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Abstract

Since 2020, large-scale outbreaks of highly pathogenic avian influenza (HPAI) H5N1
in Great Britain have resulted in substantial poultry mortality and economic losses.
Alongside the costs, the risk of circulation leading to a viral reassortment that causes
zoonotic spillover raises additional concerns. However, the precise mechanisms driv-
ing transmission between poultry premises and the impact of potential control mea-
sures in Great Britain, such as vaccination, are not fully understood. We have devel-
oped a spatial transmission model for the spread of HPAI in poultry premises cali-
brated to infected premises data for the 2022—23 season using Markov chain Monte
Carlo. Our results indicate that reducing the susceptibility of the premises surround-
ing an identified infected premises (for example, through enhanced biosecurity mea-
sures and/or vaccination) can substantially reduce the overall number of infected
premises. Our findings highlight that enhanced control measures could limit the future
impact of HPAI on the poultry industry and reduce the risk of broader health threats.

Author summary

Highly pathogenic avian influenza is an infectious disease that has caused a sub-
stantial number of outbreaks in bird populations around the world. This includes
poultry populations in Great Britain, where the largest number of infected poul-

try premises were reported in the 2022—23 season. This identifies the need for
mathematical models to be calibrated to outbreak data, such that we can have a
greater understanding of the disease transmission process and the potential mea-
sures that could be used to avert future infections. We have developed a model to
describe temporal changes in avian influenza infections in poultry premises in
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Great Britain over the course of an epidemic season. We then simulate reactive
enhanced control strategies that reduce susceptibility of poultry to show that there
is a large benefit in localised interventions around an infected poultry premises

to reduce further transmission. These results underscore the need for effective
control strategies to limit the continued circulation of avian influenza and the threat
to public health.

Introduction

Highly pathogenic avian influenza (HPAI) poses a substantial ongoing threat to the
poultry industry. Since 2020, the emergence of a reassorted genotype of H5N1
viruses within clade 2.3.4.4b has been associated with widespread outbreaks of HPAI
in both wild birds and poultry worldwide [1]. The currently circulating H5N1 clade
2.3.4.4b strain has a large fitness advantage over previously circulating viruses [2]. It
has impacted a larger number of bird species, notably causing large mortality events
in seabird colonies [3,4]. Moreover, spillover into mammals, including evidence of
mammal-to-mammal transmission, such as in cattle in the USA [5,6], as well as an
increasing number of confirmed human infections [7,8], indicate the zoonotic potential
of the virus and the potential risk of a future pandemic occurring [9].

In Great Britain, there have been annual epizootic events affecting poultry
premises since 2020, with approximately 200 infected premises (IPs) during the
2022-23 season (1 October 2022 — 30 September 2023) [10]. This has resulted
in the culling of millions of birds to prevent further spread of infection, at substantial
economic cost [2,11]. The outbreaks traditionally followed a seasonal pattern, driven
by the arrival of infection from migratory wild birds in the autumn and winter months,
with very few infections in poultry during the summer [12]. However, with a broader
range of wild bird host species infected and endemic circulation in these resident
wild birds [13], while the seasonal pattern remains, there has been an increased inci-
dence in observed IPs over the summer months, with HPAI detections throughout the
summers since 2022 [10].

Most reported IPs were likely associated with spillover from local wild bird popu-
lations in 2022—23 [14], while infected migratory birds commonly increase the geo-
graphical spread of infection [15]. The majority of transmission to poultry has gener-
ally been attributed to Charadriiformes (such as waders, gulls and auks) and Anser-
iformes (such as ducks and geese) and in most cases this is due to direct or indirect
contact, or through contamination of bedding or feed [14]. Within poultry premises,
chickens and turkeys infected with HPAI typically show more severe symptoms or
have higher mortality compared to ducks and geese [16], although the latter may
have similar levels of viral shedding without the symptoms or mortality. This differ-
ence, however, may be less obvious for some genotypes of the circulating H5N1
clade 2.3.4.4b, as they are particularly well adapted to ducks [17-19].
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Premises-to-premises transmission has been reported in Europe [20], but there is
little evidence that this is common in Great Britain. Phylogenetic analyses have iden-
tified premises-to-premises transmission as being likely for only a few select IPs dur-
ing 2020-2022 [21]. Where premises-to-premises transmission does occur, it is likely
due to the movement of vehicles, shared equipment or personnel between premises,
or by the transport of infected birds to a new premises [14,22,23]. During the 2022—
23 season, airborne transmission between premises was unlikely since evidence
suggests that airborne particles containing HPAI virus can only travel very short dis-
tances (up to 10 metres) [24]. With that understanding of the likely modes of trans-
mission, biosecurity measures are therefore essential to prevent the introduction of
the HPAI virus into premises. Biosecurity measures can include increased disinfec-
tion and cleaning, management and treatment of water, the prevention of wild-bird
access to housing and feed storage, changing of footwear for poultry workers moving
between premises, and improved fencing to reduce contact between poultry and wild
bird species [25,26]. In Great Britain, Avian Influenza Prevention Zones (AIPZ) have
been introduced that legally require poultry owners to follow strict biosecurity mea-
sures and can include mandatory housing orders [27,28]. As of 2025, the use of HPAI
vaccines for poultry is not permitted in Great Britain [29].

