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Abstract—Indoor Positioning Systems (IPS) based on Received
Signal Strength (RSS) often face challenges in achieving high
accuracy due to spatial and temporal uncertainties in complex
indoor environments. To address these limitations, this paper
proposes a novel Static Reconfiguration Algorithm (SRA)
leveraging Reconfigurable Intelligent Surface (RIS) technology to
optimize RSS distributions. Unlike traditional methods, the SRA
eliminates the need for dynamic RIS reconfiguration, instead
employing a static approach that maximizes differentiation
between RSS values at predefined Reference Points (RPs). This
enhances localization precision by reducing spatial correlation
and improving distinguishability, even in noisy environments.
Simulation results demonstrate that the SRA significantly
outperforms conventional RSS-based approaches, achieving
positioning errors as low as 75 cm in high-noise scenarios
compared to 150 cm with traditional methods. Furthermore,
the algorithm proves effective across broader RSS measurement
ranges (-100 to 0 dB) and achieves superior performance
even with a single Access Point (AP). The multidimensional
SRA approach further enhances accuracy by leveraging diverse
RSS distributions through additional APs and time-division
multiplexing. These results underscore the robustness, scalability,
and efficiency of the SRA, positioning it as a transformative
solution for next-generation IPS in smart environments.

Index Terms—Indoor positioning systems, Re-configurable
intelligent surface, Received signal strength.

I. INTRODUCTION

Future wireless networks will deliver advanced, context-
aware applications by integrating communication, sensing, and
computing within the 6G platform. Central to this vision is
precise user-location knowledge.

Accurate localization of users and [oT devices [1] underpins
next-generation applications, driving demand for location-
based services across smart cities [2], smart buildings
[3], machine-type communication [4], IoT applications [5],
healthcare, industry, and disaster management [6]—[8]

By addressing these requirements, future wireless networks
will be poised to fully harness the potential of context-
aware services, with Reconfigurable Intelligent Surfaces (RIS)
emerging as a foundational technology for 6G [9]. RIS
represents a paradigm shift in wireless communication,
enabling dynamic control over the propagation environment
to significantly improve signal quality, energy efficiency,
and spatial awareness. These advanced capabilities pave
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the way for transformative solutions across a wide
range of applications, including ultra-reliable low-latency
communications (URLLC), enhanced mobile broadband
(eMBB), and massive [oT connectivity. [10], [11]. While
Global Positioning Systems (GPS) perform well outdoors,
achieving accurate localization in indoor environment presents
substantial challenges. Multipath effects, signal blockage, and
complex indoor structures lead to unreliable performance with
conventional methods like GPS.

A. The State-of-the-Art and Its Limitations

Indoor Positioning Systems (IPS) address GPS limitations
using metrics such as RSS [12], CSI [13], AoA [14],
and TDoA [15]. Among these, RSS is widely adopted for
its simplicity, scalability, and hardware efficiency, requiring
neither precise synchronization nor antenna arrays. Typical
RSS methods include multilateration and fingerprinting.
Multilateration relies on geometric principles, estimating
the user’s position based on distances inferred from RSS
measurements [16]. Multilateration is conceptually simple
but unreliable under None Line of Sight (NLoS) and
multipath conditions, where variable attenuation distorts the
distance—signal relation. Fingerprinting, on the other hand,
maps pre-recorded RSS to locations using classifiers such
as K-Nearest Neighbor (KNN), Artificial Neural Networks
(ANN), offering practical deployment without additional
hardware [17], [18].
1) The Role of Reconfigurable Intelligent Surfaces (RIS)
RIS has emerged as a transformative technology for
overcoming the limitations of traditional IPS. RIS enables
the dynamic control of signal propagation by configuring
passive reflecting elements to alter signal paths [19]. This
active manipulation introduces a new dimension to indoor
positioning, allowing the customization of radio environments.
Several studies have explored the application of RIS in
enhancing IPS performance. Recent surveys, such as [20],
have summarized key advances and challenges in RIS-assisted
localization. In addition, distributed RIS architectures for
indoor positioning have also been investigated, where multiple
spatially separated surfaces jointly assist localization [21]
Separately, one study demonstrated how RIS can enhance
the diversity of radio maps, achieving a significant
33% improvement in accuracy [22]. Another explored
the integration of ultra-wideband (UWB) with RIS in
a single Access Point (AP), further highlighting the
potential of RIS to improve localization performance [23].
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A different approach employed RIS to customize the
RSS distribution, demonstrating its potential to significantly
enhance localization accuracy [24]. For multi-user scenarios,
the configuration of RIS was optimized based on the RSS
values of individual users. However, this required the use of
Time Division Multiplexing (TDM) to allocate separate time
slots and configurations for each user, limiting the scalability
of the solution.

2) Limitations of Current RIS Approaches

Despite the promising advancements enabled by RIS,
significant challenges remain. One of the primary issues is
the complexity of optimizing RIS configurations. Achieving
optimal signal propagation requires determining a large
number of coefficients, creating a vast search space that
becomes increasingly difficult to navigate, particularly in
dynamic environments where conditions change frequently.

In multi-user scenarios, simultaneous interactions
between users introduce additional layers of complexity.
Advanced coordination mechanisms are required to
minimize interference and ensure accurate positioning, further
complicating the optimization process. Additionally, relying
on techniques such as TDM to allocate RIS configurations
in multi-user scenarios raises concerns about scalability, as
these methods can lead to delays or reduced responsiveness
in real-time applications.

The current state of the art underscores the potential of
RIS technology but also highlights the need for more efficient
and scalable approaches. Optimizing RIS configurations to
maximize the Euclidean distance between the RSS values
of neighboring Reference Points (RPs) offers a promising
direction. By reducing the likelihood of false positioning and
enhancing overall accuracy, such approaches could unlock the
full potential of RIS in next-generation IPS, bridging the gap
between theoretical advancements and practical applications.

B. Proposed Solution and Key Results

This paper proposes a Static Reconfiguration Algorithm (SRA)
for RIS that optimizes signal propagation to create a Maximum
Differentiated RSS (MDRSS) distribution. SRA selects and
tunes a subset of RIS elements to maximize RSS separation
among RPs, enhancing accuracy and noise resilience. Through
simulations, SRA demonstrated a broader RSS measurement
range (-100 to 0 dB) compared to conventional methods
(-72 to -70 dB), improving the distinguishability between
neighbouring RPs. The algorithm outperformed conventional
RSS fingerprinting approaches, achieving positioning errors as
low as 75 cm in high-noise scenarios (standard deviation of
16), compared to 150 cm with traditional methods.

Notably, SRA delivered superior accuracy even with a single
AP, outperforming multi-AP configurations in conventional
systems. The multidimensional SRA approach further
enhanced accuracy by leveraging diverse RSS distributions
through additional APs and time-division multiplexing,
effectively utilizing increased RSS dimensionality to handle
noise and spatial correlation. Additionally, increasing the RSS
measurement range significantly reduced false positioning,
with a range of -100 to 0 dB providing greater differentiation
between RPs than narrower ranges. These results highlight

the robustness, scalability, and efficiency of SRA in achieving
exceptional localization performance, making it a promising
solution for modern indoor positioning challenges.

The SRA targets compact indoor environments such as
offices or labs, delivering consistent sub-meter accuracy
despite movement or obstacles—addressing the growing
demand for fine-grained, robust localization [25].

It is important to emphasize that the accuracy improvement
of the proposed SRA arise from ability to (i) reduce spatial
correlation, (ii) expand RSS dynamic range, (iii) adapt to
user movement with static optimization, and (iv) leverage
multidimensional RSS for noise resilience. Although the RIS
configuration remains static, its optimized surface parameters
interact dynamically with environmental changes, providing
both accuracy and efficiency compared with dynamic beam-
steering schemes

The key contributions of this paper are as follows:

1) Optimized RSS Distribution with MDRSS: Building
on the concept introduced in [24], the SRA algorithm
generates an RSS distribution that maximizes
differentiation between RPs. This enables accurate
multi-user  support  without requiring dynamic
RIS reconfiguration for each wuser. Instead, RIS
reconfiguration is utilized to enhance localization
accuracy by introducing diversity into the RSS
distribution. Multi-user support is achieved by ensuring
that each user benefits from the optimized SRA
configuration, thereby minimizing localization errors
without individualized RIS adjustments.

