ecological dimensions: invasion frequency (spatial distribution proportion) and invasion 

abundance (initial population per region). Each dimension is specified at three levels: Low (L), 

Medium (M), and High (H). The M-M scenario, which represents the observed S. alterniflora 

distribution derived from GEE-based mapping and machine-learning analysis, is used as the 

baseline ecological scenario. Building upon this reference condition, nine hypothetical invasion 

scenarios are constructed by systematically adjusting invasion frequency (-20%, baseline, 

+25%) and invasion abundance (-10%, baseline, +5%), thereby generating a spectrum of 

ecological conditions for model evaluation (see supplementary material S4). 

 

 



Table 1. Initial population structure and model parameters 
Description Notations Unit Value Reference 
Initial frequency L, M, H - -20%, Based, +25% - 
Initial abundance L, M, H - -10%, Based, +5% - 
Seed-to-seedling transition rate σ - 0.15 Hayasaka et al., 2020; Liu et 

al., 2017; Xu et al., 2014 Seed germination rate πr - 0.225, 0.2, 0.175, 0.25, 0.21, 0.19 
Vegetative propagation rate from 
rhizomes τ - 0.3 An et al., 2007; Trilla et al., 

2009 The number of rhizomes produced by 
stage-k plants P k - 5, 15 

The effective control rate γ - 0.85 Wang et al., 2016 
Labor and machinery costs C CNY 2400 An et al., 2024 
Proportional contribution of seed-based 
reproduction fs - 25% Hayasaka et al., 2020 

Proportional contribution of rhizome-
based reproduction fv - 75% Hayasaka et al., 2020 

 
Figure 3. Survival and attrition rates of S. alterniflora 

We solved the mixed-integer programming model proposed in Section 3 using IBM ILOG 

CPLEX Optimization Studio 22.1 to identify optimal S. alterniflora control strategies under 

varying scenarios. All computations were performed on a personal computer equipped with an 

Apple M1 processor (8-core CPU) and 8 GB RAM. The full-scale model covers 33 time steps 

× 6 regions × 5 growth stages, all tested instances were solved within 180 seconds. Scalability 

experiments for extended time horizons indicate that computational effort grows approximately 

linearly with the number of periods, and the model remains tractable under default solver 

configurations. 

4.2 Comparative analysis of models 

To evaluate the benefits of optimization-based management, three models–System Dynamics 

(SD), Simulation-Optimization (SO, i.e., simulation optimization model with fixed parameters), 

and Data-Driven-Simulation-Optimization (DDSO)–were compared under a fixed budget of 

CNY 300 million (Table 2). First, the contrast between the SD and control-based models (SO 

and DDSO) demonstrates that the inclusion of optimized control decisions fundamentally 

determines the order of magnitude of economic losses, reducing total damage by nearly two 

orders of magnitude. This finding implies that, once invasion reaches a regional scale, the 



critical policy question is no longer the precise tuning of control intensity, but whether 

coordinated, forward-looking control is embedded in the decision framework at all. Second, the 

optimal solutions consistently favor highly uneven spatial allocation of budgets and treatment 

intensity, concentrating resources in Sheyang, Dafeng, and Dongtai. This pattern indicates that 

economically efficient management prioritizes regions with high marginal control returns and 

strong roles in invasion propagation, rather than pursuing uniform loss reduction across space. 

Such results quantitatively support a node-based or leverage-oriented control strategy in 

invasive species management. Third, comparing SO and DDSO shows that incorporating finer 

ecological or life-stage structure does not increase overall costs or losses, but instead produces 

more temporally distributed and less extreme control pathways. This suggests that greater 

ecological realism enhances the robustness and sustainability of management strategies by 

reducing reliance on short-term, high-intensity interventions. 

Overall, this scenario analysis reveals a fundamental decision logic: the existence of control 

decisions determines the magnitude of economic losses, the spatial-temporal allocation of 

control resources determines management efficiency, and the depth of ecological process 

representation influences the robustness and sustainability of control pathways. These insights 

not only provide strategic guidance for S. alterniflora management but also offer a transferable 

decision framework for the coordinated regional control of other coastal invasive species. 

