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Abstract—The CLIP visual feature-based image captioning
models have developed rapidly and achieved remarkable results.
However, they still struggle to generate descriptive and discrimi-
native captions as they fail to fully exploit visual details and model
complex visual-linguistic alignment relationships. To overcome
these limitations, this paper proposes a Ranking Diffusion Trans-
former (RDT) which consists of a Ranking Visual Encoder (RVE)
and a Ranking Loss (RL) for fine-grained image captioning. The
RVE is designed to mine diverse and discriminative information
from the visual features by proposing a new ranking attention.
Meanwhile, the RL is proposed to optimize the diffusion process
while strengthening the vision-language semantic alignment by
using the ranking results of the generated caption sentence
quality as an additional overall semantic supervisory signal. We
show that by collaborating RVE and RL via the novel Ranking
Diffusion Transformer, and gradually adding and removing noise
in the diffusion process, more discriminative visual features
are learned and precisely aligned with the language features.
Experimental results on popular benchmark datasets demon-
strate that our RDT surpasses existing state-of-the-art image
captioning models in the literature. The code is publicly available
at: https://github.com/junwan2014/RDT.

Index Terms—image captioning, diffusion model, visual fea-
ture, language feature, fine-grained.

I. INTRODUCTION

IMAGE captioning involves the automated generation of de-
scriptive sentences for a given image, achieved by identify-

ing objects, modeling their spatial and semantic relationships,
and verbalizing them using natural language. Fine-grained
image captioning [1], [2] refers to the task of generating
detailed and specific descriptions for images and the generated
captions may include specific attributes, characteristics, or
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Fig. 1. The baseline (i.e., SCD-Net [9]) fails to distinguish images with similar
content and tends to generate less descriptive and discriminative captions, e.g.,
the SCD-Net ignores some important visual information of images (a) and
(b), and generates the same captions for them. By collaborating with Ranking
Visual Encoder and Ranking Loss, our proposed RDT can mine more diverse
and discriminative visual information (e.g., home plate, catcher, stadium, etc.)
and achieve more precise vision-language semantic alignment (e.g., with the
catcher behind him, and in a stadium full of people, etc) for generating fine-
grained captions.

relationships depicted in the image, such as the color, texture,
shape, orientation, or arrangement of objects. The production
of accurate and descriptive image captions is of paramount
importance in numerous applications, such as visual intel-
ligence [3], [4] in image search, conversational robots [5],
photo sharing [6], [7], and assisting individuals with visual
impairments [8].

The general paradigm of image captioning is that: the visual
features (e.g., region image feature [10] or grid image feature
[11]) is fed into a Transformer [12] to generate captions.
The Transformer is an encoder-decoder framework, wherein
the encoder is used to enhance the visual features and the
decoder generates the captions conditioned on the enhanced
visual features. Given that grid features outperform region
features in both performance and time cost, current captioning
models [13], [14], [15] tend to employ grid features (e.g., the
CLIP visual features [15]) to generate captions. However, cur-
rent CLIP visual feature-based image captioning models [9],
[16], [17], [18] often produce coarse and less discriminative
captions (as shown in Fig. 1) due to: 1) the adoption of a
visual encoder design with a self-attention mechanism and the
sequential stacking way of multiple visual encoders, which
enhances visual features by prioritizing important information
while suppressing unimportant details, resulting in the inability
to effectively model all visual information [19], [20], and 2)
the use of cross-entropy loss as the objective function, which
treats each word independently and overlooks the complex
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Fig. 2. The overall architecture of the proposed Ranking Diffusion Transformer (RDT). The proposed RDT can effectively enhance the visual representation
by designing a novel Ranking Visual Encoder to mine diverse and discriminative information from the visual features, and then use a Ranking Loss as
an additional supervision signal to guide the convergence of the diffusion process and the precise alignment between vision and language features, thereby
achieving fine-grained image captioning.

vision-language alignment and overall semantic and contextual
information [21], [9].