2) Enhanced Localization Accuracy in Noisy Environments:
Simulation results demonstrate the superior performance
of SRA in achieving high localization accuracy under
various noise conditions. For instance, in environments
with an RSS standard deviation of 16, the SRA achieves
an average accuracy of approximately 75 cm, compared
to 150 cm with conventional methods. Furthermore, in
low-noise scenarios with a standard deviation of 2, the
SRA achieves an accuracy of 40 cm, while conventional
methods only reach 150 cm. This demonstrates the
algorithm’s robustness in both noisy and less noisy
conditions.

3) Intelligent RIS Element Selection: The SRA incorporates
an intelligent and computationally efficient approach
to RIS element selection. The algorithm identifies
the optimal active elements that maximize localization
accuracy while keeping the number of required RIS
elements low. This sparse-based selection minimizes
computational complexity while maintaining reliability,
making SRA faster and more efficient than state-of-the-
art methods.

4) Integration of Multipath Effects: Unlike prior approaches
(e.g., [22]-[24]), the SRA explicitly accounts for
multipath impacts in indoor environments. This ensures
the robustness of the algorithm in complex scenarios
where multipath effects significantly influence signal
propagation.
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C. Gap Analysis

RIS have shown substantial promise in enhancing localization
accuracy; however, many current solutions remain heavily
dependent on extensive infrastructure and a large number
of RIS elements. These dependencies introduce significant
challenges for practical deployment. For example, [26]
describes a fingerprint-based indoor localization system that
requires repeated reconfiguration of the RIS to generate a
RSS vector, illustrating the complexity of achieving accurate
localization through iterative configurations. Similarly, [27]
highlights the need for a large number of RIS elements
to achieve high-resolution localization, demonstrating that
precise positioning often incurs considerable infrastructure
complexity.

While these approaches are effective in achieving high
accuracy, they face critical scalability challenges. The
requirement for numerous RIS elements and APs significantly
increases deployment costs and limits the feasibility of
large-scale implementations. Additionally, existing systems
often struggle to adapt to dynamic environments. Research
such as [28] and [29] identifies several environmental
factors—including changes in user density, multipath effects,
and variations in indoor conditions—as critical hurdles for
IPS. These challenges underscore the need for solutions
that combine high accuracy with adaptability and efficiency,
without excessive infrastructure demands.

The proposed SRA method addresses these limitations
by employing efficient resource allocation strategies. By
intelligently selecting a subset of RIS elements, SRA
reduces dependence on extensive infrastructure, achieving
high localization accuracy with fewer RIS elements and
APs. This optimization significantly enhances scalability and
cost-effectiveness, making RIS-based localization systems
more viable for real-world deployment. Moreover, SRA
adapts to multi-user scenarios and environmental variations
by leveraging a MDRSS distribution. Unlike conventional
methods, SRA achieves robust performance without the need
for additional computational resources or frequent adjustments
to RIS configurations.

This adaptability ensures reliable operation in complex
and evolving indoor environments, positioning SRA as a
scalable, efficient, and resilient alternative to existing RIS-
based localization approaches. The method’s ability to balance
accuracy, scalability, and adaptability makes it a compelling
solution for advancing practical indoor localization systems.

Although this study emphasizes algorithmic and simulation
analysis, real deployment would require RIS calibration
and synchronization with existing Wi-Fi or Bluetooth
infrastructure. SRA’s static configuration can be pre-
programmed on low-power hardware, enabling practical low-
latency localization.

D. Structure of the Paper

The paper is structured as follows: Section II describes the
system model. Section III formulates the RIS coefficient
optimization problem. Section IV introduces the SRA, while
Section V extends it to a multidimensional version. Section

iii

VI presents simulation results and comparisons. Conclusions
are given in Section VII.

II. SYSTEM MODEL

Fig. 1 presents a simplified schematic of an indoor
environment where RIS panels are strategically deployed to
enhance communication between a transmitter and a receiver.
This model segments the area into multiple RPs, each uniquely
labelled. Users within these areas receive signals from both
the RIS panels and the AP. This configuration highlights
the pivotal role of RIS in improving signal propagation and
coverage in indoor environments.

A. RIS Assisted Signal Propagation Model

In general, the indoor channel impulse response is

K
h(t) = are!’6(t — 7). (1)
k
Here, ay, 0%, and 74 represent the channel gain, uniformly
distributed phase shift [30], and propagation delay of each
individual path, respectively. The index k£ denotes the specific
path among the total K paths, while ¢ refers to the Dirac delta
function. in (1) ay, 0%, and 7 are treated as time-invariant
random variables. For an environment with I RPs, the received
signal at ith RP is

YAP_RP; (t) — Z ak,ig(t _ Tk,i)ej (UJ(t—Tk,i)+9k,i) , )
k

where w denotes the angular frequency, and g(t) represents
the baseband pulse, modelled as a periodic square pulse with
a width of W and a period of T', where T' > W . Additionally,
Qi = ﬁ- v GCEG" and 73, ; = %, where A is the wavelength, d
is the distance between the transmitter and receiver (with the
receiver located at the ith RP), C'is the speed of light, and G}
and GG, are the antenna gains of the transmitter and receiver,
respectively. In addition to the aforementioned multipath links,
RIS systems also account for the composite AP-RIS-RP links.

For an RIS comprising N reflector elements, each element
receives the propagated signal from the AP and reflects it
according to the following

tn), 3)

where f,, and ¢, are adjustable amplitude and delay
coefficients of the nth RIS element. Let T' = [I'y, g, ..., T'y],
where T',, = [Bn,tn], represents the vector of reflection
coefficients of the RIS. Also (7,7, ), (an,a;,;), and
(én, ¢}, ;) correspond to the delay, amplitude, and phase shift
of the AP-RIS and RIS-RP links, respectively. The system
operation is based on a narrowband RSS-based system with
GHz carrier frequency, where the assumed bandwidth remains
small relative to the carrier frequency.

For simplicity, we assume no signal coupling occurs
between neighboring RIS elements, meaning each RIS element
reflects incident signals independently. Additionally, we only
consider signals that are reflected by the RIS for the first time,
ignoring those that undergo multiple reflections. Therefore,

yout,n(t) = Bnyin,n(t -
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Fig. 1. Schematic representation of signal propagation in the system model,
illustrating the segmentation of the area into distinct RPs. The center of each
RP receives signals from both the AP and the RIS elements.

received signal from all RIS elements can be modeled as the
superposition of their individually reflected signals:

N
yAP—RIST,,—RPi (t) = Zﬂnana;wg(t - tn — Tn — TY’L,i)
n
.ej (w(t7t7L7Tr,LfT:l=i)+¢’rL +¢:1,i) . (4)
We then set

Bn,i = Bnana%7ia Hn,i = tn+7—n +T’r/L,i7 an,i = ¢n+¢;l71 (5)

Hence

N
Yap—ris, —Rp, (t) = Z Buig(t — pn,i)e’ (sttttn 00s),
n
(6)

The received signal at each RP consists of Line-of-Sight
(LoS) and None-Line-of-Sight (NLoS) components of AP-RP
multipath channels and N reflected signal from AP-IRS-RP
channels. Therefore, the received signal is

N+K

yi(t) = Y Brig(t— p)el (o) ()
=1

B. RSS Model

Equation (7) shows that RIS adds delayed and amplified
versions of the originally transmitted signal to an RP.
Therefore, at the ith RP,

N+K N+K
lya(t)|* = Z Z BiiBu,ig(t — pi,i)g(t — po,i)
l v
e <9z,i*9v,i+w(uv,ifuz,i)>’ (8)

where 6, ; is a uniformly disturbed random variable. Therefore,

K+N

E() =B {lut)f } = 3 BRg*t—ma). O
1
where Ey {.} denotes expected value with respect to 6 and,

T
jo / Ei(t)dt.

