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Abstract—Change detection (CD) is important for Earth 
observation, emergency response and time-series understanding. 
Recently, data availability in various modalities has increased 
rapidly, and multimodal change detection (MCD) is gaining 
prominence. Given the scarcity of datasets and labels for MCD, 
unsupervised approaches are more practical for MCD. However, 
previous methods typically either merely reduce the gap between 
multimodal data through transformation or feed the original 
multimodal data directly into the discriminant network for 
difference extraction. The former faces challenges in extracting 
precise difference features. The latter contains the pronounced 
intrinsic distinction between the original multimodal data; direct 
extraction and comparison of features usually introduce 
significant noise, thereby compromising the quality of the 
resultant difference image. In this article, we proposed the MaCon 
framework to synergistically distill the common and discrepancy 
representations. The MaCon framework unifies mask 
reconstruction (MR) and contrastive learning (CL) self-supervised 
paradigms, where the MR serves the purpose of transformation 
while CL focuses on discrimination. Moreover, we presented an 
optimal sampling strategy in the CL architecture, enabling the CL 
subnetwork to extract more distinguishable discrepancy 
representations. Furthermore, we developed an effective silent 
attention mechanism that not only enhances contrast in output 
representations but stabilizes the training. Experimental results 
on both multimodal and monomodal datasets demonstrate that the 
MaCon framework effectively distills the intrinsic common 
representations between varied modalities and manifests state-of-
the-art performance across both multimodal and monomodal CD. 
Such findings imply that the MaCon possesses the potential to 
serve as a unified framework in the CD and relevant fields. Source 
code will be publicly available once the article is accepted. 
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I. INTRODUCTION 

hange detection (CD) aims to characterize the information 
differences between multi-temporal images of the same 

area, and use these to identify the spatial changes[1], [2]. At 
present, CD is a common task in the field of image vision and 
perception [3], [4], as well as an important topic in remote 
sensing (RS) and Earth observation [5], [6]. Traditional CD is 
performed on monomodal images, namely, monomodal CD [7], 
[8], [9]. Recently, the amount of data in various modalities has 
increased rapidly with the development of different types and 
numbers of sensors and platforms [10], [11], [12], [13]. 
Researchers found that the availability and quality of 
monomodal data are often limited in specific scenarios. 
Additionally, many practical applications require fine temporal 
resolution, such as military reconnaissance, rescue and 
assessment of disasters, whereas acquiring multi-temporal 
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Fig. 1. Overview of the MaCon framework. The green and orange lines denote 
the flow of the MR and CL subnetworks, respectively. The gray dashed line 
represents stopping gradient backpropagation. The meaning of these symbols 
is the same in all figures. The CL encoder, MR encoder and decoder can be 
most mainstream architectures like CNN or Transformer. 
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monomodal data requires a long period usually. In this context, 
multimodal change detection (MCD) brings obvious utility. 

MCD identifies changes by comparing specific 
multitemporal images captured over the same geographical area 
at different times, but under varied conditions [14]. The MCD 
is an increasingly popular and challenging research topic, 
essentially representing a generalization of the monomodal CD 
problem [15], [16]. The input images could be acquired by 
different sensors, or recorded with different sensor parameters, 
or under different environmental conditions. The advantages of 
MCD are two-fold: first, it can increase the temporal resolution 
or extend the time span for time-series monitoring by inserting 
multimodal data; second, it is beneficial to shorten the response 
time of CD by relaxing the data acquisition requirements, which 
is imperative for emergency events [17]. 

Despite the above, MCD is a challenging task since 
multimodal data cannot be compared directly to obtain 
information about change differences as in monomodal CD. 
While numerous supervised methods exist for MCD [18], [19], 
[20], they reveal the following limitations. First, the expense of 
manual labeling is prohibitive, making it infeasible to label all 
scenes, particularly in the era of big data. Second, models 
trained on specific domains or geographical regions frequently 
lack generalization, making it hard to adaptively and accurately 
detect new targets in different environments or scenarios [21]. 
Third, both datasets and labels are scarce in the MCD task, and 
labels are usually subjective and may lack precision for scenes 
with intricate surface cover. As a result, the practical 
application of these supervised methods is constrained. Instead, 
unsupervised methods avoid these limitations as they do not 
require labels. For example, SFPPI [22] first generates a 
similarity-feature map and then fuses multiple binary 
segmentation results to output the final change map. PP [23], 
[24] computes differences between pixels in each image 
separately before generating the change map by comparing the 
difference scores. 

At present, unsupervised MCD methods can be divided 
broadly into three classes: classification, transformation and 
discrimination. The classification methods first classify 
multimodal images. Subsequently, the derived classification 
outcomes can be compared directly to identify changes, such as 
the multidimensional evidential reasoning method, post-
classification comparison method and compound classification 
method [25], [26], [27]. Since unsupervised classification 
models struggle to obtain accurate classification results, the 
classification methods are susceptible to the accumulation of 
classification errors. 

In general, the core objective of transformation methods is to 
make the multimodal images comparable. Most transformation 
methods aim to either transfer “incomparable” images to a 
common domain or transform one image to the domain of 
another, thereby rendering them “comparable” [28]. In the 
transformation approach, the mappings of multimodal data 
typically demand training using unchanged pairs of multimodal 
data. Consequently, these transformation-based MCD methods 
either need pre-constructed pseudo labels [29], [30] or prior 
results [31] to guide the training. Alternatively, they may 
involve a complex iterative process to create the pseudo labels 
set concurrently with learning the mappings [32], [33]. 

Therefore, these methods can be deemed as pseudo or 
automatic supervised learning. Another limitation is that, after 
transformation, prevailing methods typically employ directly 
simple algorithms to extract the discrepancy information, such 
as difference [34], [35], [36], ratio [29], [37], distance function 
[30], [32], [34] or compound [14], [25], [38]. Regrettably, these 
methods are incompetent at deriving high-quality differences 
since neighbor information and further discrepancy 
enhancement are not utilized. 

The discrimination approach is an emerging approach. It is 
intuitive and represented by self-supervised contrastive 
learning (CL) methods [39], which discriminate the 
characteristics between the dual stream outputs of the network 
by designing positive and negative pretext samples and loss 
function [9], [40]. However, there are two deficiencies in 
existing discrimination methods. First, the design of positive 
and negative samples is improper. They simply deem patch 
pairs at different locations as negative samples; positive 
samples are patch pairs at the same locations [9], [39], [40], [41]. 
However, patch pairs at different locations may be of the same 
class, and those at the same locations may be changed as well. 
Therefore, the obtained samples contain numerous exceptions. 
Second, existing methods input multimodal data directly into 
the CL network for learning [39], [40]. Since there are 
considerable distinctions between the original multimodal data, 
those methods are not conducive to accurate difference 
discrimination, thereby weakening the ability to extract 
differences. 

In the context of the above shortcomings, we sought to 
couple the transformation and discrimination unsupervised 
methods and utilize both of their merits. The transformation 
module alleviates the domain deviation between multimodal 
data, and the discriminant module extracts refined differences. 
At the same time, we aimed to improve the sampling strategy 
to enable the network to distill better discrepancy 
representations. The main contribution of this paper can be 
summarized as follows: 

1) A generic end-to-end self-supervised learning framework, 
namely MaCon. The MaCon innovatively coupled the mask 
reconstruction (MR) and CL architecture. Within this 
framework, the MR subnetwork distills the global information 
and transforms the multimodal data into a common domain, and 
the CL subnetwork extracts local information and discriminates 
the distinction between multimodal representations. 