To address the aforementioned issue, this paper proposes
a Ranking Diffusion Transformer (RDT) (as shown in Fig.
2) for fine-grained image captioning. The RDT takes the
advantage of diffusion model in capturing details and diverse
outputs, and incorporates a Ranking Visual Encoder (RVE)
and a Ranking Loss (RL) to improve the distinguishability
of generated captions. Specifically, the RVE is designed to
focus on both important and previously disregarded features
by proposing a novel ranking attention. The ranking attention
contains a forward-ranking attention and an inverse-ranking
attention. The forward-ranking attention aims to learn im-
portant visual features and mine correlations between them,
which is further enhanced by a sequentially stacked encoder
structure. The inverse-ranking attention module pays attention
to previously disregarded visual features again and reactivates
them to capture potential subtle differences. By expanding
the model’s focus to include not only important but also
previously disregarded “unimportant” features, the ranking
attention is able to mine more discriminative information to
enhance visual features. Additionally, a novel RL is proposed
to strengthen supervision on the diffusion process and promote
visual-language semantic alignment by ranking the quality of
generated captions corresponding to different noise timesteps.
Therefore, the proposed RDT achieves fine-grained image
captioning and its main contributions are summarized as
follows:

1) We propose a novel Ranking Diffusion Transformer
(RDT) to address fine-grained image captioning problems

by building RVE and RL on a diffusion model, and RDT
outperforms the state-of-the-art image captioning models on
popular benchmark datasets COCO [22], Flickr30k [23] and
Nocaps [24].

2) A well-designed Ranking Visual Encoder (RVE) is de-
veloped to mine diverse and discriminative information from
visual features by combining forward-ranking attention and
inverse-ranking attention.

3) A novel Ranking Loss is presented to provide a fin-
er supervision signal to optimize the diffusion process and
strengthen the vision-language semantic alignment by accu-
rately ranking and distinguishing the generated less discrimi-
native captions.

The remaining sections of this paper are organized as
follows: Section II presents a comprehensive overview of
the related work, while Section III introduces the proposed
Ranking Diffusion Transformer (RDT). In Section IV, we
provide the experimental setup, results, and evaluation of the
RDT. Finally, Section V concludes the paper.

II. RELATED WORK

Many approaches have been proposed in image captioning
and have yielded promising results. Broadly, captioning mod-
els can be classified into two groups: autoregressive methods
[25], [26], [14] and non-autoregressive methods [27], [21], [9].

Autoregressive methods. With the proliferation of deep
learning techniques, the encoder-decoder framework [26], [28]
has been extensively employed in captioning models. CNN
and RNN are usually used as the encoder and decoder for
learning visual features and generating the output descriptions,
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respectively. Liu et al. [29] propose the NICVATP2L model to 
tackle the challenge of Chinese image caption generation. By 
integrating visual attention with topic modeling, NICVATP2L 
can generate more informative and natural Chinese captions. 
However, these models fail to produce accurate and fluent 
captions due to their sequential nature and inability to model 
complex relationships among distant objects. In recent years, 
the Transformer has emerged as a solution to this problem by 
replacing recurrence and convolutions with the attention mech-
anism, resulting in remarkable performance. By integrating re-
gion features and grid features, more effective visual represen-
tations are learned by Dual-Level Collaborative Transformer 
(DLCT) [13] to generate more accurate captions. By taking 
the segmentation features as the complement information to 
enhance grid features, DIFNet [14] generates captions that are 
more faithful to given images and achieve excellent captioning 
performance. Li et al. [15] present the Comprehending and 
Ordering Semantics Network (COS-Net) as a solution that 
integrates a semantic comprehender and ranker to enhance the 
sentence decoding process and ultimately improve captioning 
performance.