T

(10)

In (10), T'1, T2, are the start and end of energy measurement
time span and (T, —T7) < T. The time interval of measuring

signal strength i.e., 7> — 717, is the key point that enables RIS
static reconfiguration.
The measured RSS at the ith RP is modeled as:

. K+N T
RSS; = 20log,, ( > Bﬁi/ G2t — i) dt) +& (11)
1=1 Ty

where ¢ is a random noise term that captures uncertainty in
the RSS measurements. This uncertainty arises from three
primary sources: (1) Measurement noise, such as thermal
fluctuations and receiver imperfections; (2) Shadow fading,
typically modeled as log-normal due to static obstacles like
walls or stationary human bodies [31]; and (3) Dynamic
environmental changes, such as user mobility or the movement
of furniture, doors which introduce time-varying disturbances.

Each of these sources is modeled as a zero-mean random
variable, and assuming statistical independence among them,
they can be aggregated into a unified zero-mean Gaussian
noise process:

€ = &meas + Eshadow + fdyn ~ N(07 0'2)7 (12)
where the total variance is given by:
0% = Opneas + Tihadow T Fogn- (13)

Here, 6§yn denotes the time-averaged variance of the dynamic
environmental noise, which may vary non-stationarily over
time but is approximated as locally stationary for the purpose
of snapshot-based RSS evaluation.

Consequently, the overall measured RSS at RP; is modeled
as a Gaussian random variable with:

RSS; ~ N (8;(T), 0?), (14)

where S;(T") represents the expected RSS value determined
by the RIS configuration I'.

III. PROBLEM FORMULATION

Our objective is to assign S;(T"), The expected RSS values,
based on an optimal RSS distribution to enhance localization
accuracy. In the following subsection, we show that MDRSS,
as an RSS distribution, effectively reduces the localization
error.

Lemma: The likelihood of false positioning errors decreases
when the observed RSS values are sufficiently distinct between
different RPs. Given a uniform prior distribution of user
location, the probability of false positioning between two RPs,
denoted RP; and RP;/, is minimized when the observed RSS
value lies closer to its true assigned RSS expected value S;(T")
than to S (T").

Proof: For a given configuration I', the probability
distribution of the RSS value at the ith RP is given by:

. 1 (RﬁS—S,i(F))Q
P(RSS|S;(T),4) = e 22
(RSS5:(T) ) = —=—
which follows a normal distribution. To minimize false
positioning between any two arbitrary RPs, 7 and ¢/, the
following condition must hold:

5)

P(i | RSS, S;(T)) > P(i’ | RSS, S;(T")), Vi’ #i (16)
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Using Bayes’ theorem, the conditional probability is expressed
as:

: .P(RSS|S;(T), i
B(iIRSS, 5,(1)) = LRSS0
> piP(RSS|S;(T), 5)
where p; represents the user’s prior location probability. Under

assumption of equal priors (i.e., p; = p;s), the inequality
simplifies to a comparison of likelihoods:

a7

1 B (RéS—Si(F))2 1 B (RéS—Si/(F))Q
e 202 > —e 252 , (18)
V2ro? V2ro?

taking logarithms and simplifying:

. 2 . 2
(Rss - sz-(r)) < (Rss — Sy (r))
N Q(Si/ (T) — si(r)) RSS < S;(T)? — Sy(T)2.  (19)
Hence, the decision boundary is the midpoint:
s w it S(T) > Sy (T)
RS\ _sim) £ 50(m) @
< - a5
2
To ensure reliable positioning, we define a confidence interval
radius ¢, which represents the maximum acceptable deviation
of the observed RSS from its expected value due to multiple
sources of signal uncertainty. These include measurement
noise, shadow fading, and dynamic environmental variations
such as people movement or changes in room layout, which
lead to time-varying fluctuations in RSS.

We assume that these uncertainties are statistically
independent and homogeneous across RPs, allowing their
effects to be combined into a single unified model. This
assumption is valid in the context of our proposed system,
which targets high-precision localization in relatively small
environments such as a room or corridor. Since all RPs
are located within the same enclosed space, the physical
environment is statistically similar across them. As a result, the
probability distributions of RSS disturbances—both static and
dynamic—tend to exhibit similar characteristics at different
RPs.

In particular, dynamic fluctuations caused by human activity
(e.g., a person walking through the environment) typically
affect multiple RPs in a statistically comparable manner, even
if the exact impact at each point varies. Additionally, because
RSS measurements are averaged over short time intervals, it is
reasonable to model the dynamic noise as locally stationary.
Under this approximation, the variance of RSS fluctuations
can be treated as approximately constant across RPs within
the measurement window, thereby justifying the use of a
homogeneous uncertainty model.

Therefore, the confidence interval ¢ is used to represent
the net uncertainty in the RSS value, capturing approximately
95% of its expected deviation from the mean. This unified
modeling enables the derivation of robust decision boundaries
for positioning, even in the presence of complex environmental
dynamics.

To avoid misclassification between two reference points,
RP; and RP;;, we must ensure that the entire confidence

if S;(T) < Sy (T)

interval around S;(I") lies on the correct side of the decision
boundary. As established in the previous lemma, this boundary
is the midpoint between the expected RSS values:

Si(T) + 8i(T) '

RSSihreshold = 5 21
If S;(T") < Si(T), the condition becomes:
Si(T)+¢< w =< w (22)
If S;(T") > S;#(T"), we require:
sim) ¢ » 20D o S =S D) o

2 2

These two cases can be unified into the following inequality:

s —s.m|
2

This upper bound defines the maximum permissible variation
in signal strength, denoted by ¢, that can be tolerated while
maintaining reliable localization performance. In practice,
RSS fluctuations in indoor environments typically exhibit
a standard deviation between 2 and 6 dB [32], [33]
Therefore, the confidence interval radius ¢ which corresponds
to approximately +1.960 for a 95% confidence level, is
expected to range between 4 and 12 dB in most real-world
scenarios.

In environments where RSS is affected by multiple sources
of uncertainty, an increase in ¢ implies a higher risk of
classification ambiguity. To mitigate this risk, the RSS values
assigned to different RPs must be sufficiently distinct. In other
words, the greater the separation between the expected RSS
values of any two RPs, the more resilient the system becomes
to overlapping confidence intervals and misclassification
errors.

Therefore, a key design objective of the proposed RIS-
assisted system is to maximize the pairwise RSS separation
across all RPs. We define this objective as Maximum
Differentiated RSS (MDRSS). By maximizing the RSS
contrast between RPs, the system improves its robustness not
only to measurement noise but also to real-world conditions
such as moving users, obstructing objects, and other dynamic
changes in the environment, all of which are implicitly
captured within the confidence interval ¢. B

(24)

A. Assigning MDRSS to the RPs

Here, we analyze the assignment of MDRSS to the RPs within
an environment and subsequently present our approach to
addressing this problem.

Given that the distance between RIS elements is
significantly smaller than the distance between RPs, it is
reasonable to treat the RIS as a single-point receiver and
transmitter. Consequently, the amplitude coefficients for all
RIS elements can be assumed equal for a given RP, leading to
the following simplifications: o ; = ay; = -+ = aly; = o,
and a1 = a2 = --- = ay = «. This assumption allows
for a more tractable analysis of the RSS assignment and
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facilitates the development of a practical solution to the
problem. Substituting (5) into (11) yields:

N T
> ﬁi/ 9°(t = pini)dt =
n=1

T

1 K T
(aza/z) 10%SS:/20 =% "B /T g3 (t - Uk,i)dt}a
i 1

k=1
(25)

or equivalently:

N Ts
S22 [ g it =i
n=1

T

(26)

where C; are the values that we aim to adjust to obtain
MDRSS. Note that the term pu,;, representing the total
propagation delay experienced by the signal, consists of two
components: t,, which is adjusted by the nth element of the
RIS, and 7, ; = 7, +7;, ;, the delay caused by transferring the
wireless signal in an environment.