Table 2. Optimal budget allocation, treatment capacity, and associated economic losses under different 

models 

Model Time 
Sec. 

Gap 
% 

Objective 
CNY City Regional 

Economic Loss 
OptBudget 

Million CNY 
Control 

Year 
Treatment 
Intensity 

SD 0.08 - 521595663 

Xiangshui 18329916 - - - 
Binhai 37397940 - - - 
Sheyang 281920608 - - - 
Tinghu 63024022 - - - 
Dafeng 59517669 - - - 
Dongtai 61405508 - - - 
Total 521595663 - - - 

SO 2.81 0.08 5651560 

Xiangshui 133244 8.82 6 1097693 
Binhai 345837 15.49 6 622944 
Sheyang 1749445 58.69 7 9345237 
Tinghu 382216 41.11 5 26915933 
Dafeng 2361063 82.14 5 26376299 
Dongtai 679754 93.74 5 15770451 
Total 5651560 299.99 34 80128557 

DDSO 3.49 0.07 5705480 

Xiangshui 144472 11.50 7 1201357 
Binhai 368399 20.02 7 668732 
Sheyang 1802625 58.69 7 9676748 
Tinghu 374991 55.54 6 26605569 
Dafeng 2479850 82.14 5 27903752 
Dongtai 535143 69.55 4 12277739 
Total 5705480 297.44 36 78338967 

4.3 Effects of different budget levels 

Using the medium invasion abundance-frequency scenario as a baseline, the optimization 

results under different budget scenarios reveal three interrelated decision insights concerning 

marginal returns, budget thresholds, and the evolution of control pathways (Table 3). First, 

under the zero-budget scenario, total economic losses exceed CNY 774 million, indicating that 



without intervention the invasion system evolves toward severe and cumulative regional 

damage. When the budget increases to CNY 100 million, losses drop by more than two orders 

of magnitude, demonstrating a pronounced initial leverage effect whereby relatively modest 

but coordinated investments fundamentally alter invasion dynamics. Second, as the budget rises 

from CNY 100 to 200 million, total losses continue to decline but at a markedly diminishing 

rate; beyond the CNY 200-400 million range, further budget increases yield almost no 

additional reduction in economic losses, which stabilize at approximately CNY 5.7 million. 

This pattern reveals a clear budget threshold and diminishing marginal returns, identifying an 

economically efficient investment interval beyond which additional funding primarily enhances 

coverage and persistence rather than outcome effectiveness. Third, higher budgets do not 

change the spatial prioritization of control but are absorbed through longer control horizons and 

greater continuity of treatment, rather than intensified short-term interventions. This indicates 

a strategic shift from rapid suppression toward maintenance-oriented and stabilization-focused 

control pathways as financial constraints are relaxed. 

Table 3. Optimal budget allocation, treatment capacity, and associated economic losses under different 

budgets 
Budget 

Million yuan 
Time 
Sec. 

Gap 
% Objective City Regional 

Economic Loss 
OptBudget 

Million CNY Control Plan Treatment 
Intensity 

0 0.07 - 774420984 Xiangshui 168428929 - - - 
Binhai 241206722 - - - 
Sheyang 166152008 - - - 
Tinghu 69569053 - - - 
Dafeng 118213723 - - - 
Dongtai 10850549 - - - 
Total 774420984 - - - 

100 8.14 5.97 9575297 Xiangshui 157022 6.60 5 1201151 
Binhai 386122 11.68 5 668607 
Sheyang 2273848 20.23 3 9631804 
Tinghu 591040 20.29 3 26472003 
Dafeng 4539683 26.50 2 27102211 
Dongtai 1627582 14.08 1 10644558 
Total 9575297 99.38 19 75720334 

200 5.24 0.19 5808421 Xiangshui 157022 6.60 5 1201151 
Binhai 371045 15.50 6 668710 
Sheyang 1812367 37.75 5 9675381 
Tinghu 406200 29.59 4 26582104 
Dafeng 2514243 61.04 4 27886137 
Dongtai 547544 48.47 3 12248167 
Total 5808421 198.95 27 78261650 