In the 2022—-23 season, there was a national AIPZ in place from 17 October 2022
to 4 July 2023 [27], with a regional AIPZ in the counties of Norfolk, Suffolk, and parts
of Essex before this from 27 September 2022, and so covering almost all the infec-
tions on premises seen during the season. A national housing order was also in place
from 7 November 2022 to 18 April 2023 [28], with this beginning regionally in the
East of England from 12 October 2022. Additional 3 km Protection Zones were estab-
lished around IPs to limit transmission, alongside 10 km (7 km in addition to the 3 km)
Surveillance Zones with increased record keeping and monitoring for infections [30].
For our mathematical analysis, we choose to model the 2022—-23 season.

Mathematical models for HPAI outbreaks amongst poultry premises have been
used to estimate the probability that large outbreaks occur in a variety of geograph-
ical settings and to identify areas at high risk of infection. In the context of Great
Britain, spatial models have historically helped to determine the probability of out-
break clusters [31,32]. Spatial modelling studies have also identified key param-
eter values for model simulations in other settings, such as Bangladesh [33] and
Thailand [34]. Modelling approaches have been developed to produce risk maps of
HPAI H5N1 Clade 2.3.4.4b spillover in Europe [35] and the USA [36]. Other stud-
ies have sought to identify suitable control policies for HPAI, including vaccination,
ring culling, increased surveillance, and contact tracing in countries such as Viet-
nam [37], Bangladesh [38], South Korea [39], and France and the Netherlands [40].
However, no known studies have been used to infer the transmission dynamics of
recent outbreaks of HPAI in Great Britain, or to assess the impact of potential control
strategies.

In this manuscript, we extended the work of previous modelling approaches, such
as Jewell et al. [31] and Hill et al. [33], to adapt a spatial individual poultry premises-
based model for Great Britain. We used this model to capture the infection dynamics
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in poultry premises across the 2022—23 season, the season with the largest number of HPAIl-infected poultry premises

(at the time of writing in 2025). We believe this is the first mechanistic model fitted to recent HPAI epidemic data in Great
Britain. We used Markov chain Monte Carlo (MCMC) to parameterise the model using notification data from the 2022—
2023 season, evaluating the quality of the model fit with model simulations and fitting statistics. We then considered the
impact of biosecurity measures or the potential use of vaccines by implementing enhanced control measures in the imme-
diate area surrounding an IP. Using model simulations, we explored how varying the stringency, duration, and area of the
enhanced control zone, which reduces poultry susceptibility, affects the number of reported IPs. These results quantify the
impact of additional control measures for a range of possible scenarios.

Methods
Data

We obtained demographic data on poultry premises in Great Britain and poultry case data from the Animal and

Plant Health Agency. The demographic data include the centroid of each premises polygon (defined as a CPH —
County/Parish/Holding number — entity), as well as the number of poultry reported as kept by species. We use demo-
graphic data that were registered on 1 December 2022, which falls within our fitting period. To provide the required inputs
into the spatial model, we aggregated these flock counts into three categories for each premises: Galliformes (chickens,
turkeys, etc.), waterfowl (ducks, geese, etc.), and other birds. We chose these categories to limit the number of bird types
considered for a reasonable number of parameters in the model while allowing for differences in the transmission and
susceptibility characteristics of different species. There were 48660 premises within our data set. While we assumed this
was a complete list of all poultry in the country, some premises of any size may be missing from our data set and, in par-
ticular, we noted that it was not a legal requirement for premises with fewer than 50 captive birds to officially register their
birds in the considered time period (before 1 October 2024), indicating that some small premises may be missing [41].