2) An optimal sampling strategy in the CL architecture. This 
strategy enhances the framework’s ability to learn more 
distinguishable object representations by utilizing more 
accurate samples, thereby enhancing the efficacy of subsequent 
change detection tasks.  

3) A robust and plug-and-play attention mechanism. It can 
suppress features with low correlation, enhance contrast in 
output representations and stabilize training. 

4) Experimental results on multiple multimodal and 
monomodal datasets show that the performance of the MaCon 
framework is better than the compared state-of-the-art (SOTA) 
methods, and even exceeds some supervised methods. The 
MaCon is expected to provide a unified framework for the task 
of CD. 
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The rest of this paper is structured as follows. Section II 
reviews the related work on self-supervised learning and its 
situation in CD task. Section III elaborates on the principle and 
algorithm of the MaCon framework. Section IV expounds on 
the experiments on multimodal and monomodal datasets. 
Section V analyzes the working mechanism of MaCon. Section 
VI draws the concluding remarks. 

II. RELATED WORK 

Self-supervised learning focuses on various pretext tasks 
instead of the labels for pre-training, and they show a strong 
learning ability for representation and have seen significant 
interest in artificial intelligence [42], [43]. Currently, 
mainstream self-supervised learning can be broadly categorized 
into two paradigms: mask reconstruction (MR) and contrastive 
learning (CL) [44]. 

A. Mask Reconstruction 

The MR self-supervised learning paradigm reserves a 
segment of the input sequence and trains models to forecast the 
masked content. Research has indicated their great performance 
and scalability, and evidence suggests that these pre-trained 
representations exhibit strong generalization across diverse 
downstream tasks [42], [45], [46]. 

In RS, all existing works using the MR paradigm employ MR 
as a foundation model for pre-training, followed by supervised 
fine-tuning for downstream CD. Wang et al. [47] made the first 
attempt to explore pre-training vision models tailored to RS 
tasks with large-scale RGB dataset. This work pre-trained 
multiple networks and tested transfer performance on CD task. 
After that, Sun et al. [48] developed an RS foundation model 
based on the MR self-supervised learning, RingMo, which is 
designed for dense and small objects in complicated RS scenes 
and training on massive monomodal datasets. The final change 
map can be generated by an appended CD head after fine-tuning 
on downstream CD dataset. To more effectively process RS 
spectral images, Hong et al. [49] created a large RS foundation 
model using a three-dimensional MR method with three-
dimensional tokens to couple spatial-spectral information. This 
model was initially trained on one million RS optical images, 
and then, the CD task was performed by supervised retraining. 

B. Contrastive Learning 

The CL is an important paradigm in self-supervised learning. 
The core idea is to maximize the similarity between views 
augmented from the same image while minimizing the 
similarity between views augmented from distinct images [50], 
[51]. Numerous studies have shown that positive and negative 
samples are essential for CL, and the quantity and quality of 
negative samples generally determine the effectiveness of CL 
[50], [52], [53]. 

Some studies have adopted CL for CD. Akiva et al. [41] 
presented a material and texture-based method, which 
compares multi-temporal, spatially aligned large-scale 
multispectral images over unchanged regions to learn 
invariance to illumination and viewing angle as a mechanism to 
achieve consistency of material and texture representation. 
Then, the change map can be obtained by fine-tuning on a CD 
head. To leverage domain knowledge and characteristics of 

satellite images to learn better self-supervised features, Li et al. 
[54] proposed a geographical knowledge-driven CL method for 
multispectral RS images, which adopts global land cover (LC) 
products and geographical location associated with each RS 
image as geographical knowledge to provide supervision for 
network pre-training. Mall et al. [55] developed a new 
contrastive loss and used the temporal signal to contrast 
enormous RGB images with long- and short-term differences. 
Then, the CD task can be conducted with supervised retraining 
on specific datasets. 

C. Limitations 

Although the experimental results of the abovementioned 
methods show great performance on downstream CD task, the 
following limitations exist in these self-supervised methods. 

1) It not only requires massive data and resources for pre-
training but also necessitates retraining for downstream tasks, 
making it highly cost-intensive and difficult to develop 
extensively. 

2) Only designed for monomodal datasets and are unsuitable 
for multimodal datasets. 

3) Mounting a simple CD head in the downstream CD task 
makes extracting the great discrepancy representations 
challenging for high-performance change detection. 

4) Some studies have shown that fine-tuning with labels can 
lead to catastrophic forgetting, and results are unsatisfactory 
when applied to new data with substantial changes in domain 
and distribution [56]. 

To deal with these limitations, we creatively couple MR and 
CL into a framework to leverage their strengths synergistically. 
Specifically, MR is designed to serve as a transformation 
mechanism for multimodal data, while CL is employed to 
effectively distinguish differences. Furthermore, instead of 
adopting a two-stage strategy with pre-training and fine-tuning, 
we trained and inferred end-to-end on the target multimodal CD 
dataset directly. 

III. MACON FRAMEWORK 

A. Framework Overview 

The overview of the proposed framework is shown in Fig. 1. 
The framework comprises two pseudo-Siamese subnetworks, 
that is, MR and CL subnetworks, and all of them have two 
branches for multimodal images. Given two images from any 
modality, MaCon distills common representations and 
highlights discrepancy representations in the learning phase 
first, and then predicts the changed area in the inference phase. 

The learning phase is the core of the MaCon framework. In 
the learning phase, the MaCon learns how to cross the gap 
between different modalities and differentiate the LC 
discrepancy from multi-temporal images in a self-supervised 
way. Next, we first expound the components and principles of 
the learning phase and then extend them to the inference phase. 
The dimension variation during the forward phase is annotated 
above all operation blocks to facilitate understanding. 

B. Common Representations Learning with MR 

The architecture of the MR subnetwork is shown in Fig. 2. 
The detailed forward pipeline of the MR subnetwork is as 
follows. Firstly, to extend and take full advantage of the data, 
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one adopts several data augmentation strategies to the 
normalized multimodal data X and Y, including random crop 
with an HC × WC fixed-size window, and random horizontal or 
vertical flip. Next, the augmented data XC and YC are tokenized 
to overlapping patches via a convolutional layer with a small 
stride, then flattened to a batch of embedded vectors with a 
dimension of E; this differs from other MR networks [45], [48], 
[57], [58] and is important for the proposed MaCon, especially 
for RS images, because it provides the universally fundamental 
embeddings for both MR and CL subnetworks and induces the 
patch tokens to assimilate more neighbor information. Notably, 
for clarity and to aid visual interpretation, the patches in Fig. 2 
are illustrated in non-overlapping form. 

Subsequently, to force the network to learn global 
information better and extract high-level semantic features, 
instead of just storing the pixel mapping relationship between 
multimodal data, the patch tokens are masked randomly with a 
fixed mask ratio β after prepending a learnable class token to 
the patch tokens. We recommend setting β in the range of [0.4, 
0.7] based on numerical experiments to achieve optimal 
performance. Then, the unmasked patch tokens XU and YU are 
fed into the MR encoder to distill the unmasked common 

representations U-c
XR  and U-c

YR  of the multimodal data. Here, 

we fill the MR encoder with a series of Transformer blocks.  