Generally, the sampling frequency of the wireless signal,
fs, is such that 1/f; < Dt, where Dt = 7,; — 7,;, and
u and v are any two arbitrary RIS elements. Consequently,
signals received at the same RP from different RIS elements
experience different delays due to varying ¢,, values. Similarly,
signals received at different RPs from the same RIS element
experience different delays due to the varying 7,, ; values. We

set ijf G2 (t — pni)dt = G(Tn,i»tn), hence,

BIG(r11,t1) + B3G (12,1, t2) + ... + BRG(Tn 1, tN)
B%G(Tlﬁg,tl) + BgG(TQ727t2) —+ ...+ ﬁJQVG(TNQ,tN)

:Cl
:OQ

BIG(11,1,t1) + B3G (12,1, t2) + ... + BRG(TNn.1, tN) =
This can be represented as the following matrix equation,

GY =C, @7)

Cr

hence,
T=G1C, (28)

where G is an I x N matrix and X = [5%, 33, 33, ..., B3]7-
To solve (28), it is essential to ensure the non-singularity of G
to guarantee the existence of a unique solution. Furthermore,
since Y represents a vector of squared amplitudes, only
positive solutions to (28) are physically valid and acceptable.

Given the above formulation, the objective is to determine
the optimal configuration of the RIS that customizes the
C; values to achieve the desired MDRSS distribution. This
involves determining the appropriate values of 3, and ¢,.
However, identifying the RIS delays and amplitudes that
produce the most distinct RSS values in the radio map
typically requires a brute-force search across all possible
combinations of the coefficients. Consequently, this problem
involves an exhaustive search through all configurations to find
an optimal solution, classifying it as an NP-hard problem.

vi

To overcome the impracticality of performing such an
exhaustive search, we propose the SRA, which significantly
reduces computational complexity while effectively addressing
the problem.

IV. STATIC RECONFIGURATION ALGORITHM

The Static Reconfiguration Algorithm optimizes RIS
configurations across multiple RPs using a single static setup.
Users experience pre-optimized signal patterns as they move,
eliminating the need for dynamic reconfiguration.

This approach also eliminates restrictions on the number
of users the system can support, as the RIS configurations
are not tied to individual users but to locations. Moreover,
the implementation does not require orthogonal multiplexing
access methods, such as Time Division Multiple Access
(TDMA), to handle multiple users. However, TDMA can still
be employed to enhance diversity and improve localization
accuracy, as will be discussed in subsequent sections.

The SRA operates in two key phases. In the first phase,
rather than utilizing all RIS elements simultaneously, an
exclusive subset of RIS elements is assigned to each RP.
These subsets vary between RPs, effectively altering the
RIS configuration as a user moves from one RP to another.
Each subset includes at least one RIS element with a freely
adjustable amplitude, allowing the assignment of the relative
C; to the corresponding RP; and ensuring the non-singularity
of G. By adjusting ¢,, in this phase, distinct RIS configurations
are realized for different RPs. This approach significantly
reduces the computational complexity associated with the NP-
hard nature of the problem.

In the second phase, the constraints necessary to ensure
positive solutions for (28) are determined. These constraints
are integrated into the max-min optimization problem to
calculate the amplitude coefficients of the RIS elements. This
step finalizes the configuration, ensuring the assignment of
MDRSS values to the indoor environment. Together, these two
phases enable the SRA to efficiently address the problem while
maintaining computational traceability.

In the following section, we detail how RIS delay
determination is employed to dynamically manage the
activation of specific subsets of RIS elements, enabling the
achievement of the desired MDRSS at the targeted RPs.

A. Determining RIS Delay

The objective is to assign a unique subset of RIS elements to
each RP. For any arbitrary pair of RPs, denoted as (4, j), there
exist subsets v; and v; such that:

I/Z'QT7 ung, I/i#llj,

where v; and v; are the sets of RIS elements configured to
assign C; and C; to RP; and RP;, respectively. While each
subset v; may include multiple elements, only one element
within the subset has an amplitude that can directly control
and assign the relative C; to RP;. This condition ensures the
existence of a solution to the system of equations in (27).
We refer to this amplitude-controlling element as the linked

element. Thus, for each RP, the corresponding linked element
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Fig. 2. Illustration of delay adjustment in an RIS element. Initially, four RPs
receive signals from the m-th RIS element (top). After adjusting the delay
(bottom), only RP2 receives the signal within the measurement window 77
to T5.

within the RIS must be identified. It is crucial to establish
a one-to-one correspondence between each RP and its linked
element to guarantee the feasibility of the configuration in the
environment.

Let p,, be a vector of delays that includes 7, ; and t,,:

A
My = [tm + 7—771.,1atm + Tm,27tm + Tm,3y - ytm + Tm,]]tv

where 7., ), = min;{7,, ;}. We then define G; ,,) as follows:

T>

By adjusting ¢, such that t,, + 7, 1, = To — ¢, the mth RIS
element can act as a linked element for the kth RP. This is
because:

T e
Jroo Pt = php)dt if i =k,

Gim) = (30)
0 if i #£ k,
where ¢ is chosen such that:
<Ty, ifi=k
T A 31)
’ >Ty ifi#k.

In this method, we select an RP with the minimum
propagation delay from a given RIS element compared to all
other RPs. By adjusting ¢,,, the signal is shifted such that it is
received exclusively within the energy measurement span of
the RP with the minimum propagation delay, ensuring it is not
received at any other RPs. Fig. 2 illustrates this procedure.

As shown, after adjusting t,,, the signal received from
RIS,,, contributes solely to the determination of the RSS at
RP;. Consequently, the amplitude coefficient of RIS,, can be
freely adjusted to control the RSS at RP,. It is important
to emphasize that while this guarantees RIS,, is uniquely
linked to RP,, it does not imply that vs comprises only
RIS,,. Depending on the time delay adjustments for other
RIS elements, additional elements may also contribute to RPs.
However, RIS,,, is unequivocally designated as the linked
element for RP5.

Once RIS,,, is identified as the linked element for RP;, it
is ensured that no other RIS elements are linked to the same
RP. In other words, the objective is to establish a one-to-one

correspondence between RIS elements and RPs. As a result,
regardless of the total number of RIS elements, only as many
elements as there are RPs will ultimately be utilized.

Suppose Ty, is the minimum delay of p,,, which
establishes RIS,,, as the linked element for RP;, and T;n 1k
is the minimum delay of p,, ;. To avoid linking RIS, 1)
to RPj; again, instead of setting t;, 11 +7,, 41 , = T2 — €, we
set tmi1 + T, 1 = T2 — €, where 7/, is the second
minimum delay. Consequently, we have:

T: o -
T2276’ 92(t - Hm+1(k))dt if i =k,

T: e
Gim+1) = fT22_6g2(t - Hm+1(k'))dt if i =k,

0 ifié (k k),
(32)
where € = €+ (7,1 4 — Ty, 14). With this configuration,
while RIS, 1) becomes the linked element for RPy/, the
vector v, must also be updated to include 32, ;, ensuring
ﬂ,zn +1 € Vk.

Similarly, for any mth column of G(:7m), the nonzero
elements are obtained for ¢ = k and for all j such that
Tm,j < Tm,, provided that k ¢ ©, where © is the set
of nonzero indices from Gg. 1) to G. ,—1). This ensures a
one-to-one correspondence between each RP and its linked
RIS element, enabling the creation of an exclusive set of
corresponding RIS elements for each RP.

The one-to-one correspondence between RIS elements and
RPs also results in many elements of G becoming zero. This
sparsity in G is advantageous as it reduces computational
complexity. Specifically, the sparser G is, the fewer constraints
need to be addressed during the optimization phase of the
SRA, which will be detailed in the next section. However,
achieving greater sparsity in G requires a larger number of
RIS elements.