400 0.5 0.01 5697889 Xiangshui 144481 8.82 6 1201373 
Binhai 368401 20.02 7 668734 
Sheyang 1802677 59.87 7 9676812 
Tinghu 374308 73.66 7 26606187 
Dafeng 2474265 137.67 7 27907578 
Dongtai 533757 93.74 5 12282151 
Total 5697889 393.78 39 78342835 

500 0.12 0.00 5697488 Xiangshui 144472 11.50 7 1201357 
Binhai 368399 20.02 7 668732 
Sheyang 1802617 58.69 7 9676731 
Tinghu 374292 73.66 7 26606193 
Dafeng 2474122 133.82 7 27907597 
Dongtai 533586 153.13 7 12282806 
Total 5697488 450.82 42 78343416 

Overall, the analysis suggests a hierarchical budget logic: budget availability determines 

whether system trajectories can be reversed, threshold levels define efficiency limits, and post-



threshold allocations shape long-term stability rather than immediate loss reduction. This 

framework provides a concise and transferable basis for investment planning in invasive species 

management under fiscal constraints. 

4.4 Effects of different invasion frequencies and abundances 

Under a fixed budget of CNY 300 million, increasing invasion frequency and abundance 

fundamentally alters the control mechanism rather than proportionally increasing losses 

(Figures 4 and 5).  

 
Figure 4. Budget allocation and economic losses across different invasion scenarios 

Note: The left vertical axis in the figure represents the treatment costs, and the right vertical axis represents the economic loss value. 
Scenarios are categorized as follows: Low frequency and low abundance (L-L), Low frequency and medium abundance (L-M), Low 
frequency and high abundance (L-H), Medium frequency and low abundance (M-L), Medium frequency and medium abundance (M-M), 
Medium frequency and high abundance (M-H), High frequency and low abundance (H-L), High frequency and medium abundance (H-M), 
and High frequency and high abundance (H-H).). 

First, total economic losses escalate sharply with increasing invasion severity, yet 

governance costs remain relatively constrained, indicating a nonlinear sensitivity of the system 

to invasion levels. This divergence indicates that, once control coverage and timing approach 

saturation, residual losses are driven primarily by exogenous risk intensity rather than 

insufficient management effort. Under high-risk conditions, budgets and control capacity 

therefore function more as loss buffers than as instruments of loss elimination. Second, the 

optimal temporal structure is remarkably stable across scenarios, characterized by early and 

persistent control beginning at the initial period and maintained throughout the planning 

horizon. As scenario severity increases, the model responds not by shifting control timing, but 

by scaling treatment intensity within existing time windows. This reflects a strategic transition 

from timing-based intervention to scale-based risk hedging under elevated invasion pressure. 

Third, spatial prioritization remains largely invariant across all scenarios: Sheyang, Dafeng, 

and Tinghu consistently dominate control effort and residual losses, while Xiangshui and 



Binhai play secondary roles. This stability suggests that regional priorities are determined by 

structural ecological and diffusion characteristics, rather than by budget or capacity 

assumptions. Scenario escalation thus affects the cost of maintaining a given spatial control 

pattern, not the pattern itself. 

Overall, these results imply a hierarchical decision logic: management resources determine 

the system’s capacity to absorb risk, whereas scenario severity determines the irreducible loss 

floor. Under high-risk regimes, the objective of control shifts from minimizing losses to 

preventing systemic loss escalation, underscoring the importance of integrating routine 

management with risk-tiered and scenario-responsive strategies in long-term invasive species 

control. 