With the widespread dissemination of large-scale vision-
language models [16], [30], [31], the incorporation of external 
knowledge has become increasingly important for enhanc-
ing visual features. For example, Nie et al. [32] propose 
a conversational image search framework (LARCH), which 
integrates visual features with multi-form knowledge to learn 
knowledge-enhanced representations. Meanwhile, CLIP-based 
visual features have emerged as the mainstream and most 
widely adopted choice for image captioning, and CLIP-based 
captioning methods have rapidly advanced. Mokady et al.
[16] propose the ClipCap method, which converts the CLIP 
visual features into prefix embeddings of visual prompting by 
training a simple mapping network, then the GPT-2 is fine-
tuned to generate image captions. Luo et al. [17] propose the 
I-Tuning method, which aims to automatically filter visual 
information in images to adjust the output hidden state of 
large language models. I-Tuning can achieve state-of-the-art 
results while reducing training parameters by half to three-
quarters. Yu et al. [33] present the CoCa model which utilizes 
captioning loss and contrastive loss to combine visual pre-
training and natural language supervision, thereby improving 
the captioning performance. Ramos et al. propose SmallCap 
[18], which uses the retrieved description as a task demonstra-
tion and language prompt, and then combines it with the CLIP 
visual features to improve captioning performance. Li et al.
[34] propose a retrieval-augmented image captioning method, 
which improves image captioning accuracy by prompting 
LLMs with object names retrieved from External Visual–name 
memory. By using the retrieved text as visual prompts in the 
CLIP space, ViPCap [35] can effectively enhance lightweight 
image captioning performance. However, the above autore-
gressive models suffer from the limitation of generation speed 
and the accumulation of errors.

Non-autoregressive methods. Autoregressive methods typ-
ically generate sentences sequentially, word-by-word. In con-
trast, non-autoregressive methods generate all words simulta-
neously, enabling bidirectional text messaging and improving

image captioning performance. The non-autoregressive model
is first proposed to address the neural machine translation
problem, which improves both the accuracy and inference
speed and also promotes the development of image captioning
[36]. By generating captions in parallel from a totally masked
sequence to a totally non-masked sequence, the masked non-
autoregressive model [37] enables more diverse and descriptive
image captioning. Liu et al. [38] propose an Object-Oriented
Non-Autoregressive (O2NA) approach, which involves gener-
ating a draft caption and then refining it to obtain a fluent final
caption. By preserving the autoregressive property globally
and generating words parallelly local, Zhou et al. [27] propose
a semi-autoregressive Transformer for balancing its speed and
quality. Recently, Chen et al. [21] use self-conditioning and
asymmetric time intervals to improve the sample quality in
Bit Diffusion, which achieves competitive results compared
to autoregressive captioning models. By firstly searching se-
mantically relevant sentences and then treating them as the
semantic prior to generate captions in a diffusion process, Luo
et al. [9] propose a semantic-conditional diffusion network,
which shows promising potential for image captioning.

Our research is also classified within the domain of non-
autoregressive methods employing diffusion models. Our RDT
surpasses conventional diffusion models by strengthening the
alignment of visual and language semantics through the
proposed Ranking loss. Additionally, we introduce a novel
Ranking Visual Encoder that extracts diverse and discrim-
inative information from visual features to enhance visual
representations for achieving fine-grained image captioning.

III. RANKING DIFFUSION TRANSFORMER

In this section, we present the proposed Ranking Diffusion
Transformer (RDT) that aims to enhance the vision-language
semantic alignment and facilitates the learning of diverse and
discriminative visual features. Fig. 2 illustrates the overall
framework of RDT.

A. Problem Formulation

Image captioning refers to generating a sentence to de-
scribe an image. Generally, an image I is described by
a sentence Y , which consists of Ny words denoted by
Y =

{
y1, y2, · · · , yNy

}
. Then, each word is converted into

n = dlog2We binary bits (i.e., {0, 1}n) to trigger the diffusion
model, where W denotes the vocabulary size. Images are
typically represented by features extracted using a pre-trained
detector/classifier, and the grid features are often chosen to
represent the image information for image captioning. As-
suming the grid feature is denoted by G = (g1, g2, ..., gN )
consisting N grids and gi ∈ RDg . Then, the diffusion
model, which includes both a forward process and a reverse
process, is used to achieve vision-language semantic alignment
conditioned on the grid features.