In this study, we considered premises with H5N1-infected birds within the 2022-23 epidemiological season: 1 Octo-
ber 2022 — 30 September 2023. This period contains a peak in infections in the autumn/winter, with relatively fewer cases
in the summer months, consistent with the known seasonality in infections [12]. There were 200 premises with confirmed
H5N1 infection in the 2022-23 season (Fig 1).

At any point in time, we assume that all IPs are included in the data set (due to identification by poultry exhibiting clin-
ical signs or suffering mortality), unless they have yet to be reported. The IPs will be reported because HPAI is a noti-
fiable disease in the UK, and poultry owners are legally obliged to report suspected infections to the Animal and Plant
Health Agency (APHA) [42]. Upon reporting or ‘notification’, a veterinary inspector typically visits the premises to test for
the presence of HPAI within the poultry, where, on disease confirmation, all susceptible poultry will be culled unless spe-
cific exemption criteria apply (such as some birds from zoos, circuses or pet shops) [43,44]. Additional measures such as
movement bans, disinfection, and other restrictions may also be put in place.

We link data on IPs to the poultry premises register data by matching the coordinates of the premises with reported
infections to the closest premises with similar reported poultry numbers. Full details are provided in S1 Text. This means
we have data on all premises contained in the poultry keeper register data for Great Britain on 1 December 2022, and for
those premises where H5N1 infection was detected, the dates that notification occurred before all birds were culled on the
premises.

Model

Our model is formulated as a discrete-time, individual-based, spatially explicit compartmental model for individual poul-
try premises. Our model conceptualisation uses a similar structure to models presented in previous studies on HPAI and
other livestock diseases [33,45-47]. At a given time, each premises can be in one of five given states: susceptible to HPAI
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Fig 1. Reported cases of H5N1 in poultry premises in Great Britain for the 2022-23 season, 1 October 2022 — 30 September 2023. (A) A

map of all poultry premises in the poultry keeper register on 1 December 2022 in Great Britain (grey dots), and the locations of infected premises

(IPs) within this time period (coloured dots). The colour of the IP dots indicates the time within the season that the notification occurred, with

red dots at the start of the season and yellow dots at the end. The inset map shows the Shetland Islands to the north of mainland Scotland.

Source of map boundaries: Office for National Statistics licensed under the Open Government Licence v.3.0. The shapefiles used can be found at
https://geoportal.statistics.gov.uk/datasets/5a393192a58a4e50baf87eb4d64ca828_0/explore. (B) A bar chart of the number of notified poultry premises
in each week of the 2022—-23 season. The colour scale of the bars indicates the progression of time, as shown in (A). The secondary axis at the top
shows the start of selected months in this time period.

https://doi.org/10.1371/journal.pcbi.1013874.g001

infection S, exposed to HPAI infection (i.e., infected but not yet able to transmit infection) E, infectious and able to trans-
mit infection |, notified as infected but still infectious N, and removed by culling R. For each premises i, we denote E; as
the time of infection and so when the premises becomes exposed. This similarly applies to the time of the onset of infec-
tiousness (/;), the time of notification (N;), and the time of culling (R;). We assume the infection events occurred according
to the given infection rate 1;().

The infectious pressure on premises j is given by:

AMty=e®+ > Bi+r1 Y, Bi (1)

i€JI(t) iEN(t)

where J(f) and NV'(t) are the sets of premises that are infected and notified at time {, respectively. This describes two com-
ponents of infection: (i) a time-varying term, (%), for the background infection directly caused by spillover from wild bird
populations; (ii) local infections in regions close to other poultry premises that are currently infectious (infectious | or noti-
fied N) [48], captured by the two summation terms in Eq 1. The local force of infection from premises i to premises j is
given by g;, and y4 is a scaling of the force of infection for premises that have been notified as infectious, as opposed to
infectious but not yet notified. The local infection component from other poultry premises could reflect a range of different
transmission modes, for example: direct transmission by infected poultry; indirect transmission via wild birds as bridging
vectors, or; transmission of virus on shared farming equipment or by staff. We also note that cases on premises in close
proximity could be indicative of an increased presence of H5N1 in local wild bird populations, causing multiple spillover
events. Therefore, both components of the infectious pressure may be due to wild bird spillover, with known poultry infec-
tions spatially indicating potential higher-risk areas. No transmission routes are excluded in these terms, but likewise none
are explicitly modelled, unlike, for example, in models in which networks of vehicle movements were modelled explicitly.
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The constituent terms of 4,(f) are further broken down to describe their functionality within the model. The background
infection term;