In cases where 7(, ) and 7(, ;) are the only differing
delays between RP; and RP;, the nth element of the RIS is
utilized as the linked element for either RP;, or RP;, depending
on which RP experiences the shorter delay. Specifically, if
T(n,k) < T(n,j)> WE set:

tn + T(n,k) = T3 — (33)

and define the corresponding elements of Gy, ,,) as follow:

T .
T;—e' g2t — Boniy)dt, Vi | Ttn,i) < T(mk)s

T .
Gin) = J7,_ 07 (t — py))dt,  fori =k,

0, otherwise.
(34)
This configuration ensures that the nth RIS element is
appropriately linked to RPj, while also accounting for its
relationship with other RPs based on the delay conditions.
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B. Sparse-Based Linked Element Selection in SRA

Building on the delay design, SRA efficiently assigns each RP
a single dominant RIS element, achieving a scalable one-to-
one mapping.

Suppose that an indoor environment consists of I RPs. Since
one linked element is required for each RP, the algorithm
must select / linked elements from among the N available
RIS elements. Clearly, N > I, and the remaining N — [
elements can remain inactive. Each RP is thus linked to a
single dominant element, ensuring adequate reflection gain
while keeping all operations within the far-field regime.

In the SRA, for simplicity and computational efficiency,
we priorities the RP-RIS correspondences that produce
the sparsest possible measurement matrix G. A sparse G
reduces inter-dependencies between RPs and facilitates low-
complexity optimization.

For an arbitrary environment with / RPs and N RIS
elements (N > [I), the goal is to establish a sparse
correspondence between them. Let the delay matrix be T €
RN*! where each entry 7, ; represents the propagation delay
between the n-th RIS element and the i-th RP. The SRA
identifies a mapping function £(7) that assigns each RP i to a
unique RIS element by adjusting the element’s time delay t,,.

For each RP i, the optimal linked element n = £(z) is chosen
such that the resulting matrix G is as sparse as possible. To
quantify sparsity, define the set of RPs that receive a nonzero
contribution from RIS,, when linked to RP; as

QH(Z) - {] ‘ T’n,,j S Tn,,’i, }7 Sw’,,n, - ‘Qn(l/ﬂa

here, s;, measures the nonzero count in column n of G
when RIS,, is linked to RP;. The SRA then finds an injective
mapping ¢ that minimizes the total nonzero count:

(35)

I
min

& § RINIOE
injective £:{1,..., I}e{1,..,N} 4 - 1,0(7)
i=

(36)

{ = ar

To further illustrate, consider an indoor environment with
I =4and N = 4. Suppose 7, ; € [T1, T2, T3, Ta], Where 71 <
T < T3 < T4. For this environment, we have the following

matrix 77
T T2 T1 T3
T T3 T4 T4 T1 (37)
T2 T2 T3 T4

T2 T3 T3 T1

where 77 is the transpose of the matrix 7. If the linked

elements for RPy, RPy, RP3, and RP4 are RIS, RIS4, RISs,
and RIS3, respectively, the matrix G corresponds to:

Gay Gaz Gas 0
0 0 0 G
G= @4 38
0 Gaz Gez 0 G
0 0 Gus Gua

and the involved RIS elements for each RP are represented as:

vy = [B%aﬁgvﬁg]ﬂ/? = [54%]7’/3 = [ﬂ%vﬁg]vy‘l = [ﬁgaﬁi]

viii

Alternatively, if the linked elements for RP;, RP,, RPs,
and RP, are RIS3, RISy, RIS,, and RISy, respectively, the
corresponding G matrix becomes:

Gayy Gz Gag 0
0 0 G
G— (2,1) (2,4) , 39
Gay G 0 0 (39)
Guy Guz 0 Gy
and the involved RIS elements are:
vy = [Bfaﬁgvﬁ?%L vy = [ﬂ%?ﬁzL

vy = [612,,83], vy = [ﬁ%vﬁg)ﬁi]

This example demonstrates that different configurations can
be applied to the RIS while still achieving the MDRSS in the
environment by solving the optimization problem. However,
SRA will prioritize configurations that result in the sparsest
G matrix. This approach is formally presented in Algorithm
1.

In the above example, suppose that N extends to 8, with
4 additional RIS elements available for incorporation into the
SRA. The updated matrix 77 can be represented as:

T1 T2 1 T3 T2 T2 T3 T2
T3 T4 T4 T T3 T3 T T
7T — 3 4 4 1 3 3 4 1 ’ (40)
T2 T2 T3 T4 T3 T2 T3 T4
T2 T3 T3 T1 T4 T4 T2 T4,

where the vertical bar indicates the separation between the
original and additional elements. Using the sparsity-based
selection approach of SRA, the linked elements for RP;, RPs,
RP3, and RP4 are RIS;, RISg, RIS, and RIS7, respectively.
This configuration results in the following sparse matrix G:

Guy Guz 0 0 0 0 0 0
a_| 0 0 0000 0 Geag
0 Gaz 0000 0 0o |’
0 0 0000 Gup O

(41)
and the involved elements for each RP are represented as:

vy = [B127ﬁ§]7y2 = [53}7’/3 = [53])”4 = [ﬁ?]

Clearly, increasing the number of RIS elements allows for
greater sparsity in G. As explained, a sparser G reduces
computational complexity by requiring fewer constraints to
be defined during the optimization phase of the SRA.
Additionally, reducing the number of involved elements for
each RP minimizes coupling effects between RIS elements,
improving the accuracy of RSS customization for the
environment’s RPs.

Since only I active RIS elements are needed, the remaining
N — I elements can be excluded from the calculations by
setting their corresponding entries in G to zero. Practically,
this is equivalent to deactivating those elements or setting their
amplitude coefficients to zero.

C. Obtaining C;

While G is transformed into a solvable sparse matrix,
enabling the matrix equation in (27) to be solved efficiently
without resorting to brute-force search methods, customizing
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Algorithm 1: Time Shift Determination and Linked
Element Selection in SRA
Input: Matrix 7 containing all 7,, ; values, and vector
Ho-
Qutput: Vector t containing time shifts forn =1: N
RIS elements, and matrix G.
Initialize: min = oo, G = zeros(I x N), 71 =77,
and t = zeros(1, N).
Fori=1:1do
1) Forn=1:N do
a) NoneZeroElements = find(71(:,n) < 71(i,n))
b) If length(NoneZeroElements) < min then
i) min = length(NoneZeroElements)

i) LE=n (Set LE as the linked element)
i) mindelay = 71(i,n)
End If

End For

2) Settpp =T2 — mindelay — ¢
3) Update vector p;  with the obtained ¢ g
4) For any p; (i) where p; (i) < T2 do
a) Girg =G(TLE tLE)
b) Update 7,(:, LE) = 00
End For
End For

(Mark as processed)

the environment with MDRSS requires SRA to advance to
the second step. This step entails solving an optimization
problem designed to maximize the minimum Euclidean
distance between the RSS values in the environment. By
addressing this optimization, the RSS values are distributed
with maximum differentiation, ensuring a well-structured
environment. Specifically, SRA aims to determine C; values
that achieve MDRSS by considering the squared values
of Y, subject to the constraint X > 0. Consider the
vector of RSS values for an environment, represented as
[RSS1,RSS,, . .. ,RSSI]t. To achieve MDRSS, the following
optimization problem must be solved:

maxmm{ Zfl ,RSS; ZfQ .RSS;

subject to: b < RSSi < ub.

b

I
, Z fr, iRSS;,
i1

(42)

In the above, (b and ub denote the lower and upper bounds
of the RSS; measurement range, respectively. The matrix f is
of dimensions L x I, where each row consists of exactly one
pair of elements: 1 and —1. It is ensured that no two rows
of f are identical. Furthermore, L is constrained to I — 1 to
enforce minimum distances between neighboring RSS values.
For instance, in an environment with four RPs, the ordering
RSS; > RSS,; > RSS; > RSSy illustrates this principle,

hence
-1 0

1
f=10 1 -1
0 O 1

(43)

}

The optimization problem in (42) can be reformulated as
follows:

maxmin{‘f. 2010g10<[01,027 ...7CI]T> ’}

i

subject to: a; < C; < by, (44)
where
101720 — 35, BE, [y 92 (t = )t
a; = L , o (45)
oo
and o
100720 — 5%, BR i Joy 9°( — pun )t
i = ) . (40)
oo

In addition to the constraints on C; outlined above, further
constraints on equation (42) are required to guarantee a
positive solution. Leveraging the sparse-based computation of
G proves advantageous in this context, as it not only reduces
computational complexity but also minimizes the number of
necessary constraints.

