i‘ frontiers

Supplementary Material

1 Code

####### Installation and Import Setup ####
I'pip install torch torchvision torchaudio
Ipip install scikit-learn

!pip install torchcam

!pip install grad-cam

#Imports

import torch

import torch.nn as nn

import torch.optim as optim

from torchvision import models, transforms, datasets

from torch.utils.data import DatalLoader , WeightedRandomSampler
import matplotlib.pyplot as plt

import os

os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

#H#HH##HH Dataset splitting, Preprocessing and Augmentation ####

import random

import shutil

import os

from pathlib import Path

from PIL import Image, ImageEnhance, ImageOps

def apply_op(image, op_name, magnitude):
"""Applies the requested operation to the image."""
if op_name == 'rotate':
return image.rotate(magnitude)

elif op_name == 'zoom':
w, h = image.size
new_w, new_h = int(w * magnitude), int(h * magnitude)
zoomed = image.resize((new_w, new_h), Image.BICUBIC)

If zoomed in, randomly crop back to original size
if new_w > w and new_h > h:

max_x = New_w - W

max_y = new_h - h

X = random.randint(0, max_x)

y = random.randint(0, max_y)

return zoomed.crop((x, y, x + w, y + h))
return zoomed

elif op_name == 'brightness':
enhancer = ImageEnhance.Brightness(image)
return enhancer.enhance(magnitude)

return image

def random_augment(image):
"""Randomly applies one of the defined augmentations."""
operations = {
'rotate': (0, 360),
‘zoom': (0.8, 1.5),
'brightness': (0.5, 1.5)
b
op_name = random.choice(list(operations.keys()))
min_val, max_val = operations[op_name]

def

def

Supplementary Material

magnitude = random.uniform(min_val, max_val)
return apply_op(image, op_name, magnitude)

balance_training_dataset(train_dir):

Balances the training dataset by duplicating images from the subfolde
with fewer images until both 'PLE' and 'Non-PLE' have equal counts.
train_dir = Path(train_dir)

ple_dir = train_dir / "PLE"

non_ple_dir = train_dir / "Non-PLE"

List all files in the subfolders (assuming each file is an image)
ple_images = [f for f in ple_dir.iterdir() if f.is_file()]
non_ple_images = [f for f in non_ple_dir.iterdir() if f.is_file()]

count_ple = len(ple_images)
count_non_ple = len(non_ple_images)

print(f"Current counts —> PLE: {count_ple}, Non-PLE: {count_non_ple}"

If counts are equal, nothing to balance

if count_ple == count_non_ple:
print("Dataset is already balanced.")
return

Select the folder with fewer images
if count_ple < count_non_ple:
lower_dir = ple_dir
lower_images = ple_images
target_count count_non_ple
else:
lower_dir = non_ple_dir
lower_images = non_ple_images
target_count = count_ple

difference = target_count - len(lower_images)
print(f"Balancing dataset by duplicating {difference} images in folde

Duplicate random images from the lower—-count folder until counts ar
for i in range(difference):
chosen_image = random.choice(lower_images)
Generate a new filename to avoid overwriting existing files
new_filename = f"{chosen_image.stem}_dup_{i}{chosen_image.suffix}
new_path = lower_dir / new_filename
shutil.copy(chosen_image, new_path)
lower_images.append(new_path)

print("Dataset balancing complete.")

get_dataset_stats(split_dirs, classes):
Recalculate the dataset statistics by scanning the split directories.
Returns a new stats dictionary.
updated_stats = {}
for cls in classes:

updated_stats([cls] = {}

for split, split_dir in split_dirs.items():

class_dir = split_dir / cls

Get all files in this directory
files = [f for T in class_dir.iterdir() if f.is_file()]
Count original images as those without "_AUG_" or "_BALANCE
original_count = sum(

1 for f in files

if ("_AUG_" not in f.stem and "_BALANCED_" not in f.stem)
)
augmented_count = len(files) - original_count
updated_stats[cls] [split] = {"original”: original_count, "aug

return updated_stats

Set random seed for reproducibility
random.seed(22)

def augment_image(image_path, num_augmentations=7):
image = Image.open(image_path)
augmented_images = []
for _ in range(num_augmentations):
augmented_images.append(random_augment (image.copy()))
return augmented_images