e(t) = ggexp (—vo (1 + Ccos (271' (% - v1>)>>, (2)

shows seasonal variation in its influence peaking on day v, in each year [12]. The force of infection on premises j by
premises i is given by:

si=no(() e () s () NG+ () vl ) @

The force of infection g; therefore consists of four components. A multiplicative factor y,; the infectivity of the premises
i, which is the sum of the number of birds of the three species types (x,;, k=0, 1, 2 for the three species types) divided
by the mean value of the number of birds of each type across all premises (X) raised to the power of the infectivity expo-
nent (1) and multiplied by infectivity factor (¢,, where &, = 1); the susceptibility of premises j, which takes a similar form to
the infectivity, but with susceptibility exponents (¢) and factors(¢y); and the transmission kernel Kj;, which is a function of
distance between the infected and susceptible premises.

We include exponents on the number of birds in the infectivity and susceptibility components because previous studies
have found that non-linear terms provide a better fit to epidemic data [49]. In this study, we also assume that the kernel
takes a Cauchy form with:

Ky =K (dy) = —>—. 4)

(64 )"

Therefore, the force of infection 4,(f) is only spatially dependent on the distance to other infectious and notified
premises. We also consider an exponential kernel in Fig G in S1 Text to consider how the shape of the kernel impacts our
results.

Given a timestep [t, t + 6t) where &t = 1 day, the probability that a susceptible premises becomes exposed on a given
day is given by:

pi(f) =1 — exp (—A;(1)5¢), (5)

and from this exposure event, we then assume the infection progresses in discrete time through the infection states after
a specified number of days. We fix the latent period and time to culling from notification for improved model tractability, but
leave the time to notification as variable for each premises in the fitting process, since we expect this will have the most
variance in reality due to differences in premises-level surveillance and visibility of symptoms in birds.

In further detail, we fix the time spent in the exposed class as four days before moving to the infectious class, since the
incubation period is generally less than seven days [50]. Four days is in agreement with the between-flock latency period
of previous studies [51]. The time in the infectious class before notification is fitted for each premises, using a prior of N;
— I~ Gamma(4, 2) for the number of days to notification. Gamma(a, b) describes the Gamma probability distribution with
shape a and scale b. This allows for individual differences dependent on the specific premises and provides an estimate
that falls within the typical distribution (noting the mean value of our prior is eight days) [52]. The time from notification to
culling the birds is taken as a fixed three days, which is consistent with the average report and confirmation dates in the
data set.
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Model parameters and fitting

The model parameter values are determined using a Bayesian inference framework, where the parameters are updated
using adaptive Metropolis—Hastings in a Markov chain Monte Carlo (MCMC) method [53,54]. This method has been
implemented similarly in several studies [31,46,47,55].

We fit sixteen model parameters with one fixed parameter w = 1.3 to give the shape of our transmission kernel, based
on previous studies [47]. More details are given in S1 Text. See Table 1 for full details on all the model parameters. Prior
distributions for these parameters are chosen such as to provide variance around a mean value elicited from expert opin-
ions, or to be uninformed.

Also included within the fitting algorithm is a reversible-jump update, which allows the addition (and removal) of unde-
tected or ‘occult’ infections within the model to assess how their presence changes the likelihood [46]. In this step, which
occurs after each update to the parameter values, a fixed number of additional model alterations are considered: the
change of the time to notification for a given premises, the addition of a new IP as an ‘occult’ infection that is yet to be
notified (and so appear in the data set), and the removal of any previously added ‘occult’ infections.

Model projections and enhanced control strategies

The fitted model can be used to stochastically simulate the epidemic from a given set of initially infected premises to com-
pare back to the observed data. For the 2022—-23 season, our initial conditions are a fixed set of 31 infected (exposed,
infectious, or notified) premises in all simulations across East of England (23 IPs), West Midlands (2), North West (2), East
Midlands (1), South West (1), South East (1) and Scotland (1). The numbers were determined from our data set, using
the known notification times, where the infection status will vary between simulations, given the distributions for the time
to notification. The simulations are performed using a tau-leaping algorithm [56] in the grid-based conditional subsample
algorithm for computational speed [57,58]. Using the conditional subsample algorithm, we divided the country into 10 km
grid cells to first assess whether any transmission events occurred to any premises within each grid cell. We then consid-
ered pairwise transmission to premises within that cell. This approach omits many unlikely calculations for transmission
over large distances. The algorithm is fully described in Sellman et al [58].