Foward Process. In the forward process of the diffusion
model [39], Gaussian noise is gradually added to the sentence
data x0, where x0 denotes the bit representation of Y . Assum-
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ing a total of T timesteps, the forward state transition can be 
defined as follows:

xt =
√
σ (−γ (t′))x0 +

√
σ (γ (t′))ε, (1)

where t′ = t/T , ε follows the Gaussian distribution N (0, 1),
and t follows the uniform distribution U(0, T ). N and U
represent the normal distribution and the uniform distribution,
respectively. γ(t′) and σ are the monotonically increasing
function and the sigmoid function. Subsequently, a diffusion
transformer f(xt, γ(t′),G) is trained to reconstruct x0 with
the guidance of G in a denoising process. The reconstruction
process can be defined as follows:

Lbit = Et∼U(0,T ),ε∼N (0,1)‖f (xt, γ (t′) ,G)− x0‖
2 (2)

Reverse Process. In the reverse process [39], the diffusion
model samples a sequence of latent states xt from t = T
to t = 0, and the reverse state transition xt−1 is defined as
follows:

αs =
√
σ (−γ (s′)), αt =

√
σ (−γ (t′)), (3)

µs=
√
σ (γ (s′)), c= −expm1 (γ (s′)− γ (t′)) (4)

u (xt; s
′, t′) = αs (xt (1− c) /αt + cf (xt, γ (t′) ,G)) , (5)

µ2(s′, t′) = µ2
sc, (6)

xt−1 = u(xt; s
′, t′) + µ(s′, t′)ε (7)

where ∆ represents the time difference, s = t − 1 − ∆ is
calculated by discretizing time uniformly with a width of
1/T , and s′ = s/T . αs and αt are coefficients that control
the noise level and are used to adjust the noise intensity
through the functions γ(). c represents the difference between
the current timestep and the next timestep, determining the
extent of noise influence during the reverse diffusion process
between timesteps. u (xt; s

′, t′) means computing an estimate
of the next state xt−1 based on the current state xt, time t′ and
s′, which is derived from a linear combination of the current
state xt and the predicted caption sentence f (xt, γ (t′) , g).
µ2(s′, t′) is the noise variance between the current timestep
and the next timestep and is used to represent the noise
intensity in the reverse process. By iteratively triggering the
Diffusion Transformer starting from xT , we can obtain the
estimated value x0.

B. Ranking Diffusion Transformer

The fundamental Diffusion Transformer adheres to a con-
ventional encoder-decoder structure, comprising a visual en-
coder and a sentence decoder. Specifically, the visual encoder
initially transforms visual features into visual tokens and
enhances them. These enhanced visual tokens are subsequently
combined with word tokens xt =

{
yt0, y

t
1, ..., y

t
Ns

}
at timestep

t and inputted into the sentence decoder for generating
captions. However, current visual encoders employ the self-
attention mechanism to capture correlations among visual
features and enhance them through sequentially stacked en-
coders. This characteristic would make the captioning models
focus on the most salient common objects and ignore specific
detailed aspects of an image that distinguish it from others

Fig. 3. Visualization of heatmaps generated by different encoders of the
baseline (i.e., SCD-Net). (a) Image, (b) the first encoder, (c) the second
encoder, and (d) the third encoder. The self-attention mechanism would make
the baseline captioning models focus on the most salient common objects
and may ignore specific detailed aspects of an image that distinguish it from
others, e.g., the highlighted area is gradually decreasing.

(e.g., the highlighted area is gradually decreasing as shown
in Fig. 3), thereby leading to coarse and less discriminative
caption generation. To address this limitation, we introduce a
novel Ranking Visual Encoder (RVE) (as depicted in Fig. 4),
which expands the model’s focus to include both important
features and previously ignored ”unimportant” ones, thereby
enabling the mining of diverse and discriminative feature
representations to help achieve fine-grained image captioning.