Next, the U-c
XR  and U-c

YR  are concatenated with the masked 

tokens, and they are restored to their original patch positions. 
Then, they are decoded to reconstruct the masked pixels of 

another modality ( MŶ  and MX̂ ) through the MR decoder. Here, 

the MR decoder is composed of Transformer blocks and a linear 
predictor. 

Finally, the loss can be evaluated by the mean squared L2 

distance between the reconstructed ( MŶ  and MX̂ ) and actual 

normalized pixels in another modality ( MY  and MX ). 

Additionally, we attach a regularization term to reduce 
overfitting by penalizing the magnitude of the network 
parameters. Thus, the MR loss Ma 1 2( , )   is defined as 

 1 2
Ma 1 2 Ma 1 Ma 2( , ) ( ) ( )       , (1) 

where 1  and 2  are the parameters of the two MR branches, 
1
Ma 1( )  and 2

Ma 2( )  are the MR losses of two MR branches 

and derived as 

 

2
1
Ma 1 M 1 M 1 1 1 22

2
2
Ma 2 M 2 M 2 2 2 22

ˆ( ) ( ) ( )  ,

ˆ( ) ( ) ( )

    

    

   


   






Y Y

X X




, (2) 

where the λ1 and λ2 are the regularization coefficients, 
determined automatically by the optimization algorithm. With 
this pipeline, the MR encoder will learn the common 
representations with reduced domain bias in multimodal data. 

C. Discrepancy Representations Learning with Optimized CL 

The architecture of the CL subnetwork is illustrated in Fig. 3. 
Due to the architecture being general for different modalities 
and space limitations, Fig. 3 takes a single branch as an example. 
The CL subnetwork is responsible for learning local 
information and high-level semantics, and generates 
discrepancy representations. 

As shown in Fig. 3, after the MR encoder outputs the 
common representations Rc for all patch tokens, the Rc are 
shuffled and permuted into Rr with shape N × B × E (length × 
batch size × embeddings), and where B is 1, that is, 

r c
Pm(Sf ( ))R R , where Sf ( )  and Pm( )  denote shuffle and 

permutation operations, respectively. Then, a loop is run over 
the dimension N of Rr with a mini-batch step of Nb, which 
means the loop will iterate the following operations for k times. 

1) Sample mini-batch representations Rb from the Rr and 
prepend a class token to the Rb, i.e., 

b r
Pp(Sp( ))R R , where 

Sp( )  and Pp( )  denote sampling and prepend operations, 

respectively. 
2) Flow through the CL encoder to extract high-level 

semantic distinctions. Here, we use multiple Transformer 
blocks as the CL encoder.  

3) Normalize the representations with layer normalization to 
reduce the impacts of internal covariate shift, leading to faster 
convergence. 

4) Feed into a deeper and larger MLP than that in the 
Transformer blocks and project the embeddings to dimension 

  
Fig. 2. The architecture of the MR subnetwork. 

 

 
Fig. 3. The architecture of the CL subnetwork (single branch). 
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Eb. Deeper and larger hidden layers help to learn and capture 
more complex patterns, and more GELUs increase stronger 
nonlinear modeling capabilities. 

5) Conduct the L2 normalization to encourage the CL 
subnetwork to distribute the importance of embeddings more 
evenly and prevent any single embedding from dominating the 
learning process by constraining the weights to stay small, 
resulting in the model being more robust and better generalized. 

6) Map the representations to sampling space b o

b-o

N ER   

to further extract better discrepancy representations of different 
LC types. 

7) Optimize sampling for the representations with the 
detailed algorithm presented in Section III-D and output 
optimized sampling space s o

s-o

N ER  . 

8) Estimate the contrastive loss Con  with Eq. (13) in terms 

of optimized sampling space between the current modality s-oR  

and another modality s-o
'R . 

9) Backpropagate gradients and update the parameters of the 
CL subnetwork.  

D. Optimal Sampling and Contrastive Loss 

After the linear heads of the CL subnetwork output the 
representations in two branches, the previous methods use these 
representations directly to calculate contrastive loss and update 
the network [9], [39], [40], [59], which means that all patch 
pairs corresponding to different locations are deemed as 
negative samples. Obviously, the traditional sampling methods 
are defective, given that not all patch pairs cover different land 
classes. Therefore, we designed a better strategy for sampling. 

First, L2 normalization 2NormL  is performed on the 

multimodal representations b-oR  and b-o
R , followed by 

concatenation along the dimension bN  

 
 
 

b

12
b-o 1 2 2 b-o 1 2

2 b-o 1 2

( , ) Concat Norm ( , ) ,

                                      Norm ( , )

N L

L

   

 





R R

R
, (3) 

where 1  and 2  are the parameters of the two CL branches,

b
Concat ( )N   means the operation to concatenate the input along 

dimension bN . 

Then, considering spatial distance and topological relation 
have a slight association with the positive and negative samples 
in the CD task, compared with similarity, we adopt the inner 
product similarity with efficient and intuitive characteristics as 

the sampling metric. To accelerate calculation in parallel, we 
estimate the similarity matrix S as 

 12 12
1 2 b-o b-o( , ) *Trans( )  S R R , (4) 

where Trans( )  denotes the transpose operation and * is matrix 

multiplication. In essence, the similarity matrix S contains four 
subblocks, that is, 11S  (upper left), 12S  (upper right), 21S  (low 

left), and 22S  (low right), and implies self-similarities with 11S  

and 22S  and cross-similarities with 12S  and 21S , as shown in 

Fig. 4. The four blocks of similarities signify four sampling 
spaces, so we can impose constraints on them to optimize 
sampling. For this purpose, we obtain the preliminary negative 

samples NgS  as follows: 

   Ng 1 2 2 1( , ) Samp Samp exp( / )  S S , (5) 

where τ is the temperature to scale the similarity and set as 0.5. 
Since there is a logarithmic operation in the objective loss to be 
adopted later, we resort to an exponential operator here to 
ensure non-negativity. 1Samp ( )  and 2Samp ( )  are the 

sampling functions and can be expressed as 

 1 11-12 12-11

2 22-21 21-22

Samp ( )

Samp ( )

topk topk

topk topk

  


  
, (6) 

where 11-12 12-11topk topk  means sampling in 11S  followed by 

in 12S  with the constraint of similarity smaller than k, then 

sampling in 12S  followed by in 11S  with the same constraint; 

22-21 21-22topk topk  is analogous. Such a sampling strategy 

ensures that negative samples are sufficiently clean in all four 
similarity blocks. The threshold k represents k times of Nb, 

(0,1]k  . An illustration of the preliminary negative sampling 

is shown in Fig. 4, where the Nb and k are 4 and 0.75, 
respectively. Notably, the negative samples are essential to 
contrastive learning, and their quantity and quality jointly 
determine the performance of contrastive learning [50], [52], 
[61], so the number of negative samples should be of adequate 
size. Additionally, because the final equivalent threshold is the 
square of k in the two-fold sampling, after experiment (in 
Section V) and trade-off, we recommend setting k in the range 
of [0.7, 0.95], generally. 