Additionally, we perform counterfactual simulations based on alternative scenarios using the same methodology. These
model simulations specifically investigate how enhanced control might be enacted in response to an IP. We assume
a baseline level of biosecurity, which is determined by the fitting process for the 2022—23 season, where, in reality, an
AIPZ and housing order were in place for the majority of the season. Enhanced control measures could include increased

Table 1. List of model parameters with descriptions. Prior distributions are given for fixed parameters where Gamma(a, b) is a gamma distribution
with shape a and scale b and Beta(a, b) is a beta distribution with shape parameters a and b. Note that £, = 1 and ¢y = 1 are not listed as &, and ¢ are
relative to these parameters, respectively, for k=1, 2.

Parameters Description Prior/Value

€ Baseline infectious pressure Gamma(1,1x 107°)
Yo Infectious pressure contribution from IPs Gamma(1,0.01)
Y1 Multiplicative factor for infectious pressure contribution for notified premises Gamma(1,0.8)
) Decay of transmission rate between premises in the transmission kernel Gamma(2,1)
[¥o, 1, P2l Exponential terms in infectious pressure for infectious premises Beta(2,2)

[¢0, D1, P2l Exponential terms in infectious pressure for susceptible premises Beta(2,2)
[£1,&5] Relative transmissibility of species types Gamma(1,1)
[£1,¢5] Relative susceptibility of species types Gamma(1,1)

Vo Shape of seasonality Gamma(2,2)

V1 Timing of seasonality Beta(2,2)

w Exponent in transmission kernel 1.3

a Shape of gamma distribution for time to notification 4

b Scale of gamma distribution for time to notification 2

https://doi.org/10.1371/journal.pcbi.1013874.t001
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cleaning and disinfection, and reduced risk of contact with wild birds and contamination of water sources, feed storage
and housing, and the potential use of ring vaccination in response to IPs. We consider in our model that all these mea-
sures will have the effect of reducing the susceptibility of the poultry that could become infected with HPAI, and so the risk
of HPAI incursion.

In our model simulation strategies, enhanced control will be mandated on the discovery of the presence of HPAI infec-
tion within a premises from the time of culling and will last for a specified number of days. This will either occur in all poul-
try premises within a particular radius (5 km, 10 km, or 15 km) of the IP or within all poultry premises in the same county
or region (see Fig B in S1 Text for full details on Great British counties and regions). The effect of enhanced control is
to reduce the susceptibility to infection of the nearby premises due to the reduced risk achieved by the improved control
measures. In practice, this scales our §; term (which includes the premises susceptibility component) by a given propor-
tion, termed the susceptibility factor, while we leave the background infection term € unchanged. In this manuscript, we
consider enhanced control measures that reduce susceptibility to 80%, 60%, 40%, and 20% of the baseline susceptibility
level that was determined in model fitting (a susceptibility factor of 0.8, 0.6, 0.4, or 0.2) for 7, 14, 21 or 28 days since the
date of culling on an IP.

Results
Verifying the model fitting

The MCMC process was successful in providing posterior parameter distributions for each fitted parameter, with good
convergence of the chains. Posterior parameter estimates are described in detail in Figs D-E and Table A in S1 Text,
and we note that these estimates remained broadly unchanged when considering an exponential kernel, rather than the
results for the Cauchy kernel presented here.

Sampling from the joint posterior distributions to simulate the model forward in time from the observed initial condi-
tions on 1 October 2022, we verify that we achieve a good correspondence back to the data (Fig 2). See Fig J in S1 Text
for these results presented in terms of the total number of infected poultry. The data points for the weekly number of
premises reported as infected fall within the 95% prediction intervals of the model simulations, although generally towards
the lower end of these model projections (Fig 2A). However, the closest-matching model trajectories show strong agree-
ment with the data, indicating that the model can successfully replicate the outbreak and provides a good temporal fit. In
these model simulations, 27.8% (95% prediction interval: 14.1%—-51.6%) of the IPs arise due to the background term ¢,
with the remainder due to the local infection components.