Let v; denote a subset of Y, representing the elements of
the RIS involved in determining the RSS for the ¢th RP. Then,

then

If 3 jel&j#i,v;Crv;— C;>Cj.
For any v; C v;, the condition of Y > 0 results in

GL;T — Gj,:T > 07 A7

where G, . is the ith row of matrix G. Also, if there exists an
h so that v, Cv; and G;. X — G;. X — Gy, .Y > 0, then

C; > Cj + Ch,. (48)

Suppose that ¥ stands for a set of indexes of v;’s subset.
For instance, if v; and v are v;’s subsets then, ¥ corresponds
to {{1},{2},{1,2}} and vy, , C v;, where 1 < p < P; and
P; is the length of ¥;. Then for any ¥ ;:

if Gi.Y-Y,1Gy,, Y>>0 = C; > Cy

To guarantee a positive solution for Y, the constraints on
C; must be satisfied. These constraints can be effectively
represented in the relative framework of the matrix A.
Consequently, the optimization problem can be formulated as
follows:

max { Inin{ ’f. QOloglo([C’l, Co, ..., C[]T) ‘ }},

subject to: a; < C; < b;, A x C <0,

where C [C1,Cs,...,Cr)T. The optimization problem
in (49) is solved using Sequential Quadratic Programming
(SQP) [16]. However, in practice, the optimizer may converge
prematurely, particularly when several C; values become
clustered. In such scenarios, small variations in the RIS
configuration I' have little influence on the minimum
difference objective. As a result, the SQP algorithm may
interpret the solution as optimal and stop the search, even
though better configurations may still exist in other regions of
the search space.

(49)
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Fig. 3. Convergence of RSS values across iterations for a 4x4 grid with 16
RPs. The SRA algorithm consistently spreads RSS over the 0dB to -100dB
range.

To address this, we modify the objective function by
incorporating a mild regularization term that encourages
diversity in the expected RSS wvalue profile. This is
implemented by subtracting a scaled variance term from the
main objective, yielding:

fval = f - 20log;((C) — A - Var (sort (201log,,(C))), (50)

where A is a small regularization coefficient (e.g., A = 0.01).
This formulation discourages degenerate solutions where many
C; values converge to a narrow range and instead steers
the optimizer toward configurations that achieve wider RSS
separability between RPs.

Although the initial point is set to be fixed as a uniform
vector on the upper bound in linear scale, the regularized cost
surface enables the algorithm to explore more effective regions
of the solution space.

This strategy enhances convergence reliability and
generalization to larger or more irregular indoor layouts,
Fig. 3 and Fig. 4 represent the convergence pattern of RSS
values convergence to the maximum distributed RSS values
in the environments with different numbers of RPs.

The effectiveness of the proposed method is illustrated in
Fig. 5, comparing radio maps in a 2 X 2 m indoor area with and
without RIS. With RIS and the SRA algorithm, the RSS values
exhibit strong spatial diversity and distinguishability across
reference points. In contrast, the non-RIS setup shows high
spatial correlation, limiting RSS discriminability and impairing
localization accuracy. Once the C; values are determined, Y
is calculated via (28), enabling a tailored RIS configuration
using the computed t,, and Y. During localization, user RSS
readings under the SRA scheme are processed using Nearest
Neighbor classification to estimate the user’s position.

Furthermore, to highlight the advantage of the proposed
SRA over non-optimized RIS configurations, Fig. 6 compares
the RSS heatmaps obtained under two RIS-aided scenarios:
the proposed SRA-optimized configuration and a randomly
initialized RIS setup. While both cases leverage RIS-
assisted reflection, the random configuration produces highly
irregular and spatially biased RSS distributions, resulting
in poor correlation between spatial position and signal

Convergence of RSS Values Across Iterations
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Fig. 4. Convergence of RSS values across iterations for a 6 X 5 grid with 30
RPs. The SRA algorithm consistently spreads RSS over the 0dB to —100dB
range with large pairwise differences.

strength. In contrast, the SRA achieves a smoother and more
spatially distinctive RSS pattern, which enhances localization
discriminability and reduces ambiguity across RPs.

D. Complexity and Scalability Analysis of SRA

A key advantage of the proposed SRA-based IPS lies in
its decoupled architecture: RIS configurations are computed
offline, eliminating the need for real-time, user-specific
updates. This design ensures scalability, as additional users can
be supported without incurring extra optimization overhead.
In contrast, per-slot dynamic RIS control, as reported in
[34], significantly increases runtime complexity and signaling
overhead in mobile edge computing environments.

Despite its static nature, the system remains robust in
dynamic settings due to the MDRSS principle, which
maximizes RSS separation among RPs. This enhances
resilience to disturbances like user movement or layout
changes. Such effects are modeled as bounded uncertainties,
and well-separated RSS values reduce the risk of localization
errors.

However, there is a trade-off: increasing the number of RPs
in a fixed RSS range (e.g. —100 dB to 0 dB) compresses the
available space between RSS values. This limits the system’s
tolerance to noise, as shown by comparing Fig. 3 and Fig. 4.

However, to address the limitations that arise when the
environment includes a larger number of RPs, our approach
leverages RIS reconfiguration to expand the effective RSS
feature space. This allows for maintaining sufficient signal
differentiation even as the number of RP grows. This will be
further discussed in multidimensional RSS design for accuracy
improvement section.

E. Computational Complexity Analysis

To assess the computational efficiency of SRA, we break
down its main steps and compare the complexity with recent
dynamic RIS methods such as Metalocalization [35].

SRA includes two stages: first, constructing the matrix G
where, for each of the I reference points, one RIS element
is selected from N candidates, leading to a complexity of
O(I - N). The result is a square G matrix of size I x
I, which streamlines the subsequent optimization. Second,
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Fig. 5. (a) Radio map of a 2 X 2m indoor environment without RIS, and
(b) with RIS. With SRA, the environment leverages an expanded RSS range
(-100 dB to 0 dB) and maximizes the RSS disparity between neighboring
RPs, significantly improving differentiation and localization accuracy.

solving a constrained max-min optimization problem with
regularization to diversify RSS values across RPs. This stage
solves for the optimal RSS distribution using SQP with I
variables, resulting in a complexity of O(I? - Itersqp), where
Itersqp is the number of SQP iterations.

Therefore, the total computational complexity of SRA is:

O(I - N + I? - Ttersgp). (51)

The Metal.ocalization framework, in contrast, relies on
dynamic reconfiguration of the RIS using Phase shift
Optimization (PSO), which operates on a per-user basis. Its
reported computational complexity is significantly higher:

O((Zy+ 1)I?MN?®*+ (Z,+1— Z)CIN?),  (52)

where [ is the number of users, NV is the number of RPs, M is
the number of RIS elements, C' is the number of phase shifts,
and Z,, Z; are search granularity levels.

SRA algorithm offers significantly lower computational
complexity compared to the Metal.ocalization framework.
While Metal.ocalization incurs a high computational burden
due to per-user phase shift optimization across a large RIS
configuration space, SRA performs a one-time RIS element
selection and a centralized max-min optimization over a
reduced I x I matrix. Specifically, SRA’s complexity scales as
O(I - N + I? - Ttersgp), which is polynomial and independent
of the number of users or RIS phase shifts. In contrast,
MetaLocalization’s complexity grows steeply as O((Z, +
I?MN?3+(Z,+1—2,)CIN?), with additional dependence
on fine-grained user feedback and adaptive reconfiguration.
This makes SRA a scalable and practical choice for real-time
indoor localization scenarios.