In addition, we generate the preliminary positive samples 

PsS  by evaluating the cross-similarity of corresponding 

locations between the multimodal representations b-oR  and 

b-o
R , that is 

 
 

  

1
Ps 1 2 2 b-o 1 2

2 b-o 1 2

( , ) exp Norm ( , ) ,

                              Norm ( , )

L

L b

    

 






S R

R
, (7) 

where ,
b

 

 represents the inner product in rows between input 

tensors. Then, we purify positive samples with 

  b le

0 ls
Pos 1 2 Ps Ps( , ) Concat ( ) ( )

kN b

b
topk topk    ，S S S ,  (8) 

where le

ls
Ps( )

b

b
topk S  means retaining the elements from lsb  

to leb  in descending order of PsS , and b

0
Ps( )

kN
topk S  is 

analogous; le b b b/ 2 (1 ) (2 ) / 2b kN k N k N      and 

(a)                                               (b) 
Fig. 4. Illustration of the similarity matrix and preliminary negative sampling. 
(a) Original similarity matrix. (b) Optimal sampled similarity matrix. The 
length Nb is 4, and k is 0.75. The cells filled with gray and white colors represent 
masked and reserved samples, respectively. 
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ls b / 2b kN . Recall that the similarity matrix S contains two 

symmetric blocks of cross-similarities, 12S  and 21S , and the 

rows of NgS  is 2Nb; whereas only a single cross-similarity 

block is considered in PsS  and Pos
S  with Nb rows. We obtain 

the optimized positive samples O
PosS  by concatenating Pos

S  

sequentially, ensuring that positive and negative samples have 
equal sizes for tensor computation and that their numbers are 
balanced to a certain degree, that is 

 O
Pos 1 2 Pos Pos( , ) Concat( , )   S S S . (9) 

After the NgS  and O
PosS  are obtained, we derive the 

reweighted negative samples NegS  as 

 
O

S Pos Ng

Neg 1 2( , )
1

p N

p
 

   




S S
S , (10) 

where SN  denotes the number of preliminary negative samples, 

p is the class probability and generally set to 0.1 [60], Ng
S  

represents the reprojected negative samples and can be deduced 
as 

 
S

S

Ng Ng

Ng 1 2
1 1 Ng

exp( log )
( , )

exp( log )

i iN

N i
i i


 

 


  

S S
S

S
, (11) 

where  is the concentration parameter, scheduled linearly with 
an initial value of 1.  

Finally, the optimized negative samples O
NegS  can be 

determined by rectifying the outliers, that is 

  O
Neg 1 2 S Neg( , ) Max exp( 1/ ),   N   S S . (12) 

The contrastive loss Con  between the optimized negative 

and positive samples can be evaluated as 

 
O
Pos

Con 1 2 1 2O O 2
Pos Neg

( , ) log ( , )    
 

     


S

S S
 , (13) 

where μ is the regularization coefficient and is determined 
automatically by the optimization algorithm. The 
computational complexity of optimal sampling and contrastive 

loss is  2
b o( )O N E . In implementation, we run Algorithm 1. 

Algorithm 1. Optimal sampling and contrastive loss 

Input: multimodal representations b-oR   and b-o
R  , mini-

batch Nb, similarity threshold k 
Operation: 

1: Calculate the similarity matrix S with Eqs. (3) and (4) 

2: Obtain preliminary samples NgS  and PsS  with Eqs. (5) 

to (7) 

3: Determine the optimized samples O
PosS   and O

NegS   with 

Eqs. (9) and (12) 
4: Estimate the contrastive loss Con  with Eq. (13) 

Output: The contrastive loss Con  

E. Silent Attention 

The vanilla attention mechanism in the Transformer can be 
expressed as 

 
T

Attention( , , ) softmax
QK

Q K V V
d

 
  

 
, (14) 

where Q, K, and V denote queries, keys and values with 
dimension of n × d, respectively; the softmax is defined as 

 a

1

exp( )
softmax( )=

exp( )

i

n

jj

x
s x

x





, (15) 

where x is a vector with dimension n. Then the negative limit of 
the softmax is deduced as 

  
1

lim lim softmax( )
i n

ix x
x

n 
 , (16) 

which means the negative limit of the softmax is a positive 
constant. This raises a problem: the softmax restrains the 
attention from outputting zero values, even if there is no 
correlation between two tokens. Consequently, these irrelevant 
tokens are assigned weights to extract information with V, and 
learning is unstable and prone to collapse in our experiments. 

To address this problem, we proposed an improved softmax 
function as 

 s s

s 1

exp( )
softmax ( )

exp( )

i

n

jj

x
s x

C x


 


, (17) 

where sC  is a positive constant. The key difference from the 

original softmax is the negative limit 
  lim lim softmax( ) 0

i n
ix x

x
 

 . (18) 

When the input x contains significantly negative correlations, 
the proposed softmaxs ( ss ) tries to avoid scoring. Moreover, the 

derivative of the ss  is positive, so we always have a non-zero 

gradient; its sum is in the range of zero to one, and the relative 
ratio in the output vector is the same as that in the original 
softmax, which means the output is under control. 

In addition, we add a dropout operation after ss  to balance 

the representational and generalized ability, that is 

 
T

s s( , , ) dropout softmax
QK

A Q K V V
d

  
    

  
. (19) 

The softmaxs can drive the scores of irrelevant tokens toward 
zero while slightly reducing the scores of others. This reduction 
is compensated during the subsequent normalization. As a 
result, it suppresses features with low correlation, increases the 
discrepancy of output features, and stabilizes the training. 

Since the attention mechanism costs enormous time and 
space resources, we implement silent attention with a specially 
optimized algorithm to be faster and simpler. Specifically, for 
running in parallel on CUDA, we transform Eq. (17) as 

 s s

s 1

exp( )
softmax ( )

exp(log ) exp( )

i

n

jj

x
s x

C x


 


, (20) 

then, we execute Algorithm 2 on CUDA. Note that we 
recommend setting sC  to 1, so we just prepend zero to the 

scaled correlation in the last dimension and avoid precision loss 
during the ferrying between exponentiation and logarithm. In 
Algorithm 2, it can be observed that the silent attention receives 
the same input as the vanilla attention and can be swapped into 
network flexibility. The computational complexity of silent 
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attention is the same as that of vanilla attention, which is 
2( )O n d . Therefore, we replaced vanilla attention with silent 

attention in all Transformer blocks of MaCon. 

Algorithm 2. Silent attention 

Input: queries Q, keys K, values head V, head dim d 
Calculate correlation: 

1: Estimate the correlation by matrix multiplication 
between the Q and transpose of K 
2: Divide by the square root of d to scale the correlation 

Estimate softmaxs: 
1: Prepend slogC  in column to scaled correlation in the 

last dimension 
2: Calculate ss  by performing softmax operation with Eq. 

(15)  
3: Remove the prepended column in the ss  

Determine the Silent attention: 
1: Conduct dropout on  

2: Derive the sA  by matrix multiplication between the ss  

and V 
Output: The silent attention sA  

F. Optimization and Inference 

After completing the forward pass and deriving the MR loss 

Ma  and contrastive loss Con , the optimization process begins. 

We designed stop-gradient operation in the CL subnetwork and 
asynchronous backpropagation for MR and CL subnetworks. 
That means the gradients from the Ma  and Con  are 

asynchronously backpropagated to update the parameters of the 
respective MR and CL subnetworks. In this way, the two 
subnetworks not only collaborated in forward modelling, but 
were also independent in backpropagation without conflicting 
gradient updates. 

When the relative changes in both losses Ma  and Con  

remain below 1e-3 for 20 epochs, or the maximum training 
epochs is reached, learning is stopped. Then, the change map 
can be inferred by utilizing the common and discriminative 
representations of the multimodal data. The inference pipeline 
is shown in Fig. 5. Before the block of discrepancy 
measurement, the main difference from the learning phase is 
that the inference phase is without crop and mask operations, 
MR decoder and reconstruction modules. The difference image 
can be derived by measuring the distance between discrepancy 
representations output from the head in the CL subnetwork. 
After that, the preliminary binary change is output through a 
segmentation algorithm, and finally, the refined change map is 
obtained through morphological filtering.  