 
Figure 5. Distribution of treatment decisions across different invasion scenarios 

Note: The left vertical axis in the figure represents the six research areas, and the horizontal axis at the bottom represents the time at which 
the treatment measures were implemented. 0 = no treatment, 1 = treatment implemented 
4.5 Effects of different intervention timings 

Under a fixed budget of CNY 300 million, delaying eradication leads to a strongly nonlinear 

deterioration in outcomes (Figure 6). First, the timing of control implementation is highly 

determinant of economic outcomes. Early intervention (e.g., Delay 1) limits total losses to 

approximately CNY 1.08 × 108, whereas delayed intervention (e.g., Delay 3 or Delay 5) leads 

to dramatic increases, up to CNY 7.14 × 108. This highlights a pronounced early-action leverage, 

where timely, coordinated interventions maximize marginal returns before invasion expansion 

amplifies system-wide risks. Second, delayed interventions induce resource concentration: 

under late scenarios, critical regions such as Sheyang, Dafeng, and Tinghu bear the majority of 

control effort, while peripheral regions receive minimal treatment. This demonstrates that when 

invasion pressure is high or intervention is postponed, the optimal strategy shifts from balanced 



coverage to risk-focused allocation, concentrating resources in areas of greatest influence to 

prevent systemic loss escalation. Third, spatial prioritization remains largely invariant across 

scenarios. Despite differences in timing and budget absorption, the ranking of key regions is 

stable, indicating that underlying ecological and dispersal structures drive spatial control 

priorities, while intervention timing primarily affects the intensity and cost of management 

rather than the spatial configuration. 

Overall, these findings suggest a hierarchical logic: early interventions determine the 

magnitude of system-wide losses, delayed interventions necessitate concentrated risk-based 

resource allocation, and spatial priorities are structurally determined by ecological and dispersal 

characteristics. Integrating intervention timing with spatial structure and budget allocation is 

therefore critical for designing robust, long-term invasive species management strategies. 

 
Figure 6. Regional budget allocations, economic losses, and management decisions under different 

intervention timing scenarios 
Note: The bar charts represent treatment costs, while the line charts depict economic loss values. The heat map illustrates the management 
scheduling, where 0 = no treatment and 1 = treatment implemented. “Delay1”-“Delay5” indicate interventions commencing 5, 10, 15, 20, 
and 25 years later, respectively. 
4.6 Effects of migration 

Under a fixed budget of CNY 300 million, incorporating migration mainly alters the spatial-

temporal deployment of control rather than total cost (Figures 7 and 8). Comparing no-

migration and migration scenarios highlights the critical influence of dispersal on invasive 

species management. Migration amplifies economic losses across all invasion intensities, 

emphasizing that connectivity drives both regional vulnerability and required control effort. 

In no-migration scenarios, interventions are consistently applied across all regions, reflecting 

the localized and predictable spread of the invasion. With migration, control efforts concentrate 

on high-risk regions, demonstrating that resource allocation must adapt to dispersal pathways 

rather than static regional risk. Intervention timing and intensity also interact with invasion 

severity: high-intensity invasions demand larger budgets and prolonged treatment, whereas 

lower-intensity invasions achieve effective control with moderate, shorter interventions. 

These findings suggest three strategic implications: Incorporate dispersal dynamics into 



spatial prioritization to optimize resource allocation; Adjust intervention intensity to invasion 

severity, balancing coverage and efficiency; And prioritize early and sustained interventions 

under low-connectivity scenarios, while targeting key dispersal nodes under high connectivity. 

Overall, both invasion intensity and ecological connectivity critically shape optimal 

governance strategies, and neglecting migration can lead to under-resourced interventions and 

higher cumulative losses. 

 

Figure 7. Regional budget allocations and economic losses under non-migration scenarios across different 

invasion levels 
Note: The left vertical axis in the figure represents the treatment costs, and the right vertical axis represents the economic loss value. 

 

Figure 8. Regional management decisions under non-migration scenarios across different invasion levels 

Note: The left vertical axis in the figure represents the time at which the treatment measures were implemented, and the horizontal axis at 

the bottom represents the six research areas. 0 = no treatment, 1 = treatment implemented. 



4.7 Sensitivity analysis of other key parameters 

To assess the model’s sensitivity to key biological parameters, we conducted perturbation 

tests on lifecycle attributes of S. alterniflora, including the number of seeds produced (Si
k), the 

seed-to-seedling transition rate (σ ), and the number of rhizomes produced by vegetative 

reproduction at different stages (P k), adjusting each by ±10% or ±1% (Figure 9 and Table 4, 

see supplementary material S8). 