To consider the spatial model fit, we divide the number of IPs from the national model simulations into the eleven geo-
graphical regions of Great Britain. We observe that we have achieved a favourable match to the data spatially in most
of these regions, with the proportion of the total IPs within the regions having a close median value in simulations to the
real-world data for the season (Fig 2B). The two notable exceptions to this occur in the East of England and Scotland. For
the East of England, we predict a larger proportion of cases than observed, with the inverse true of Scotland. This can, in
part, be explained by the initial conditions of the model simulations, as there happen to be initially many IPs in the East of
England and few in Scotland, as per the data.

Therefore, we highlight the difficulty of achieving an optimal model fit to this data set, both spatially and temporally
simultaneously, due to the large state space of possible outcomes and relying on random spillover events in poultry
premises to recreate the observed localised outbreaks seen in the data set. This is despite demonstrating that the model
can generate simulations with comparable results to the original data. This overall quality of the model fit is shown on the
map in Fig 2C. The blue dots, which represent the IPs in the data set, typically fall within the 10 km x 10 km grid cells that
are predicted to be at the highest risk of infection in the model.

We additionally calculate that there will likely be few ‘occult’ infections at the end of our simulations, with a median
number of 2 IPs identified in model fitting. The true value in the data of 0 (from data post-September 2023), therefore, falls
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Fig 2. Comparison of model simulations to premises notification of infection data for 1 October 2022 — 30 September 2023. (A) Time series

of the weekly number of premises with reported infections. The red crosses indicate the data, while the shaded blue regions show the 95% prediction
intervals of stochastic model simulations. Blue lines indicate the best-fitting 10 individual realisations of the simulation out of the total 10,000. Note that
the initial narrow model prediction intervals are due to the initial conditions of infected premises that do not become notified until the second week. (B)
Raincloud plots [59] for the proportion of infected premises (IPs) across the eleven geographical regions of Great Britain. The data are represented by
red crosses, while the central prediction interval and rainclouds show model simulations. The grey dot shows the median value, and the whiskers give
the full 95% prediction interval. Above each interval is a half-violin plot of the distribution of the simulations, and below is a jittered scatter of each indi-
vidual simulation. The names of the regions in full are: NE — North East, NW — North West, Y&H — Yorkshire and the Humber, EM — East Midlands, WM
— West Midlands, EoE — East of England, LDN — London, SE — South East, SW — South West, WAL — Wales, SCT — Scotland. (C) Map of Great Britain
divided into 10 km x 10 km grid cells coloured to show the mean number of IPs in each cell for the 2022-23 season. Blue dots overlaying the grid cells
show the locations of the true IPs in this season. Source of map boundaries: Office for National Statistics licensed under the Open Government Licence
v.3.0. The shapefiles used can be found at https://geoportal.statistics.gov.uk/datasets/5a393192a58a4e50baf87eb4d64ca828 0/explore.

https://doi.org/10.1371/journal.pcbi.1013874.9g002

within the prediction intervals. Further details on the ‘occult’ infections and the quality of the model fit are presented in Fig
Fin S1 Text.

Control strategy scenarios

Model projections for the effect of enhanced control on the total number of IPs show that improvements may be possi-
ble by a concerted effort to reduce the potential for transmission in the vicinity of premises that have previously detected
infection. If biosecurity can be improved or vaccines delivered, such that premises within an enhanced control zone that
lasts for 21 days are 40% less likely to be infected (susceptibility factor = 0.6), then the median number of IPs nationally
can be reduced by up to 53% (depending on the size of the enhanced control zone) (Fig 3). However, a susceptibility
factor of 0.8 can still reduce the median number of IPs by up to 35% as well as a reduction in the uncertainty.

The size of the enhanced control zone has a large impact on the efficacy of the scenario, with the additional 5 km
zones only causing a modest reduction in the median number of IPs (27% reduction), even when the susceptibility fac-
tor is 0.2. Increasing this radius to 10 km or 15 km impacts a much larger number of premises and so results in a larger
reduction in the number of IPs, particularly when combined with lower susceptibility factors. Scaling the zone up to the full
county or region shows further improvements in reducing the number of IPs. This indicates it is likely insufficient to solely
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Fig 3. Projected impact of enhanced control. Each raincloud plot [59] shows the total number of infected premises (IPs) in the season for a particular
enhanced control scenario, based on the region in which premises are affected (with a 5 km, 10 km, or 15 km radius, or across the county or the region)
and the reduction in susceptibility due to improved control, which is here called the susceptibility factor. Estimates are obtained from 10,000 model sim-
ulations for each scenario. A susceptibility factor of 1 indicates no change in susceptibility, whereas numbers less than 1 show multiplicative factors that
result in reduced susceptibility to HPAI infection. In each raincloud, it is assumed that enhanced control measures affect the given region for 21 days
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IP. Within the rainclouds, we show the median simulation value (grey dots), and 95% prediction interval (whiskers), alongside a half violin plot of the
distribution (to the left) and jittered scatter of all simulations (to the right).