Note that we developed a trick for the MaCon framework to 
hack the parameters of patch embedding so as to change the 
patch stride in the inference phase. In this way, we can set a 
smaller stride size to model finer boundaries and 
representations or a larger one to accelerate inference.  

IV. EXPERIMENTS AND ANALYSIS 

To evaluate the performance of the proposed MaCon 
framework, we experimented on both multimodal and 
monomodal datasets, as well as analyzed the computational cost 
and impact of key submodules and hyperparameters on 
performance. 

A. Datasets Description 

1) Multimodal datasets: We experimented on five 
multimodal datasets, including 14 multimodal image pairs 
distributed worldwide, as listed in Table I. The Shuguang 
dataset contains SAR and RGB modalities, with a size of 593 × 
921 × 1(3). The Sardinia dataset includes NIR and RGB data 
before and after the lake expansion. The Toulouse dataset 
consists of large-scale images with a size of 2000 × 2000 × 3(3), 

ss

TABLE I  
DESCRIPTION OF THE FIVE MULTIMODAL DATASETS 

Dataset Sensor (& modality) Size Location Event (& Spatial resolution) 

OSCD-S2S1 
Sentinel-1/Sentinel-2 
(SAR-Multispectral) 

H × W × 13(2) Scattered around the world Mixed (10 m) 

Shuguang 
Radarsat-2/Google Earth 
(SAR-RGB) 

593 × 921 × 1(3) Shuguang Village, China Construction (8 m) 

Sardinia 
Landsat-5/Google Earth 
(NIR-RGB) 

300 × 412 × 1(3) Sardinia, Italy Lake expansion (30 m) 

Toulouse 
Pleiades/WorldView-2 
(RGB-Pseudo RGB) 

2000 × 2000 × 3(3) Toulouse, France Construction (0.52 m) 

Sutter 
Landsat-8/Sentinel-1A 
(Multispectral-SAR) 

875 × 500 × 11(3) Sutter County, USA Flooding (≈ 15m) 

 

 
Fig. 5. Inference pipeline for multimodal change detection. 
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including RGB and pseudo-RGB modalities. The Sutter dataset 
contains multispectral and SAR images before and after the 
flood, with a size of 875 × 500 × 11(3). 

It should be noted that the OSCD-S2S1 dataset [18] we used 
is its test set, which contains 10 image pairs. The OSCD-S2S1 
dataset is more challenging and practical than the other datasets 
because it possesses the following characteristics: mixed 
changing events, complex LC, very few changed pixels in 
several cases, more small changing elements and discrete 
distribution, fine temporal resolution and accessibility for the 
data of Sentinel-1 and 2. Regrettably, the recently published 
OSCD-S2S1 dataset comprises many wrong labels, likely due 
to its complexity, and unsupervised CD methods were rarely 
tested on the OSCD-S2S1 dataset. Therefore, we want to 
provide a benchmark for testing on the OSCD-S2S1 dataset. 

2) Monomodal datasets: To evaluate the performance of the 
proposed method on the monomodal dataset, we tested it on two 
optical datasets, Montpellier and ZY3, and one SAR dataset, 
San Francisco. The Montpellier dataset, contained in the 
OSCD-S2S2 dataset [62], consists of a pair of multispectral 
images of size 426× 451 × 13(13) pixels and a spatial resolution 
of 10 m. The ZY3 dataset [63] contains two RGB images of size 
458 × 559 × 3(3) pixels and a spatial resolution of 5.8 m [63]. 
The San Francisco dataset [64] consists of a pair of SAR images 
of size 256 × 256 × 1(1) pixels, acquired by ERS-2.  

B. Implementation Details 

The proposed MaCon was implemented based on the Pytorch 
with a single NVIDIA GeForce RTX 3090 (24-GB RAM). We 
adopted the Transformer architecture with silent attention for 
all the CL encoder, MR encoder and decoder. 

For the MR subnetwork, we set the crop size to 200 × 200 in 
learning. We used the convolutional layer with kernel and stride 
size of 8 × 8 and 4 × 4 in learning, and that of 8 × 8 and 2 × 2 
in inference, to tokenize the multimodal data to the embeddings. 
The ViT-Small [65] was set as the encoder with 384 embedding 
dimensions; the decoder comprises 8 Transformer blocks with 
16 heads and 512 embedding dimensions and contains a linear 
predictor additionally. The random mask and dropout ratio were 
set to 0.5 and 0.1, respectively. During learning, the number of 
input tokens in the MR subnetwork was 2401.  

For the CL subnetwork, we set the layers of the Transformer 
block to 8 with 6 heads and 384 embeddings, the similarity 
threshold k to 0.9, mini-batch Nb to 256, dropout ratio to 0.1, 
temperature τ to 0.5, class probability p to 0.1, 3 linear layers in 
MLP with hidden embeddings to 2048, bottleneck embeddings 
Eb to 256, and output embeddings Eo to 384.  

Moreover, the optimization algorithm based on adaptive 
estimates of low-order moments with decoupled weight decay 

 
Fig. 6. Rendered change maps obtained by the proposed framework and representative comparison methods on the multimodal datasets. From top to bottom, they 
correspond to the Lasvegas case, Shuguang, Sardinia, Toulouse and Sutter datasets, respectively. In the rendered change maps, white: true positives (TP); black: 
true negatives (TN); azure: false positives (FP); magenta: false negatives(FN). The meaning of these symbols is the same in all figures. 

 
TABLE II  

PERFORMANCE COMPARISON ON THE MULTIMODAL DATASETS 

Method Metric OSCD-S2S1 Shuguang Sardinia Toulouse Sutter 
MaCon  
(ours) 

F1 0.217 0.815 0.736 0.559 0.531 
KC 0.175 0.806 0.717 0.503 0.507 

SSCD 
F1 0.202 0.713 0.714 0.519 0.511 
KC 0.165 0.697 0.692 0.414 0.486 

HGIR-MRF 
F1 0.186 0.791 0.704 0.542 0.514 
KC 0.141 0.779 0.683 0.487 0.491 

NPSG 
F1 0.165 0.737 0.651 0.472 0.443 
KC 0.112 0.724 0.624 0.380 0.406 

M3CD-EMAP 
F1 0.163 0.768 0.591 0.457 0.425 
KC 0.111 0.754 0.514 0.348 0.393 

ACE-Net 
F1 0.142 0.690 0.632 0.398 0.465 
KC 0.091 0.680 0.601 0.258 0.428 

X-Net 
F1 0.138 0.735 0.587 0.434 0.426 
KC 0.088 0.710 0.548 0.321 0.385 

M3CD 
F1 0.146 0.622 0.603 0.480 0.187 
KC 0.097 0.602 0.526 0.405 0.124 

FPMS 
F1 0.143 0.662 0.562 0.311 0.429 
KC 0.086 0.645 0.533 0.145 0.388 
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(AdamW) was employed to train MaCon with the decayed 
learning rate set from 5e-3 to 1e-5 and weight decay from 0.04 
to 0.4 in the cosine schedulers; the mixed-precision computing 
technique was adopted to decrease memory cost during learning. 
In inference, the difference map was generated by mean 

squared L2 distance, i.e., 
2

b-o b-o 2

'R R , and Otsu was applied 

as the segmentation algorithm to obtain the binary change map. 
Otsu is one of the most widely used segmentation methods for 
automatic thresholding, and its criterion is to maximize the 
inter-class variance between classes. 

