UNSPECIFIED (2026) Euclid : An emulator for baryonic effects on the matter bispectrum. Astronomy and Astrophysics, 705: A170. ISSN 1432-0746
PUB30e5fd189f27fb20-741451-paper-draft.pdf - Accepted Version
Available under License Creative Commons Attribution.
Download (4MB)
2506.18974v2.pdf - Published Version
Available under License Creative Commons Attribution.
Download (4MB)
Abstract
Understanding the impact of baryonic processes such as star formation and active galactic nuclei (AGN) feedback on matter clustering is crucial to ensure precise and unbiased cosmological inference. Most theoretical models of baryonic effects to date focus on two-point statistics, neglecting higher-order contributions. This work develops a fast and accurate emulator for baryonic effects on the matter bispectrum, a key non-Gaussian statistic in the nonlinear regime. We employ high-resolution $N$-body simulations from the BACCO suite and apply a combination of cutting-edge techniques such as cosmology scaling and baryonification to efficiently span a large cosmological and astrophysical parameter space. A deep neural network is trained to emulate baryonic effects on the matter bispectrum measured in simulations, capturing modifications across various scales and redshifts relevant to Euclid. We validate the emulator accuracy and robustness using an analysis of \Euclid mock data, employing predictions from the state-of-the-art FLAMINGO hydrodynamical simulations. The emulator reproduces baryonic suppression in the bispectrum to better than 2$\%$ for the $68\%$ percentile across most triangle configurations for $k \in [0.01, 20]\,\mathrm{i}h\mathrm{Mpc}^{-1}$ and ensures consistency between cosmological posteriors inferred from second- and third-order weak lensing statistics. These results demonstrate that our emulator meets the high-precision requirements of the Euclid mission for at least the first data release and provides reliable forecasts of the cosmological information contained in the small-scale matter bispectrum. This underscores the potential of emulation techniques to bridge the gap between complex baryonic physics and observational data, maximising the scientific output of Euclid.