https://doi.org/10.1371/journal.pcbi.1013874.9003

consider the immediate area around an IP, likely due to the movement of wild birds. Larger zones for either strict to mod-
erate control, with increased surveillance, could improve the reduction in infection. In particular, greatly enhanced con-
trol (susceptibility factor = 0.2) combined with enacting this over the full geographical region greatly reduces the median
number of IPs as well as the uncertainty in this number, eliminating some of the worst-case scenarios.

The duration of enhanced control has a relatively smaller impact on the number of IPs across the season than the
susceptibility factor or size of the zone (Fig 4). There is very little difference in IPs for the season when the duration of
enhanced control is varied between 7 and 28 days. This emphasises that most of the impact is due to quickly imple-
menting the enhanced control zone upon detection of infection, with diminishing returns for keeping the zone in place for
many weeks. Secondary premises will most likely become infectious close to when the original IP is detected. The largest
impact of the duration occurs when the susceptibility factor is small (such that the enhanced control is having a large
effect) and the zone area is also small. In this scenario, there is a large benefit in terms of susceptibility for local premises
being within the zone, but local, as yet undetected IPs may fall outside this small area, and so increasing the duration of
the enhanced control zone prevents more infections.

The largest uncertainties occur when the susceptibility factor is large, because then there is little impact of the addi-
tional control measures. Similarly, there is also more uncertainty when the control zone is smaller. Stringent control mea-
sures, coupled with implementing them across larger areas, limit the potential for large outbreaks to occur. We note that
the lower prediction interval is not impacted substantially, because we keep the background infectious pressure term ¢
constant across all premises and only reduce the susceptibility due to the local infection component.
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Discussion

Overall, this study showcases a spatial model for HPAI infection in the poultry of Great Britain that has been newly
adapted from previous livestock modelling studies [33,45-47] to model H5N1 clade 2.3.4.4b. The model is shown to cap-
ture the observed IP data for the 2022—-23 season, but could also be applied to other time periods to similarly estimate the
underlying infection dynamics. The complex fitting process is computationally intensive; given our data on IPs, the infer-
ence procedure identifies distributional estimates for our model parameters. We also used the model to determine the
most likely as yet undetected IPs by the end of our data period (or the ‘occult’ infections), such that the updated transmis-
sion process by the inclusion of these infections would most improve our model fit.

We have shown that our mechanistic modelling approach can be additionally used to perform counterfactual simula-
tions for the season under consideration. We chose to consider enhanced control measures to limit the potential for fur-
ther transmission events within a certain area by reducing the susceptibility of poultry within these areas. These simula-
tions indicate that additional measures around premises that have had confirmed infections can greatly reduce the total
number of premises that experience infections. The greatest impact occurs when enhanced control is established in the
premises within a large area centred on an IP. There is a substantial reduction in the number of additional IPs, even if just
the immediate premises within a 5 km radius make efforts to reduce the potential for HPAI transmission. We note that if
spillover from wild birds is the primary route by which poultry become infected, biosecurity measures to minimise contact
with wild birds are of critical importance.

Our results therefore align with the national policy that there is a benefit to implementing increased biosecurity in a
radius around IPs [30]. However, we have highlighted that there is an additional benefit in terms of reducing the number of
IPs to increasing the size of this radius (Fig 3), although clearly this will come at an additional cost. Vaccinations could
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also offer a solution to reduce the susceptibility of poultry and hence reduce the number of IPs, although there are prac-
tical and commercial issues with delivering vaccinations, as well as increased costs [29]. In particular, the use of vacci-
nations would result in reduced mortality and fewer symptomatic HPAI infections in poultry, decreasing the probability of
detection and increasing costs associated with surveillance [60].

We also note that there will be variations in how strictly control measures are applied, particularly in small-scale poultry
premises. National surveys in the UK have indicated there are differences in the actions of small-scale poultry keepers in
regards to both awareness and compliance with restrictions, as well as trust in authorities [11,61]. Therefore, practically, it
may be difficult to uniformly implement enhanced control strictly across all the required areas.