Define paths and parameters

original_root = "PLE_FINAL_DATASET" ## the non split dataset
split_root = "final_dataset" ## the dataset for training
ifAug = True

Define dataset splits (train/val/test ratios)

splits = {
"train": 0.7,
"val": 0.1,
"test": 0.2
}

Ensure original dataset directory exists
if not os.path.exists(original_root):
raise FileNotFoundError(f"Original dataset directory '{original_root}

Create split directories if they don't exist
split_dirs = {split: Path(split_root) / split for split in splits.keys()}
for d in split_dirs.values():

d.mkdir (parents=True, exist_ok=True)

classes = ["PLE", "Non-PLE"]

Process each class in the original dataset
for cls in classes:
class_dir = Path(original_root) / cls

Verify class directory exists
if not class_dir.exists():
raise FileNotFoundError(f"Class directory '{class_dir}' not found

Get all valid images
imgs = [

f for f in os.listdir(class_dir)

if os.path.isfile(os.path.join(class_dir, f))

and f.lower().endswith(('.jpg', '.jpeg', '.png'))
]

if not imgs:

raise ValueError(f"No valid images found in {class_dir}")

random. shuffle(imgs)
total = len(imgs)

Calculate split sizes

train_count = int(total * splits["train"])
val_count = int(total % splits["val"])
test_count = total - train_count - val_count

Split images into train, validation, and test sets
split_imgs = {
“"train": imgs[:train_count],
"val": imgs[train_count:train_count + val_count],
"test": imgs[train_count + val_count:]

}

Create class subdirectories in each split folder
for split_dir in split_dirs.values():
(split_dir / cls).mkdir(exist_ok=True)

Copy images to split directories and augment training images if ena
for split, images in split_imgs.items():
for img in images:
src = class_dir / img
dst = split_dirs[split] / cls / img
Always copy the original image
shutil.copy2(str(src), str(dst))
Perform augmentation for train set if enabled
if split == "train" and ifAug:
aug_images = augment_image(src, 10) # Adjust augmentatio
for idx, aug_img in enumerate(aug_images):
aug_name = f"{Path(img).stem}_AUG_{idx}{Path(img).suf
aug_dst = split_dirs[split] / cls / aug_name
aug_img.save(aug_dst)

Balance the training dataset after augmentation
balance_training_dataset(split_dirs["train"])

Get updated dataset statistics
dataset_stats = get_dataset_stats(split_dirs, classes)

print("\nUpdated dataset split statistics (including original and augment
for cls in classes:
print(f"\n{cls}:")
for split, stats in dataset_stats[cls].items():
print(f"* {split}:")
print(f" Original: {stats['original'l} images")
print(f" Augmented: {stats['augmented']} images")

print(f"\nSplit complete. Datasets (with augmentations in train) saved to

#HHH#HE Data Standard Pipeline #H#H###E
from torchvision.transforms import v2

data_transforms = {
"train': transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.22

Supplementary Material

1),

'val': transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.22

1),

"test': transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=1[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])
1
¥

split_root = "final_dataset"

Define paths to the split datasets

train_path = split_root + '/train'
val_path = split_root + '/val'
test_path = split_root + '/test'

Create datasets using ImageFolder

train_dataset = datasets.ImageFolder(train_path, transform=data_transform
val_dataset = datasets.ImageFolder(val_path, transform=data_transforms['v
test_dataset = datasets.ImageFolder(test_path, transform=data_transforms[

Calculate class counts for balanced sampling (i1f needed)
targets = [label for _, label in train_dataset.samples]
class_counts = torch.bincount(torch.tensor(targets))

Create data loaders

train_loader = Dataloader(train_dataset, batch_size=32, shuffle=True)
val_loader = Dataloader(val_dataset, batch_size=16, shuffle=False)
test_loader = Dataloader(test_dataset, batch_size=16, shuffle = False)