To evaluate the scalability and computational robustness
of the proposed SRA, we conducted a series of tests across
environments with varying room sizes, numbers of RPs,
and RIS elements. For each configuration, we measured
the average optimization time. These experiments allow us
to analyze how the algorithm performs as the environment
grows in size and complexity, and to verify that it maintains
acceptable convergence behavior and computational efficiency.
The results presented in Table I, confirm that the SRA
framework scales reliably with different number of RPs and
RIS elements.

xi

mml
Im|
T
T
Tt

Fig. 6. Comparison of RIS-aided RSS heatmaps: Left, proposed SRA-
optimized configuration. Right, random RIS configuration. The SRA produces
a smoother and more spatially diverse RSS distribution, enhancing localization
resolution compared with the random setup.

TABLE I
AVERAGE EXECUTION TIME OF THE SRA OPTIMIZATION UNDER
DIFFERENT ENVIRONMENT SCALES.

Room Size (m) RPs (/) RIS El ts (N) | Avg. Time (s)
2 X2 4 4 0.49
4 x4 16 20 2.35

4 x 3 (L shape) 7 16 1.67
4x2 8 25 1.87
5% 2 40 64 2.5
6 x5 30 64 5.33

V. MULTIDIMENSIONAL RSS DESIGN FOR ACCURACY
IMPROVEMENT

Conventionally, to enhance localization accuracy, multiple APs
are utilized to generate a vector of RSS values for a RP instead
of relying on a single RSS value. Extending the dimensions
of RSS measurements expands the decision space during
the localization phase. For example, adding one additional
RSS measurement can result in up to a 40% increase in the
maximum Euclidean distance. In higher-dimensional spaces,
the differences between RSS vectors (e.g., Euclidean distance)
provide more distinguishable metrics for positioning.

As described, SRA does not require time multiplexing
to support multiple users due to its reliance on static
reconfiguration. This allows time-division multiplexing to
be further leveraged to improve localization accuracy. We
argue that SRA takes advantage of time diversity to expand
the dimensions of RSS measurements, thereby significantly
enhancing positioning accuracy.

The RIS operates to customize MDRSS within a time slot
[T, T»]. By adopting the Time Division Multiplexing (TDM)
technique, SRA leverages measurements from different time
slots to add additional dimensions to the RSS vector. Let
R; = [RSS(; 1),RSS(; 2, ...,RSS(; ] represent a vector of
r measured RSS values, where RSS; ) corresponds to the
RSS value of the ith reference point (RP) measured during
the rth time slot. Each time slot has a fixed duration dedicated
to measuring the signal strength, starting after a short guard
time following the conclusion of the (r — 1)th time slot.
Consequently, (27) can be reformulated as: G™Y = C”, where

C" = [C(l,r)a C(g,,,.), ey C(I,r)]T,

’(},m>=/ g*(t — o, (4)),
T,

and
M:n(z) = trm + T(m,i)>
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Fig. 7. RSS heatmap without RIS for APs located in 4 corners of a3 mx 3 m
indoor environment.

Here, T, represents the rth time slot, and ¢], denotes the
RIS time shift of the mth element during the rth time slot.
Solving (V) for each time slot yields the corresponding RIS
configuration required for designing the multidimensional RSS
of the environment.

The implementation of multiple RSS measurements using
time division can be achieved in two ways: (1) by employing
a single AP in the environment that transmits its signal to the
user via the RIS in different time slots, or (2) by utilizing
multiple APs that transmit their signals to the user in distinct,
allocated time slots.

In the first scenario, referred to as Single AP Multiple
Dimension (SAMD), the key advantage is that transforming
a single RSS value into a vector of measurements does
not increase the complexity of offline fingerprinting. This is
because 7(;, ;) remains constant across all time slots, and the
subset of RIS elements determined by SRA for each reference
point (RP) is consistent across time slots. Consequently,
C(i,l) = O(i72) == C(i,r)v while t}n # t%n # .. F
Thus, measuring the RSS for a single time slot during the
offline phase is sufficient, as the RSS values for the other
time slots can be inferred. However, this approach does not
achieve the maximum possible increase in Euclidean distance.

In the second scenario, known as Multiple APs Multiple
Dimension (MAMD), the subsets of RIS elements involved for
each RP vary across time slots due to the differing positions
of the APs. As a result, C(; 1) # Ci2) # ... # C(;,. This
approach offers the potential for higher Euclidean distances,
which can significantly improve positioning accuracy.

Figures 7 and 8 show the RSS heatmaps, highlighting the
enhanced spatial variation introduced by the RIS configuration.
The conventional setup exhibits limited variation (—72 to
—70dB), whereas the SRA spreads signal strength from —100
to 0dB, enhancing location separability.

A. Comparison with MDRSS—Dynamic Methods (discussion)

MDRSS—dynamic methods actively time—vary the RIS (or
beam/code states) over a short horizon to acquire a T'-slot

Fig. 8. RSS heatmap with RIS for APs located in 4 corners of a 3 m X 3 m
indoor environment.

fingerprint
_ T
si 2 [si(@1)7,...,s:00) 7],

whose pairwise distances are typically larger than those
obtained under any single configuration. Representative
approaches include per-user phase/code scheduling (e.g.,
“Metal.ocalization”) and concatenating RSS collected under
multiple RIS states or “coded environments” [35]-[37]. A
common design formalization is

max min ||§i —8; ||2 s.t. hardware/switching constraints,
O1.7 i#]
(53)

where ©; denotes the RIS state in slot ¢.

Our SRA targets the complementary point on this spectrum:
a static, one-shot MDRSS configuration that enlarges inter-
RP margins without per-user reconfiguration, feedback, or fast
RIS switching. A direct numerical bake-off with dynamic
schedules is not methodologically neutral unless one matches
latency and control budgets. Under a simple additive-noise
model with slot-independent perturbations, stacking 7' slots
increases the expected Euclidean separation at most on the
order of VT (norm growth), while the measurement time
and control overhead scale oc T'. This trade-off is consistent
with our multidimensional analyses (SAMD/MAMD): adding
time/AP dimensions monotonically increases separability
and improves localization accuracy by expanding the RSS
feature space, yet introduces additional acquisition cost (see
Secs. V-VI, e.g., Figs. 9-12).

From a deployment standpoint, dynamic schedules typically
require (i) fast RIS update rates and tight synchronization;
(ii) per-user or per-region adaptation (often PSO/GA or
learning-based search); and (iii) time-division operation for
multi-user access, all of which impact scalability [35]. By
contrast, SRA attains competitive accuracy with a one-time
optimization (Sec. IV-D), modest computational cost, and no
dynamic control channel during inference. We therefore view
static SRA and MDRSS-dynamic methods as complementary
operating points; a fair head-to-head comparison should be
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TABLE II
SIMULATION PARAMETERS

Value

3 x 3m? (unless specified)

1 x 1m? per RP (unless specified)
9 (unless specified)

16 (unless specified)

Ceiling at z = 3

(0.3,0.3,3)

Square, variable count

(0.1,0.2,1) for single-AP

Parameter

Room dimensions

Grid resolution

Number of RPs

Number of RIS elements
RIS placement

RIS origin

RIS element layout
Access point

Multi-AP positions Corners:  (2.9,0.1,1),  (0.1,2.9,1),
(2.9,2.9,1)

Number of multipaths 6 (walls, ceiling, floor) + LoS

Pulse width 10ns

Carrier frequency 2.4 GHz

Noise model Additive white Gaussian noise

Power gains All set to 1

Localization metric Mean Euclidean error (Eq. (54))

conducted under a matched error—latency—overhead protocol,
which we leave as scoped future work.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
RIS-aided indoor positioning system under various simulated
scenarios. The core simulation parameters are summarized in
Table II for clarity.

The simulated environment consists of a square room with
dimensions 3m x 3 m, divided into 9 reference points (RPs),
each covering 1 m?. The bottom-left corner is set as the origin
(0,0,0) in a 3D coordinate system. In single AP and SAMD,
AP is located at (0.1,0.2,1), while in MAMD simulations,
three additional APs are placed at (2.9,0.1,1), (0.1,2.9,1),
and (2.9,2.9,1).

The RIS is placed horizontally on the ceiling at height
z = 3, with its bottom-left corner at (0.3,0.3,3). It consists
of square elements with adjustable center-to-center spacing.
The environment includes the LoS path and six multipath
reflections (four walls, ceiling, floor). Gaussian noise is added
to all RSS readings.