In designing our model, we have made the simplifying assumption that the background infectious pressure from wild
bird spillover into poultry premises is spatially uniform across Great Britain. This assumption could be adjusted by incor-
porating spatial information on wild bird habitats and detected cases into the € term in the model equations (Eq 2). Known
environmental sources of infection or reported wild bird cases could potentially be added as pseudo-premises to the
model to include additional transmission sources. However, since reported wild bird case numbers rely on the passive
surveillance of found dead birds, there will likely be substantial underreporting and biases in the locations where dead
birds are more likely to be found. Therefore, incorporating these data could skew the model results.

Alternatively, using only the current data sets, future work could investigate fitting the underlying model parameters of
the background infection term (eq, vy and v,) separately for each region of Great Britain. This could resolve issues with the
spatial model fit, at the cost of additional model parameters to estimate. We could also explicitly account for the impact
of biosecurity and housing orders within the model fitting process by introducing more parameters, rather than assuming
these effects are captured within the baseline parameters. This could improve the model fit by enabling the model simula-
tions to include additional spatial heterogeneity compared to our current results. However, in this manuscript, we empha-
sise that we have been able to achieve a remarkably good match to the real-world data for the 2022—23 season, given the
lack of these spatial factors in the model (Fig 2).

In considering components of our spatial model fit, the biggest weakness is in matching the total number of IPs in the
East of England and Scotland. However, this is related to the complexity of forward simulating a full year of HPAI trans-
mission from the real-world initial conditions of 1 October 2022, alongside previously mentioned considerations. In the
East of England, there were initially 23 IPs at the start of the season, and so a majority of model projections will favour
continued transmission here, since there are many initially infected premises. Transmission within this region does not rely
on new random introductions from wild bird spillover. In contrast, in Scotland, model simulations are initiated with a single
IP (on the relatively remote Isle of Lewis) and so rely on further chance model events of spillover in this region to gener-
ate the substantial number of infections observed across the region in the data. The discrepancy is therefore not a failure
of model fitting (given the spatially invariant model parameter ¢), but highlights the challenge of reproducing stochastic
outputs across a long time period.

We have also assumed that the latent period and time to culling are fixed and the same for all IPs, in order to reduce
the complexity of the fitting process. However, our chosen values are typical of those found in the literature [52]. We have
chosen to omit continued transmission of infection in the area around an IP after culling the poultry to reduce our model
complexity. Therefore, we may underestimate the benefit of continued enhanced control measures for longer periods after
notification.

To further refine the model, we would like to understand the mechanisms behind transmission by untangling which
transmission events come directly from wild bird spillover events versus those that originate from other infected poultry
premises. This would enable us to better identify the risks associated with premises reporting infections. At present, the
transmission kernel in our model includes many transmission routes: direct transmission between premises, transmis-
sion through an intermediary wild bird or birds, transmission through shared contaminated resources of poultry premises
including poultry workers, and transmission directly from wild birds due to the area being a hotspot of HPAI infection,
observed due to other local IPs.
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Therefore, future adaptations of the model could involve considering industry links between poultry premises, using wild
bird infection data, or considering phylogenetic analyses, albeit outside of the scope of the present study. In addition, if
the current HPAI vaccination policy was to change to allow the vaccination of poultry, we could adapt our enhanced con-
trol strategy parameters to specifically consider vaccination, rather than only considering it as part of a package of inter-
ventions that could be used to reduce HPAI susceptibility in poultry [29]. By modelling vaccination explicitly, we could also
consider the impact of reducing the transmissibility of HPAI amongst poultry that were both vaccinated and infected, which
would not occur with other enhanced control measures, and would likely lead to even fewer infected IPs. Time delays due
to vaccine implementation or vaccination developing protective immunity could also be incorporated.

HPAI continues to be a worldwide concern due to the devastating impact on both poultry and wild bird populations, par-
ticularly in recent years, combined with the fact that further reassortment events could lead to the emergence of a virus
with the potential to cause pandemics. For the recently circulating H5N1 virus in birds of Great Britain, we have demon-
strated the potential for epidemiological models to reduce key features of outbreak dynamics and highlighted the possi-
bility for enhanced control measures to reduce the impact of HPAI outbreaks in the Great British poultry industry in the
future.

Supporting information

S$1 Text. Additional information on data and model fitting. A description of the data used alongside details of the
model assumptions and outputs from the model fitting process.
(PDF)
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