Set computation device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

Print dataset info

print (f"Number of classes: {len(train_dataset.classes)}")

print(f"Class names: {train_dataset.classes}"

print(f"Training samples per class: {dict(zip(train_dataset.classes, clas

#HHHHH Create Model with Enhanced Architecture ##H#H#HH#
from torchvision.models import ResNet50_Weights, MobileNet_V2_Weights
print("training on: " + split_root)
Function to create and fine-tune a model (no layers are frozen)
def create_model(arch='mobilenet_v2', pretrained=True, num_classes=1):
if arch.lower() == 'mobilenet_v2':
model = models.mobilenet_v2(pretrained = True)
num_ftrs = model.classifier[1].in_features
model.classifier = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(num_ftrs, num_classes)
)
elif arch.lower() == 'resnet50':
model = models.resnet50(pretrained = True)
num_ftrs = model.fc.in_features

model.fc = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(num_ftrs, num_classes)
)
elif arch.lower() == 'resnet50custom':
model = models.resnet50(pretrained = True)
num_ftrs = model.fc.in_features
model.fc = nn.Sequential(
nn.Linear(num_ftrs, 512),
nn.BatchNormld(512),
nn.ReLU(inplace=True),
nn.Linear(512, 256),
nn.BatchNormld(256),
nn.ReLU(inplace=True),
nn.Linear(256, 1),
)

elif arch.lower () == 'alexnet':

model = models.alexnet(pretrained = True)

model.classifier = nn.Sequentiall(
nn.Dropout(0.5),
nn.Linear(256 x 6 x 6, 4096),
nn.RelLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, 1),

)

elif arch.lower () == 'effnet_bo"':
model = models.efficientnet_b@(pretrained = True)
num_ftrs = model.classifier[1].in_features
model.classifier = nn.Sequential(## for mob and effnet
nn.Dropout(0.5),
nn.Linear(num_ftrs, 1)
)

else:
raise ValueError("Unsupported architecture.")

return model

#H#EH##HE Training and Validation Per Epoch Functions #######

def train_one_epoch(model, loader, optimizer, criterion, device):
model.train()
running_loss = 0.0
correct = 0
total = 0

for inputs, labels in loader:
inputs = inputs.to(device)
labels = labels.float().view(-1, 1).to(device)

optimizer.zero_grad()
outputs = model(inputs)

loss = criterion(outputs, labels)
loss.backward()

Gradient clipping to prevent exploding gradients

Supplementary Material

def

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.5)
optimizer.step()

running_loss += loss.item()

predictions = (torch.sigmoid(outputs) > 0.5).float()
total += labels.size(0)

correct += (predictions == labels).sum().item()

epoch_loss = running_loss / len(loader)
epoch_acc = (correct / total) * 100
return epoch_loss, epoch_acc

validate(model, loader, criterion, device):
model.eval()

running_loss = 0.0

correct = 0

total = 0

with torch.no_grad():
for inputs, labels in loader:
inputs = inputs.to(device)
labels = labels.float().view(-1, 1).to(device)

outputs = model(inputs)

loss = criterion(outputs, labels)
running_loss += loss.item()

predictions = (torch.sigmoid(outputs) > 0.5).float()
total += labels.size(0)
correct += (predictions == labels).sum().item()

epoch_loss = running_loss / len(loader)
epoch_acc = (correct / total) * 100
return epoch_loss, epoch_acc

#Ap#H#E Training Model with Checkpointing #######

def

train_model(split_root, model, train_loader, val_loader, optimizer, c
best_val_loss = float('inf')

train_losses, val losses = [], []

train_accs, val_accs = [1, []

print(“training on: " + split_root)

model_name = model.__class__._ name__

print("Model name:", model_name)

print("Learning rate: " , optimizer.param_groups[0]['1lr'])

for epoch in range(epochs):
Train for one epoch and validate afterward
train_loss, train_acc = train_one_epoch(model, train_loader, opti
val_loss, val_acc = validate(model, val_loader, criterion, device

train_losses.append(train_loss)
val_losses.append(val_loss)
train_accs.append(train_acc)
val_accs.append(val_acc)

print(f"Epoch {epoch+l}/{epochs}, "
f"Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.2f}%
f"Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.2f}%")

Save model if validation loss improves
if val_loss < bhest_val_loss:
best_val_loss = val_loss
print("saved")
torch.save(model.state_dict(), f'best_{model_name}.pth')

return train_losses, val_losses, train_accs, val_accs

###s Testing and Evaluation of the Model #######

import torch

from torch.utils.data import Dataloader

from torchvision import datasets, transforms

from sklearn.metrics import confusion_matrix, precision_score, recall_sco
import numpy as np

def test_model(model, model_path, test_folder, device, batch_size=16):

Load the saved model weights and set to evaluation mode
model. load_state_dict(torch.load(model_path))
model.to(device)

model.evall()