Results show a clear hierarchy of parameter influence. Seed production exhibits the strongest 

sensitivity: a 10% decrease reduces total losses to 5.13×10⁶ CNY, whereas a 10% increase raises 

losses to 6.35×10⁶ CNY and markedly increases treatment demand, particularly in high-density 

regions such as Sheyang and Dafeng. In contrast, perturbations in σ  produce only minor 

changes in aggregate outcomes, indicating effective buffering by density regulation and 

optimized control. Vegetative propagation has intermediate, stage-dependent effects, with 

increased late-stage rhizome production modestly elevating control effort and losses in later 

periods (T = 5-8), while early-stage propagation remains less influential. 

Across all scenarios, the model consistently prioritizes regions with high invasion potential, 

indicating that spatial heterogeneity and local population dynamics are primary drivers of 

budget allocation decisions. These results suggest that management strategies should account 

for the potential impacts of variations in critical ecological parameters to optimize intervention 

timing, intensity, and regional allocation while minimizing cumulative economic losses. 

 
Figure 9. Regional budget allocations and economic losses under other parameter-sensitivity analyses 

 

 



Table 4. Decision outcomes from other parameter-sensitivity analyses 
Sr-10% XS BH SY TH DF DT Sr+10% XS BH SY TH DF DT σ-1% XS BH SY TH DF DT 
T=1       T=1       T=1       
T=2       T=2       T=2       
T=3       T=3       T=3       
T=4       T=4       T=4       
T=5       T=5       T=5       
T=6       T=6       T=6       
T=7       T=7       T=7       
T=8       T=8       T=8       
σ+1% XS BH SY TH DF DT P1+1% XS BH SY TH DF DT P1+1% XS BH SY TH DF DT 
T=1       T=1       T=1       
T=2       T=2       T=2       
T=3       T=3       T=3       
T=4       T=4       T=4       
T=5       T=5       T=5       
T=6       T=6       T=6       
T=7       T=7       T=7       
T=8       T=8       T=8       
P2-1% XS BH SY TH DF DT P2+1% XS BH SY TH DF DT        
T=1       T=1              
T=2       T=2              
T=3       T=3              
T=4       T=4              
T=5       T=5              
T=6       T=6              
T=7       T=7              

5. Discussion 

This study develops an integrated Data-Driven-Simulation-Optimization (DDSO) 

framework to dynamically design and evaluate invasive species management under ecological 

and economic constraints. By coupling data-driven parameter estimation with a life-cycle-

based time-varying dynamic simulation and a mixed-integer optimization model, the 

framework links ecological processes with operational decision-making, enabling systematic 

evaluation of management strategies across heterogeneous regions and intervention schedules. 

Across all experimental dimensions, a set of consistent and non-trivial decision insights 

emerges that transcends individual scenarios. 

Framework precedence over intensity. Once biological invasions reach a regional scale, 

the order of magnitude of economic losses is determined primarily by whether an optimized 

control framework is in place, rather than by marginal adjustments in control intensity. This 

underscores that, in complex ecological systems, establishing coordinated and forward-looking 

decision structures is more fundamental than localized optimization of effort. 

Unevenness as efficiency. Economically efficient management naturally entails highly 

uneven spatial allocation of resources, with investments concentrated in key transmission or 

leverage nodes (e.g., Sheyang and Dafeng in this study). Pursuing spatially uniform loss 

reduction can, counterintuitively, undermine overall budget efficiency, challenging the intuitive 

association between equitable allocation and effective management. 

Ecological complexity enhances robustness, not cost. Incorporating finer ecological 

process representations (e.g., life-history structure) does not increase total costs or aggregate 

losses. Instead, it improves strategy robustness by generating smoother and more sustainable 

control trajectories. This challenges the common concern that greater model complexity 

necessarily entails higher management costs, highlighting ecological realism as a mechanism 



for avoiding short-term, high-intensity interventions and achieving long-term stability. 