Ranking Visual Encoder. The RVE takes the grid feature
as input and enhances it by proposing the multi-head ranking-
attention (MHRA) layer (as shown in Fig. 2). Assuming there
are Nv stacked RVEs and each RVE contains an MHRA layer,
a feed-forward network (FFN), multiple layer normalization
(LN) layers, and fully connected (FC) layers. The entire
process of the RVE can be defined as follows:

Giv+1 = RV E(Giv )
= FFN(LN(Giv +MHRA(Giv ,Giv ,Giv ))),

(8)

FFN(Z) = LN(Z + FC(δ(FC(Z)))), (9)

MHRA(Q,K, V ) = Concat(h1, h2, ..., hH)WO, (10)

hj = Attention(QWQ
j ,KW

K
j , V W

V
j ), (11)

Attention(Q,K, V ) = softmax(
QKT

√
d
V ), (12)

where H denotes the number of heads in the RVE and d is the
dimension of each head. Concat(·) and δ are the concatena-
tion operation and the activation function, respectively. After
stacking multiple RVEs, the diverse and discriminative visual
tokens V̂ = GNv can be obtained.

After that, we follow SCD-Net [9] and introduce a Semantic
Transformer to constrain the diffusion process by utilizing a
semantically relevant sentence as the semantic condition. To
obtain semantically related sentences, we first build a training
sentence pool using training captions from COCO, and design
an image-to-text retrieval block. The image-to-text retrieval
block extracts image and caption representations using CLIP
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1 and selects semantically related sentences based on cosine 
similarity. After that, a Sentence Decoder is also designed to 
generate the final caption.

Ranking Loss. So far, the Bit-Diffusion-based image cap-
tioning [21], [9] has been achieved, i.e., they gradually perturb 
the original input data by adding Gaussian noise over suc-
cessive steps in the forward process and then recovering the 
original input data from the diffused (noisy) data step by step 
in the reverse process. In this way, the diffusion model decom-
poses the challenging image captioning problem into multiple 
relatively simple tasks, with each task corresponding to one 
timestep denoising. However, this process [21], [9] overlooks 
the complex vision-language alignment and inherent sequential 
dependency among words during diffusion process, resulting 
in coarse and less accurate captions. Moreover, employing 
the cross-entropy loss [40], [19], [9] to fit the captioning 
model also results in the model generating descriptions with 
correct individual words but less overall semantic or contextual 
information as it treats each word independently and assigns 
equal penalties for incorrect predictions. To mitigate these 
issues, we further explore how to better optimize the diffusion 
process to precisely guide the semantic alignment between 
vision and language. Specifically, we propose a novel Ranking 
Loss, introducing the impact of the noises added at different 
timesteps on the quality of generated captions in the supervi-
sion signal. The overall new objective function is defined as 
follows:

L = λ1LXE + λ2Lbit + λ3Lrank, (13)

where LXE , Lbit and Lrank denote the cross-entropy loss,
the bit loss and the proposed Ranking Loss. λ1, λ2 and λ3 are
weights for balancing these losses. To further boost captioning
performance, we follow SCD-Net [9] and use the Guided Self-
Critical Sequence Training mechanism. The corresponding
gradient is approximated as:

∇θLR (θ) ≈

− 1
Ny

Ny∑
j=0

(
R
(
y
sj
1:Ns

)
−R (ŷ1:Ns

)
)
∇θlogpθ

(
y
sj
1:Ns

) , (14)

where ysj1:Ns
represents the sampled caption, and Ny denotes

the total number of randomly sampled captions plus one (i.e.,
the caption predicted by a standard autoregressive transformer
teacher model, which shares the same structure as the RDT).
R (ŷ1:Ns) is the baseline’s sentence-level reward. This mech-
anism guarantees that high-quality sentences generated by the
RDT are rewarded positively, thus encouraging the generation
of high-quality sentences.

The details of our two main components, namely RVE and
RL, are described in the following subsection.

C. Ranking Visual Encoder

The proposed Ranking Visual Encoder (RVE) consists pri-
marily of a multi-head ranking-attention (MHRA) layer and
a feed-forward network (FFN). Compared with the multi-
head self-attention (MHSA) layer, our MHRA designs a novel

1CLIP-ViT-B/32, https://github.com/jianjieluo/OpenAI-CLIP-Feature

Fig. 4. The proposed Multi-Head Ranking-Attention (MHRA). By incorpo-
rating forward-ranking attention and inverse-ranking attention, the proposed
MHRA can mine more diverse and discriminative information from visual
features to enhance visual representation.

ranking attention which facilitates the extraction of more dis-
criminative feature representations for achieving fine-grained
image captioning.