Initialize lists to store predictions, probabilities, and true labe
all_preds = []
all_probs = []
all_labels = []

with torch.no_grad():

for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.tol(device) # For binary classification, ensu
Forward pass to get outputs and compute probabilities
outputs = model(inputs).squeeze(1)
probs = torch.sigmoid(outputs) # probabilities in [0,1]
preds = (probs >= 0.5).long()

Append results for later metric computation
all_preds.extend(preds.cpu().numpy())
all_probs.extend(probs.cpu().numpy())
all_labels.extend(labels.cpu().numpy())

Compute accuracy and other evaluation metrics

correct = sum(int(p == 1) for p, 1 in zip(all_preds, all_labels))
total = len(all_labels)

test_acc = 100.0 * correct / total

precision = precision_score(all_labels, all_preds, average='binary',
recall = recall_score(all_labels, all_preds, average='binary', zero_d
fl = fl_score(all_labels, all_preds, average='binary', zero_division=

cm = confusion_matrix(all_labels, all_preds)

Calculate ROC curve and AUC score
fpr, tpr, thresholds = roc_curve(all_labels, all_probs)

Supplementary Material

roc_auc = auc(fpr, tpr)

Print classification report (optional)

print(“Classification Report:")
print(classification_report(all_labels, all_preds, zero_division=0))

print(f"Test Accuracy: {test_acc:.2f}%")

print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"Fl-Score: {fl:.47}")
print(f“AUC: {roc_auc:.4f}")

print(“Confusion Matrix:\n", cm)

return {
"test_accuracy": test_acc,
"precision": precision,
"recall”: recall,
"fl_score": f1,

auc': roc_auc,
"confusion_matrix": cm.tolist(),
"fpr': fpr,
"tpr': tpr,

"thresholds": thresholds,
"all_labels": np.array(all_labels),
"all_probs": np.array(all_probs)

######E Train and Test Models #######
def train_and_test_model(split_root, model, device, epochs):

model_name = model._ class__ . name__
criterion = nn.BCEWithLogitslLoss()

optimizer = optim.Adam(model.parameters(), 1r=0.000005 , weight_decay
Train the model using the previously defined train_model function
train_losses, val_losses, train_accs, val_accs = train_model(split_ro

print(“Training complete. Now testing the best saved model.")
test_metrics = test_model(model, f'best_{model_name}.pth', test_path,
return train_losses, val_losses, train_accs, val_accs, test_metrics

Train all models##
FHH
split_root = "final_dataset”

epochs = 100
device = "cuda"

First model: ResNet5@
torch.cuda.empty_cache()
model = create_model('resnet50')
model = model.to(device)

Supplementary Material

train_losses, val_losses, train_accs, val_accs, test_metrics = train_and_
print(test_metrics)

Free memory after first model
del model

import gc

gc.collect()
torch.cuda.empty_cache()

Second model: AlexNet

model = create_model('alexnet')

model = model.to(device)

train_losses_alex, val_losses_alex, train_accs_alex, val_accs_alex, test_
print(test_metrics_alex)

Free memory after second model
del model

gc.collect()
torch.cuda.empty_cache()

Third model: Effnet_b7

model = create_model('effnet_bo')

model = model.to(device)

train_losses_effnet, val_losses_effnet, train_accs_effnet, val_accs_effne
print(test_metrics_effnet)

Free memory after third model
del model

gc.collect()
torch.cuda.empty_cache()

Fourth model: MobileNet_v2

model = create_model('mobilenet_v2')

model = model.to(device)

train_losses_mobnet, val_losses_mobnet, train_accs_mobnet, val_accs_mobne
print(test_metrics_mobnet)

Final cleanup

del model

gc.collect()
torch.cuda.empty_cache()

Uncomment the following block to train a custom model based on ResNet50
model = create_model('resnet50custom')

model = model.to(device)

train_losses_custom, val_losses_custom, train_accs_custom, val_accs_cus
print(test_metrics_custom)

Final cleanup for custom model
del model

gc.collect()
torch.cuda.empty_cache(

HoH B KR H R R R R

###HK-Told Cross—validation (not really used)
from sklearn.model_selection import KFold

10

def run_k_fold(k=5):
dataset_size = len(train_dataset)
indices = list(range(dataset_size))
kfold = KFold(n_splits=k, shuffle=True, random_state=42)

fold_results = []
for fold, (train_ids, val_ids) in enumerate(kfold.split(indices)):
print(f"Starting fold {fold+1}")