C. Comparison Methods and Evaluation Metrics 

1) Comparison methods on the multimodal datasets: To 
demonstrate the superiority of the MaCon for unsupervised 
multimodal change detection, we compared eight recently 
proposed methods with MaCon since they are representative 
and their code is open-source, including SSCD [39], HGIR-
MRF [38], NPSG [66], M3CD-EMAP [67],ACE-Net [31], X-
Net [31], M3CD [14] and FPMS [35]. For these methods, we 
ran their code to test and tried our best to tune hyperparameters 
to achieve optimal.  

Note that on the OSCD-S2S1 dataset, we chose the best 
metric for all the compared methods on each image pair after 
repeatedly adjusting their hyperparameters. In contrast, the 
MaCon directly adopted the mean metric on all 10 image pairs 
with the same hyperparameters to evaluate its adaptive ability 
on different images more objectively. We also compared the 
reported metrics from their original papers to reflect the SOTA 
accuracy achieved on each dataset, including many methods 
without open-source code. 

2) Comparison methods on the monomodal datasets: We 
compared the MaCon with advanced monomodal CD methods. 
Specifically, the FCD-GN [68], DSFA [69], RCVA [70], ISFA 
[69], FDCNN [63] and SSN-Siam-diff [8] were compared on 
the optical datasets of Montpellier and ZY3. Similarly, the 
PCAKM [71], FC-Siam-conc [72], LR-CNN [64], FDCNN 
[63], SSN-Siam-diff [8] and Ms-CapsNet [73] were compared 
on the SAR dataset of San Francisco. For these methods, if 

reported metrics existed for tested datasets in the associated 
papers, we adopted them directly; if not, we ran the code and 
tried our best to adjust the hyperparameters to train them 
optimally. 

Notably, we did not compare the MaCon with the same 
methods that were compared on the multimodal datasets, 
because traditional methods for MCD are usually not tested on 
monomodal datasets, and the metrics are generally worse than 
those customized for monomodal datasets. 

3) Evaluation Metrics: In the experiments, two 
comprehensive quality metrics, F1 score (F1) and Cohen’s 
Kappa coefficient (KC), were used to evaluate the performance 
of all methods quantitatively. A larger value signals better 
performance for all of these metrics 
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where TP is the true positive, denoting the number of pixels 
correctly classified as changed; TN is true negative, which 
means the number of pixels correctly classified as unchanged; 
FP is false positive, which denotes means the number of pixels 
misclassified as changed; FN is false negative,  representing the 
number of pixels misclassified as unchanged; OA denotes 
overall accuracy; PE means expected agreement between the 
ground reference and predictions given the class distributions. 

TABLE III 
REPORTED PERFORMANCE COMPARISON WITH RECENTLY PUBLISHED SOTA METHODS ON THE MULTIMODAL DATASETS. NOTABLY, * MEANS WE RAN THEIR 

CODE AND TRIED OUR BEST TO TUNE HYPERPARAMETERS TO ACHIEVE OPTIMAL; + SIGNIFIES SUPERVISED METHOD 

OSCD-S2S1 F1 KC Shuguang F1 KC Sardinia F1 KC Toulouse F1 KC Sutter F1 KC 
MaCon (ours) 0.217 0.175 MaCon (ours) 0.815 0.806 MaCon (ours) 0.736 0.717 MaCon (ours) 0.559 0.503 MaCon (ours) 0.531 0.507 
FC-EF+ [19] 0.171  IRGMcS [28] 0.804 0.794 FD-MCD [74] 0.732 0.714 HGIR-MRF [38] 0.549 0.501 IRGMcS [28] 0.512 0.490 
SSCD* [39] 0.202 0.165 HGIR-MRF [38] 0.790 0.779 ALSC-P [75]  0.713 AGSCC [17] 0.540 0.490 HGIR-MRF [38] 0.511 0.489 
HGIR-MRF* [38] 0.186 0.141 PSGM [76]  0.744 NACCL [77] 0.700  CAAE [78] 0.520 0.451 SSCD [39] 0.510 0.460 
NPSG* [66] 0.165 0.112 NPSG [66]  0.729 PSGM [76]  0.682 IRGMcS [28] 0.481 0.421 SCCN [34] 0.500 0.454 
M3CD-EMAP* [67] 0.163 0.111 X-Net [31] 0.731 0.696 AGSCC [17] 0.680 0.658 FPMS [35] 0.296  ALSC-P [75]  0.420 
ACE-Net* [31] 0.142 0.091 ACE-Net [31] 0.726 0.689 CAAE [78] 0.628 0.598 NACCL [77] 0.290  ACE-Net [31] 0.459 0.415 

 
TABLE IV 

PERFORMANCE COMPARISON ON THE MONOMODAL DATASETS. + SIGNIFIES SUPERVISED METHOD 

Montpellier F1 KC ZY3 F1 KC San Francisco F1 KC 
MaCon (ours) 0.553 0.520 MaCon (ours) 0.571 0.523 MaCon (ours) 0.905 0.897 
FDCNN+ [63] 0.440 0.390 FDCNN+ [63] 0.548 0.500 FDCNN+  [63] 0.882 0.873 
FCD-GN [68] 0.544 0.503 FCD-GN [68] 0.566 0.519 LR-CNN [64] 0.893 0.883 
DSFA [69] 0.427 0.371 DSFA [69] 0.543 0.487 PCAKM [71] 0.878 0.870 
RCVA [70] 0.435 0.378 RCVA [70] 0.539 0.485 SSN-Siam-diff [8] 0.869 0.859 
ISFA [69] 0.388 0.327 ISFA [69] 0.506 0.421 FC-Siam-conc [72] 0.761 0.743 
SSN-Siam-diff [8] 0.486 0.445 SSN-Siam-diff [8] 0.471 0.385 Ms-CapsNet+ [73] 0.903 0.894 
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D. Results 

1) On multimodal datasets: The visualized CD results on the 
multimodal datasets are shown in Fig. 6, and the statistical 
metrics are listed in Table II. From Fig. 6, we can see that the 
proposed MaCon is the best at suppressing spurious changes, 
detecting small change elements and determining the boundary 
between the changed and unchanged classes. In Table II, the 
proposed MaCon method outperforms all the other benchmark 
methods on the multimodal datasets, with preponderant leading 
in metrics. These findings indicate that the MaCon framework 
achieves great accuracy on different multimodal datasets. 

To evaluate the accuracy of the proposed method in detail, 
we also compared the reported metrics in the original papers 
with recently published SOTA methods on each multimodal 
dataset, as listed in Table III. These methods cover the three 
classes of approaches mentioned in Section I.   

Note that, as mentioned before, almost no unsupervised 
methods have been tested on the OSCD-S2S1 dataset. 
Therefore, we include the results of the comparison methods 
above and compare them with the reported metrics of the 
supervised FC-EF methods. It can be seen that our MaCon 

framework outperforms the SOTA methods on all datasets. 
Noteworthy, the MaCon even significantly surpasses the 
supervised method of FC-EF. These results demonstrate that 
MaCon framework has excellent accuracy for MCD.  