Budget saturation and regime shifts. The marginal effectiveness of budget increases 

exhibits a clear threshold effect. Beyond this threshold, additional investments primarily 

translate into greater persistence and spatial coverage of control, rather than further loss 

reduction. This indicates a qualitative shift in allocation logic: pre-threshold investments aim 

to reverse system trajectories, whereas post-threshold investments focus on maintaining long-

term stability. 

Risk levels reshape management objectives. Under high invasion pressure, management 

resources shift from instruments of loss minimization to buffers against systemic loss escalation. 

In such contexts, the primary objective should move away from reducing absolute losses toward 

preventing cascading and system-wide amplification, emphasizing the integration of routine 

management with risk-tiered response strategies. 

Timing shapes intensity, not spatial priority. While intervention timing critically affects 

loss magnitude and the degree of resource concentration, optimal spatial priorities remain 

structurally determined by underlying ecological and dispersal processes and are largely 

invariant to budget or timing assumptions. Effective strategies therefore require early initiation 

to secure system-wide benefits, alongside a stable anchoring of structurally critical regions. 

Allocation must track dynamic connectivity, not static risk. In the presence of migration, 

optimal control must shift from responding to static regional risks toward targeting dynamic 

dispersal pathways. Ignoring ecological connectivity leads to systematic misallocation of 

resources and higher cumulative losses, even under identical budget constraints. 

Overall, this study advances a hierarchical decision logic: control frameworks determine loss 

magnitude, spatiotemporal allocation determines management efficiency, and the depth of 

ecological representation determines pathway robustness. Strategically, invasive species 

governance should prioritize coordinated optimization architectures, deliberately adopt uneven 

leverage-based interventions, and recognize how budgets, risks, and timing jointly trigger 

fundamental shifts in management objectives to balance resilience and efficiency in dynamic 

environments. 

6. Conclusion and future work 

This study proposes and implements an integrated Data-Driven-Simulation-Optimization 

(DDSO) framework to support spatiotemporal management of coastal S. alterniflora under 

constrained public budgets. By integrating heterogeneous multi-source observations, the 

framework constructs time-varying ecological parameters that characterize evolving invasion 

dynamics. These parameters are embedded within a stage-structured population simulation and 

a mixed-integer optimization model to determine cost-effective intervention timings, intensities, 

and regional budget allocations. Extensive scenario experiments–covering variations in budget 

levels, invasion intensity, intervention timing, dispersal conditions, and key ecological 



parameters–demonstrate the practical value of the DDSO framework in generating actionable, 

data-informed management strategies. 

Despite establishing this multi-source DDSO framework and conducting systematic analyses 

across diverse budgets, invasion intensities, and intervention scenarios, several limitations 

remain. First, many model parameters are derived from historical monitoring data and expert 

assumptions, without fully incorporating randomness and uncertainty, which may 

underestimate management needs under extreme conditions. Second, this study focuses 

primarily on minimizing economic losses as a single objective, without fully accounting for 

ecosystem services, social acceptance, or multi-stakeholder trade-offs. Third, the mixed-integer 

optimization model faces computational challenges in large-scale scenarios, requiring 

dedicated algorithms and high-performance computing resources. 

Future research can be expanded in several directions: First, although the present study 

adopts economic loss minimization to maintain a transparent and tractable core structure, the 

model can be naturally extended to multi-objective formulations that incorporate ecosystem 

services, ecological resilience, and social considerations, thereby enabling explicit trade-off 

analysis in real-world management. Second, uncertainty-aware decision-making can be 

strengthened by integrating multi-stage stochastic or robust optimization approaches, enabling 

management strategies to remain effective under environmental variability and parameter 

uncertainty. Third, further advances in computational efficiency, including decomposition 

techniques, heuristic or approximate dynamic programming methods, and GIS-based decision-

support interfaces, would enhance scalability and facilitate practical implementation by 

management agencies. Collectively, these extensions would improve the ecological realism, 

policy relevance, and operational robustness of the proposed framework, supporting adaptive 

and sustainable long-term management of coastal invasive species. 
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