Create fold-specific samplers
train_subsampler = torch.utils.data.SubsetRandomSampler(train_ids
val_subsampler = torch.utils.data.SubsetRandomSampler(val_ids)

train_loader = Dataloader(train_dataset, batch_size=32, sampler=t
val_loader = Dataloader(train_dataset, batch_size=16, sampler=val

model = create_model().to(device)
optimizer = optim.Adam(model.parameters(), 1lr=0.000005 , weight_d

Train for this fold

best_fold _val_loss = float('inf"')

for epoch in range(50): # Reduced epochs for k-fold
train_loss, train_acc = train_one_epoch(model, train_loader,
val_loss, val_acc = validate(model, val_loader, criterion, de

if val_loss < best_fold_val_loss:
hest_fold_val_loss = val_loss
hest_fold_acc = val_acc

fold_results.append(best_fold_acc)
print(f"Fold {fold+1} best validation accuracy: {best_fold_acc:.2

mean_acc = np.mean(fold_results)

std_acc = np.std(fold_results)

print(f"\nK-fold cross-validation results:")

print(f"Mean accuracy: {mean_acc:.2f}% + {std_acc:.2f}%")
return mean_acc, std_acc

mean_acc, std_acc = run_k_fold(k=5)

#HHHAEH Display Model Metrics ##HHHHEE
import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec
import seaborn as sns

import pandas as pd

def display_model_metrics(model_name, train_losses, val_losses, train_acc

Create a figure with a GridSpec layout
plt.figure(figsize=(12, 10))
gs = gridspec.GridSpec(2, 2, height_ratios=[1, 1.2])

Loss vs. Epoch subplot

ax@ = plt.subplot(gs([o, @])
ax0.plot(train_losses, label='Train Loss')
ax@.plot(val_losses, label='Val Loss')
ax0.set_xlabel('Epoch')
ax0.set_ylabel('Loss")

ax0.legend()

11

Supplementary Material

ax0.set_title(f"{model_name} - Loss vs. Epoch")

Accuracy vs. Epoch subplot

axl = plt.subplot(gs[o, 11)

axl.plot([acc / 100 for acc in train_accs], label='Train Acc')
axl.plot([acc / 100 for acc in val_accs], label='Val Acc')
axl.set_xlabel('Epoch')

axl.set_ylabel('Accuracy')

axl.set_ylim(0, 1)

ax1l.legend()

axl.set_title(f"{model_name} - Accuracy vs. Epoch")

ROC Curve subplot spanning the bottom row

ax2 = plt.subplot(gs[1, :1)

ax2.plot(metrics['fpr'l, metrics['tpr'], color='darkorange', lw=2,
label=f'ROC curve (AUC = {metrics["auc"]:.4f})")

ax2.plot([0, 11, [0, 1], color="navy', lw=2, linestyle='—-")

ax2.set_xlabel('False Positive Rate')

ax2.set_ylabel('True Positive Rate')

ax2.set_title(f"{model_name} - ROC Curve")

ax2.legend(loc="1lower right")

plt.tight_layout()
plt.show()

Confusion Matrix

plt.figure(figsize=(6, 5))

cm = metrics['confusion_matrix']

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues’,
xticklabels=test_dataset.classes,
yticklabels=test_dataset.classes)

plt.xlabel('Predicted Label')

plt.ylabel('True Label')

plt.title(f"{model_name} — Confusion Matrix")

plt.show()

Display summary metrics in a table
metrics_dict = {
"Test Accuracy (%)": [metrics["test_accuracy"l],
"Precision": [metrics["precision"]],
"Recall": [metrics["recall"]],
"F1-Score": [metrics["fl_score"]],
"AUC": [metrics["auc"]]
}
metrics_table = pd.DataFrame(metrics_dict)
print(f"Summary Metrics for {model_name}:")
print(metrics_table)

models_metrics = {
"ResNet50": {
"train_losses": train_losses,
"val_losses": val_losses,
"train_accs": train_accs,
"val_accs": val_accs,
"metrics": test_metrics
h
"AlexNet": {
"train_losses": train_losses_alex,
"val_losses": val_losses_alex,
"train_accs": train_accs_alex,