2) On monomodal datasets: The visualized CD results on 
monomodal datasets are shown in Fig. 7, and the statistical 
metrics are listed in Table IV. We can see that the proposed 
framework outperforms all the other comparison methods on 
the monomodal datasets. Notably, the MaCon exceeds the 
supervised methods of FDCNN and Ms-CapsNet.  

The results on multimodal and monomodal datasets indicate 
that the proposed framework can extract the common 
representations in essential between different modalities, so it 
has remarkable performance and generalization for both 
multimodal and monomodal CD. This also implies that the 
proposed framework promises to provide a unified model for 
the field of CD. 

E. Ablation Study 

To further quantitatively explore the contribution of the main 
modules in MaCon on MCD, we conducted sufficient ablations. 
The complexity involved was calculated based on data sizes of 
200 × 200 × 3. The results are shown in Table V, from which 
we can obtain the following insights.  

TABLE V 
ABLATION PERFORMANCE ON THE MULTIMODAL DATASETS. THE MEANING OF THE ABBREVIATIONS ON THE HEAD ROW ARE THE FOLLOWING. DA: DATA 

AUGMENTATION; MR-CL: THE STAGED SERIES COMBINATION OF MR AND CL; OS: OPTIMAL SAMPLING; SA: SILENT ATTENTION; CYCL: CYCLE LOSS; EMA: 
EXPONENTIAL MOVING AVERAGE; PE: POSITIONAL EMBEDDING; MF: MORPHOLOGICAL FILTERING 

MR CL DA MR-CL OS SA CycL ema PE MF OSCD-S2S1 Shuguang Sardinia Toulouse Sutter Params FLOPs Memory 
√  √        0.122 0.378 0.410 0.319 0.328 96 M 253 G 12.2 GB 
 √ √        0.163 0.561 0.502 0.422 0.374 41 M 157 G 3.5 GB 

√ √ √        0.186 0.703 0.624 0.471 0.425 134 M 405 G 14.6 GB 
√ √ √ √       0.161 0.589 0.607 0.429 0.417 134 M 405 G 14.6 GB 
√ √ √  √      0.207 0.763 0.704 0.535 0.491 134 M 406 G 14.6 GB 
√ √ √   √     0.198 0.726 0.676 0.507 0.463 134 M 405 G 14.6 GB 
√ √ √  √ √     0.214 0.791 0.714 0.537 0.518 134 M 406 G 14.6 GB 
√ √ √  √ √    √ 0.217 0.815 0.736 0.559 0.531 134 M 407 G 14.6 GB 
√ √ √  √ √ √    0.202 0.711 0.623 0.504 0.472 134 M 656 G 25.7 GB 
√ √ √  √ √  √   0.107 0.290 0.309 0.233 0.198 134 M 406 G 14.3 GB 
√ √ √  √ √   √  0.203 0.731 0.692 0.525 0.485 134 M 406 G 14.6 GB 
√ √   √ √     0.208 0.762 0.718 0.536 0.503 134 M 406 G 14.6 GB 
√ √   √ √   √  0.191 0.660 0.647 0.474 0.462 134 M 406 G 14.6 GB 

 
TABLE VI 

COMPLEXITY AND ACCURACY (F1) COMPARISON 

(A) ON THE MULTIMODAL DATASETS 
Method Params FLOPs Memory Shuguang Sutter 

MaCon (ours) 134 M 407 G 14.6 GB 0.815 0.531 
SSCD 57 M 389 G 6.9 GB 0.713 0.511 

ACE-Net 45 M 684 G 4.7 GB 0.690 0.465 
X-Net 37 M 553 G 3.4 GB 0.735 0.426 

(B) ON THE MONOMODAL DATASETS 
Method Params FLOPs Memory Montpellier ZY3 

MaCon(ours) 67 M 203 G 7.5 GB 0.553 0.571 
DSFA 43 M 89 G 4.0 GB 0.427 0.543 

FDCNN 146 M 284 G 6.4 GB 0.440 0.548 

 

TABLE VII 
COMPARISON OF COMPUTATIONAL TIME (IN SECONDS) ON FOUR MULTIMODAL DATASETS 

Datasets Image size MaCon (ours) SSCD HGIR-MRF NPSG ACE-Net X-Net FPMS 
Learning Inference Learning Inference 

Lasvegas 824×716 168.2 5.2 261.5 5.3 141.9 351.4 872.8 699.4 20.3 
Shuguang 593×921 168.5 4.8 266.4 4.9 129.1 295.6 745.2 646.1 18.8 

Montpellier 426×451 160.7 1.6 260.3 1.7 148.3 119.7 494.5 412.7 12.6 
Sardinia 300×412 159.3 1.1 256.7 1.1 128.4 67.2 319.3 282.6 8.2 

 

 
Fig. 7. Rendered change maps obtained by MaCon and representative 
comparison methods on the monomodal datasets. From top to bottom, they 
correspond to the Montpellier, ZY3 and San Francisco datasets, respectively. 
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1) Only a single MR or CL network does not work well, 
especially only MR, because the learning objective of MR is not 
intuitively consistent with the task of CD. However, we find 
that the MR subnetwork holds the property of accelerating 
representation distilling. Specifically, only a single CL network 
or the staged series combination of MR and CL requires more 
training epochs to achieve the best performance.  

2) The effect of the staged series combination of MR and CL 
is not as accurate as the parallel coupling. 

3) Quantitative evaluation confirms again that both optimal 
sampling and silent attention have a significant positive 
correlation with the performance of MCD. 

4) Without flipping augmentation, the accuracy does not drop 
by much. That is because random masking with shuffling in 
MaCon is equivalent to a strong enhancement. 

5) The coupling of MR with CL is complex, and the output 
of the first reconstruction is not good enough to provide high-
quality input for the second learning, so the performance is 
unsatisfactory after adding cycle loss [17]. Moreover, the 
computational cost and training difficulty surge, and anomalies 
such as gradient vanishing and loss NaN are apt to occur. 

6) The ema strategy is highly unsuitable for updating 
parameters on branches with different modalities. Because the 
distinctions in multimodal data are considerable, the ema 
induces the inability to learn how to extract representations in 
another modality effectively, and the parameters of another 
modality are probably even misled far away from its truth.  

F. Computational Cost 

Another aspect to be analyzed is the computational cost of 
the proposed framework. We compared the complexity and 
accuracy of MaCon and open-source deep learning-based 
methods on both multimodal and unimodal datasets. The results 
are presented in Table VI. Additionally, we tested the practical 
runtime of MaCon and six compared methods on the Lasvegas, 
Shuguang, Montpellier and Sardinia multimodal datasets. The 
results are reported in Table VII. Note that the source codes for 
these methods were implemented in different programming 
environments: FPMS in C++, HGIR-MRF and NPSG in 
MATLAB, and others are deep learning-based methods, 
implemented in Python.  

Although MaCon has more parameters and requires 
additional memory, it achieves the highest accuracy with 
acceptable computational complexity compared to the other 
methods. Because MaCon adopts several parallel computation 
strategies and large batch size in inference, its runtime is the 

shortest among all the deep learning-based methods. ACE-Net 
and X-Net rely heavily on prior computation and, as a result, 
have large FLOPs and long runtime.  
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Fig. 8. Sensitivity of (a) similarity threshold k, and (b) mask ratio β. 

 

 
Fig. 9. Representative cropping window on the Lasvegas case (top) and 
Shuguang dataset (bottom). 