The transmitted pulse width is w = 10 x 10~9s, and signal
strength combines the LoS, multipath, and RIS components.
All path gain coefficients are set to 1. The positioning error is
computed as:

1 (4
Po=2 > i —pil (54)

heH

where p§ and pj are the estimated and ground-truth positions
respectively, and H is the number of Monte Carlo iterations.

We further evaluate positioning accuracy under various
system settings, analyzing key parameters such as RSS
standard deviation (to assess performance in noisy and
dynamic environments), comparison of the multidimensional
SRA approach with one-dimensional and conventional
fingerprinting methods, RSS measurement range and number
of RIS elements. First, the performance of the proposed
SRA is compared with the conventional RSS fingerprinting
approach. The conventional method uses the NN algorithm
to match the location of a user with the closest premeasured
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Fig. 9. Comparison of localization errors between the SRA interacting with
a single AP and the conventional approach, evaluated in both single-AP and
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Fig. 10. Comparison of localization accuracy for multidimensional approaches
in the SRA and MAMD scenarios.

RSS fingerprints. In our comparison, SRA with a single AP
is evaluated against the conventional approach utilizing 1,
3, and 4 APs. The RIS consists of 4 x 4 elements, with
neighboring elements spaced 0.8 m apart. For both SRA and
the conventional approach, the RSS measurement range is set
between —100 and 0 dB.

The standard deviation of the received signal strength
(RSS) is varied from 0 to 20dB to simulate different levels
of measurement noise, shadowing, and dynamic fluctuations
commonly encountered in indoor environments. Positioning
errors are then analyzed under these varying noise conditions.
As illustrated in Fig. 9, the proposed SRA method exhibits
strong robustness, maintaining high positioning accuracy
even at elevated noise levels. Remarkably, SRA achieves
superior localization performance using only a single AP,
outperforming conventional systems that rely on multiple APs.

Under similar simulation settings, Fig. 10 illustrates
the accuracy improvements achieved by the proposed
multidimensional SRA in the MAMD configuration. In this
analysis, 1 to 5 APs were strategically placed at distinct
locations, with one AP location selected randomly. The
results clearly demonstrate that increasing the dimensionality
of the RSS by incorporating measurements from additional
APs consistently enhances localization accuracy. This
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Fig. 11. Comparison of localization errors for multidimensional SRA across
different RSS measurement ranges with a standard deviation of 10.

improvement is attributed to the time-division multiplexing
and reconfiguration capabilities of the RIS, which effectively
improve positioning robustness and precision.

Additionally, the ability to preserve the RIS reconfiguration
property for accuracy—enabled by the static reconfiguration
inherent in SRA allows our approach to maintain superior
accuracy even in highly noisy environments. While spatial
correlation in the RSS of closely located areas limits accuracy
improvements in the multidimensional conventional approach,
the multidimensional SRA overcomes these challenges and
significantly enhances positioning accuracy. Furthermore, as
long as more diverse RSS distributions are leveraged through
additional dimensions, greater accuracy can be achieved.

Figure 11 illustrates the impact of varying the RSS
measurement range on positioning accuracy, with the RSS
standard deviation fixed at 10. The results clearly show that
a wider measurement range improves system accuracy. This
improvement occurs because a broader range increases the
maximum differences in RSS values between neighboring
RPs, thereby reducing the likelihood of false positioning.
For instance, in the measurement range of (—25,0) dB,
the maximum difference in RSS values between neighboring
RPs is approximately ’#| ~ 2.8, while it increases to
11.11 in the range of (—100,0) dB. Consequently, a wider
measurement range not only enhances the system’s ability to
handle higher noise levels but also promotes more diverse RSS
distributions among RPs.

Figure 12 illustrates a comparison of the multidimensional
MAMD, SAMD, and single AP SRA approaches.
As anticipated, the SAMD approach offers smaller
Euclidean distances compared to MAMD, resulting in
a comparatively lower accuracy improvement. However,
similar to multidimensional MAMD, the SAMD approach
demonstrates enhanced accuracy and effectively mitigates
the impact of spatial correlation in noisy environments.
Furthermore, increasing the dimensionality in SAMD results
in additional accuracy improvements.

To assess the generality and scalability of SRA, simulations
were performed across various indoor layouts, including
square, rectangular, L-shaped, and corridor environments with
differing room sizes, numbers of RPs, and RIS elements.
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Fig. 12. Comparison of localization errors between the SAMD and MAMD
approaches.

Scenarios ranged from single- to multi-AP setups to evaluate
both baseline and multidimensional configurations. As shown
in Fig. 13, SRA consistently maintained strong spatial
discrimination and localization accuracy across all geometries.

Obviously, the performance of SRA is closely linked to
the number of RPs. As the number of reference points
increases, the RSS separability between RPs may diminish,
the Multidimensional SRA (MAMD) configuration, which
leverages multiple APs and the reconfigurable properties of
the RIS, can effectively compensate for performance losses;
however, it is worth noting that SRA is scoped toward small-
to-moderate indoor environments.

A. Comparison with the state of the art RIS-Aided localization
systems

To benchmark the performance of the proposed SRA, we
compared it with several state-of-the-art machine learning
and optimization algorithms reported in [38]. These methods
represent some of the most advanced strategies for RIS assisted
environments, incorporating both heuristic and learning-based
optimization schemes. As shown in Fig. 14, the proposed
SRA algorithm achieves consistently low localization errors
across all percentiles, with especially strong performance at
the higher end. At the 90th percentile, the error remains as
low as 19.5cm, which is better than most of the methods
considered and closely matches the best performing hybrid
approach (PSO-GA, 29.1cm).

One of the strengths of the SRA approach lies in its
tight error distribution. The gap between the 50th and 90th
percentile is less than 9cm, suggesting that the algorithm
performs reliably in a wide range of cases, not just on average.
This consistency indicates a strong generalization under noisy
and dynamic conditions. In contrast, other optimization-based
techniques often show a sharp increase in error at higher
percentiles, pointing to a lack of robustness in less ideal
scenarios. The stable behavior of SRA makes it a suitable
candidate for applications where reliable performance is more
critical than only peak accuracy.

It is worth noting that while [38] employed a high-
resolution grid with 0.1 cm sampling in both x and y
directions, our method operates on a coarser 25cm grid
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resolution (0.5m x 0.5m cells). Despite this, the SRA achieves
comparable accuracy at higher percentiles, demonstrating its
robustness without requiring dense spatial sampling. The
superior performance of [38] at lower percentiles is likely
attributable to their finer grid, highlighting that the gain is
due to resolution rather than localization strategy. Our setup,
though coarser, remains competitive and more practical in real-
world deployments.

We deliberately avoided further reducing the grid size,
as doing so would require extremely high sampling rates
to resolve time-of-arrival differences between closely spaced
reference points—e.g., a 0.25m spacing demands a time
resolution of 0.83ns, equivalent to a 5GS/s rate. While feasible
in simulation, such requirements pose significant challenges
for real-time hardware. Despite this moderate resolution, the
SRA performs competitively with more complex approaches,
including hybrid methods like PSO-GA, and does so without
relying on extensive training data or dense spatial sampling.
This highlights its practicality and efficiency for real-world
RIS-assisted localization scenarios.

VII. CONCLUSION

This paper introduced a Static Reconfiguration Algorithm
(SRA) that leverages Reconfigurable Intelligent Surfaces (RIS)
to enhance indoor positioning accuracy through a Maximum

XV

Differentiated RSS (MDRSS) distribution. By eliminating
dynamic reconfiguration, SRA reduces complexity while
maintaining robust performance, achieving positioning errors
of cm, half those of conventional methods, and sustaining sub-
meter accuracy even with a single AP. The approach scales
efficiently across noise levels and environments, offering
a practical low-latency solution for 6G and IoT systems.
Future work will explore hybrid static—dynamic schemes
and lightweight machine-learning integration to adapt RIS
configurations in real time while retaining SRA’s efficiency
and simplicity.
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