12

"val_accs": val_accs_alex,
"metrics": test_metrics_alex
}r
"EfficientNet_B0": {
"train_losses": train_losses_effnet,
"val_losses": val_losses_effnet,
"train_accs": train_accs_effnet,
"val_accs": val_accs_effnet,
"metrics": test_metrics_effnet
H
"MobileNet_Vv2": {
"train_losses": train_losses_mobnet,
"val_losses": val_losses_mobnet,
"train_accs": train_accs_mobnet,
"val_accs": val_accs_mobnet,
"metrics": test_metrics_mobnet

b

Loop through each model and display its metrics
for model_name, data in models_metrics.items():
display_model_metrics(model_name,

data["train_losses"],
data["val_losses"],
data["train_accs"],
data["val_accs"],
data["metrics"],

test_dataset)

import os

import cv2

import torch

import numpy as np

import torch.nn as nn

import torchvision.models as models

from PIL import Image

import torchvision.transforms as transforms

from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image

Grad—-CAM for resnet50 ##H###H#####
T e e e

=
1) Define Model Architecture Exactly as Trained or as in the weights
i

model = models.resnet50(pretrained=False)
num_ftrs = model.fc.in_features

model.fc = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(num_ftrs, 1)

)

2) Load weights
checkpoint_path = "best_ResNet.pth"

13

Supplementary Material

state_dict = torch.load(checkpoint_path, map_location="cpu")

model. load_state dict(state dict)
model.eval()

(Optionally move to GPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

#
3) Define the Grad-CAM layer (the last conv layer)
#
target_layers = [model.layer4[-1].conv3]

cam = GradCAM(model=model, target_layers=target_layers)

#
4) Transforms for input images (typical ResNet)
#
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std =[0.229, 0.224, 0.225]

1

#
5) Loop through test images (including subfolders),
predict, generate Grad-CAM, and save side-by-side

#
test_folder = split_root + "/test" # folder with subfolders (PLE, Non_
output_folder = "gradcams" # folder to save Grad-CAM results

os.makedirs (output_folder, exist_ok=True)

for root, dirs, files in os.walk(test_folder):
for filename in files:
image_path = os.path.join(root, filename)
raw_img = Image.open(image_path).convert("RGB")

Preprocess
input_tensor = transform(raw_img).unsqueeze(0).to(device)

Forward pass: output shape [1, 1] for single logit
output = model(input_tensor)

prob_ple = torch.sigmoid(output) [0].1item()

is_ple (prob_ple >= 0.5)

pred_label = "PLE" if is_ple else "Non-PLE"

#
Generate Grad-CAM for logit 0
#
targets = [ClassifierQutputTarget(0)]

grayscale_cam = cam(input_tensor=input_tensor, targets=targets) [0

¥

Create the overlay visualization (Grad-CAM)

¥

resized_img = raw_img.resize((224, 224)) # match 224x224
rgb_img = np.array(resized_img) / 255.0 # float [0..1]

14

visualization = show_cam_on_image(
rgb_img,
grayscale_cam,
use_rgb=True
) # returns an RGB image in uint8 [0..255]

#
Convert both images to OpenCV BGR
#
1) The original image in BGR

convert from [0..1] float or from PIL.

original_bgr = cv2.cvtColor(np.array(resized_img), cv2.COLOR_RGB2

2) The Grad-CAM overlay in BGR
visualization_bgr = cv2.cvtColor(visualization, cv2.COLOR_RGB2BGR

#
Add prediction text to the overlay
#
text = f"{pred_label}: {prob_ple:.2f}"
cv2.putText (

visualization_bgr,

text,

(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1.0,

(255, 255, 255),

2

)

#
Concatenate the ORIGINAL and OVERLAY images side by side
#

side_by_side = cv2.hconcat([original_bgr, visualization_bgr])

#
Mirror the subfolder structure in output_folder
#
relative_subdir = os.path.relpath(root, start=test_folder)
output_subdir = os.path.join(output_folder, relative_subdir)
os.makedirs (output_subdir, exist_ok=True)

Build output filename

base_name = os.path.splitext(filename) [0]

out_name f"{base_name}_{pred_label}_{prob_ple:.2f}.jpg"
out_path os.path.join(output_subdir, out_name)

Save the final combined image
cv2.imwrite(out_path, side_by_side)

print(f"Processed {image_path} -> {pred_label}, prob={prob_ple:.2