Fig. 10. Visualization of attentions and representations output by the MR 
encoders on the Lasvegas case (top) and Shuguang dataset (bottom). 
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Fig. 11. The distributions between representations output by the MR encoders 
and original images on the (a) Lasvegas case and (b) Shuguang dataset. 
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G. Sensitivity of Hyperparameters 

1) Similarity threshold k: The impact of the similarity 
threshold k on performance is shown in Fig. 8 (a). We find that 
the accuracy is greatest when k is 0.85 or 0.9; specifically, when 
k is 0.85 in the OSCD-S2S1 and Sutter datasets, and k is 0.9 in 
the other datasets, to achieve the best performance. This is 
because the OSCD-S2S1 and Sutter datasets possess a 
considerably complex LC distribution, so they need more strict 
sampling constraints to help discriminate the discrepancy.  

2) Mask ratio β: The impact of mask ratio β on performance 
is shown in Fig. 8 (b). It can be seen that the accuracy ascends 
with β until β reaches 0.5 on all datasets; when the mask ratio 
is larger than 0.5, the accuracy still increases until β reaches 
approximately 0.8 on the OSCD-S2S1 dataset, but the accuracy 
decreases generally on the other datasets. To avoid the high cost 
of parameter adjustment and improve the versatility of the 
proposed framework, we uniformly used the results of β at 0.5 
on all datasets.  

V. DISCUSSION 

To understand thoroughly how MaCon works and the role of 
each key module in the entire framework, we analyzed the 
mechanisms of MR and CL subnetworks, optimal sampling, 
and silent attention from the perspectives of interpretability. To 
exhibit the details clearly, we use representative cropping 
windows during the learning phase on the Lasvegas case in the 
OSCD-S2S1 dataset and the Shuguang dataset for illustration. 
The cropped dual temporal images and binary ground reference 
of the Lasvegas and Shuguang are shown in Fig. 9.  

A. Common representation extraction in the MR branch 

First, we visualized the attentions and representations output 
by the MR encoders, and compared the distributions between 
the representations and original images to investigate the role 
of the MR subnetwork. The visualization of attentions and 

 
Fig. 12. Visualization of the attentions, representations and difference image output by the CL encoders, and that of the representations and difference image output 
by the CL heads. The first and second rows are the Lasvegas case and Shuguang dataset, respectively. 

 

Fig. 13. Comparison of with and without optimal sampling. The first and 
second rows use optimal sampling and vanilla sampling on the Lasvegas case, 
respectively; the third and fourth rows use optimal sampling and vanilla 
sampling on the Shuguang dataset, respectively. 

Fig. 14. Comparison of with and without silent attention. The first and second 
rows use silent and vanilla attention on the Lasvegas case, respectively; the 
third and fourth rows use silent and vanilla attention on the Shuguang dataset, 
respectively. 
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representations on the Lasvegas and Shuguang datasets are 
shown in Fig. 10.  

We can see that the dual temporal attentions do not 
apparently focus on local or specific objects; the representations 
abstract and generalize the surface object information and are 
more similar than the original images.  

Additionally, the distributions of the representations output 
by the MR encoders and original images are shown in the Fig. 
11. Since the range of representations output by the MR 
encoders is quite different from that of the original images, we 
normalized them to the range of 0 to 1. We find that the 
distributions of the MR representations are more similar and 
closer than those of the original images. To quantify this effect, 
we estimated the root mean square distance dr and the relative 
root mean square distance rd. On the Lasvegas case, the dr of 
the original images and MR representations are 0.286 and 0.067, 
and their rd are 0.808 and 0.121, respectively. On the Shuguang 
dataset, the dr of the original images and MR representations 
are 0.336 and 0.137, and their rd are 0.681 and 0.298, 
respectively. These findings demonstrate that the MR encoders 
can distill the common representations from multimodal data 
and shrink their domain bias.  

B. Discrepancy representation extraction in the CL branch 

We studied the role of the CL subnetwork. We visualized the 
attentions, representations and difference image output by the 
CL encoders, as well as the representations and difference 
image output by the CL heads (Fig. 12). Examining all the 
attentions and representations in Fig. 12 (especially lasvegas), 
we obtained the following insights.  

The attentions and the representations output by CL encoders 
pay more attention to local information and high-level 
semantics; object-level and edge features are prominent. This 
differs from the MR subnetwork, which pays more attention to 
global information and low-level details. Certain specific land 
classes relevant to changes (such as buildings, cultivated land, 
and bare land) and changed regional information are 
emphasized within the representations. Distinctions among 
changed objects are conspicuously highlighted in the difference 
image, particularly when generated by the CL heads. Evidently, 
these intermediate outputs play a pivotal role in enhancing the 
detection of changed information. 

C. Effectiveness of optimal sampling 

We compared the visualizations and MCD results with or 
without optimal sampling to evaluate the effectiveness of 
optimal sampling. The comparisons are shown in Fig. 13, and 
we can get the following findings.  

1) After using the optimal sampling strategy, the generated 
representations have fewer misclassifications for the 
foreground and background, higher quality for object 
segmentation and consistency, and more prominent edge 
information; 2) the difference image not only highlights the 
changed objects but also significantly suppresses the unchanged 
ones; 3) for the Lasvegas case, the F1 with and without optimal 
sampling are 0.872 and 0.818, respectively, and for the 
Shuguang dataset, the F1 with and without optimal sampling 
are 0.530 and 0.453, respectively. These findings manifest that 
optimal sampling is of great gain for the task of MCD. 

D. Effectiveness of silent attention 

We tested the effectiveness of silent attention in the MR 
encoders and CL encoders, as shown in Fig. 14. We find that 
silent attention focuses on high-correlation objects but 
suppresses low-correlation ones, thereby expanding the 
contrast in output representations and making it easier to 
distinguish changed objects, compared to vanilla attention. 

Additionally, we find that silent attention has more minor 
fluctuations during learning and overcomes the problem of 
collapse that appeared in vanilla attention on the Lasvegas case, 
as shown in Fig. 15. These results reveal that silent attention is 
preferable and more robust than vanilla attention.  

VI. CONCLUSION 

In this paper, we proposed a novel MaCon framework for 
unsupervised multimodal change detection. This framework 
ingeniously integrates the two self-supervised learning 
paradigms of MR and CL, harnessing their respective strengths 
synergistically. The MR subnetwork pays more attention to 
global information and low-level details, distilling common 
representations, while the CL subnetwork emphasizes local 
information and high-level semantics, extracting discrepancy 
representations. Additionally, we introduced an optimal 
sampling strategy to select more reasonable samples, thereby 
guiding the model to generate more distinguishable disparity. 
Moreover, we developed silent attention, a plug-and-play 
module that addresses the inability of traditional attention to 
assign negligible scores to irrelevant tokens. This advancement 
improves the differentiation in output representations. 

Experimental evaluation indicated that the MaCon 
framework possesses strong generality on both multimodal and 
monomodal datasets; it outperforms existing SOTA methods 
and even exceeds the capabilities of certain supervised 
approaches. Interpretability experiments were conducted to 
understand the workings of the MaCon framework. 

This study focused on two-dimensional multimodal Earth 
observation images, a domain with extremely wide application 
potential. Nevertheless, the need for change detection extends 
beyond Earth observation to include diverse applications such 
as high-definition maps, street view maintenance and medical 
imaging diagnostics. Investigating the applicability of the 
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Fig. 15. Loss curves during learning on the Lasvegas case and Shuguang 
dataset. 
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MaCon framework to other fields and additional modalities 
presents an exciting avenue for future research. 
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