Ranking attention. RVE utilizes the CLIP visual features
[16], [15] as the visual input. The CLIP visual features
comprises the grid feature G = (g1, g2, ..., gN−1) (contains
N − 1 grids and gi ∈ RDg ), and the CLS feature (denoted
as gc). Before feeding them into the RVE, these features are
transformed into a new embedding space and concatenated as
Ĝ = [ĝc, ĝi

∣∣N−1
i=1 ]. Then, the query, key, and value tensors,

Q,K, V ∈ RN×Dg can be calculated as:

Q = W qĜ,K = W kĜ, V = W vĜ, (15)

where W q , W k and W v ∈ RN×N are embedding matrixes.
Subsequently, we construct a directed graph to identify attend-
ed relationships, determining which grids should be attended
to for each given grid. Specifically, we obtain the grid-to-grid
affinity graph’s adjacency matrix, denoted as A ∈ RN×N ,
through matrix multiplication between Q and the transpose
of K. A quantifies the semantic relation between two grids.
In MHSA, all grid-to-grid affinity relationships will be used
to update the features and each query grid should associate
with all attended grids. However, according to the visualization
of pretrained ViT [41], queries in different semantic regions
actually attend to quite different key-value pairs. Hence,
forcing all queries to attend to the same set of grids may be
suboptimal and this paper seeks a dynamic, query-aware at-
tention mechanism, i.e., the ranking attention. The proposed
ranking attention includes a forward-ranking attention and an
inverse-ranking attention. The forward-ranking attention aims
for each query to attend to the highly relevant key-value
pairs and discard the others for learning the main information,
while the inverse-ranking attention only focuses on the weakly
relevant key-value pairs (e.g., those discarded by the forward-
ranking attention) and reactivate them for mining diverse
and discriminative information. These key-value pairs can be
selected by ranking attended grids according to their attended
scores in A, and we use the top-K method to calculate the
ranked affinity routing index R for all query grids, which can
be summarized as follows:

R = topK(A), (16)

where K is set to N , and the i-th row of R consists of
N indices representing the relevant grids for the i-th grid,
arranged in descending order of relevance.
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Forward-Ranking Attention. In forward ranking atten-
tion, we set K = λF · N , where λF represents the ratio 
of attended key-value pairs. Consequently, we can obtain 
the forward-ranking routing matrix RF using the following 
formulation:

RF = R[ :, : λFN ]. (17)

Then, we gather forward-ranking key and value with routing
index matrix RF :

KF = gather(K,RF ), VF = gather(V,RF ), (18)

where KF and VF ∈ RλFN×Dg , gather operation can be
implemented by directly using torch.gather() funcion. Then,
self-attention is applied to the gathered key-value pairs as:

OF = Attention(Q,KF , VF ) = softmax(
QKT

F√
d

)VF , (19)

where
√
d is used to avoid concentrated weight and gradient

vanishing.
Inverse-Ranking Attention. In the inverse-ranking atten-

tion, the ratio of discarded key-value pairs is denoted as λE .
It should be noted that due to the small weights assigned
by the forward-ranking attention to low-ranked attended key-
value pairs, these pairs will be reused in the inverse-ranking
attention, i.e., λE > (1 − λF ). The resulting inverse-ranking
routing matrix is denoted as RE and can be calculated as:

RE = R[ :, (1− λE)N :]. (20)

Then, we gather the inverse-ranking key and value with
routing index matrix RE , and then the self-attention is applied
to the gathered key-value pairs as:

KE = gather(K,RE), VE = gather(V,RE), (21)

OE = Attention(Q,KE , VE) = softmax(
QKT

E√
d

)VE . (22)

The discarded features can be reweighted for extracting po-
tential diverse and discriminative feature information using the
softmax operation in Eq. (22). Subsequently, we concatenate
OF and OE along the channel dimension, followed by a Multi-
Layer Perception (MLP) for fusion. The overall process can
be defined as:

MHRA(G,G,G) = MLP (Concat(OF , OE)). (23)

Therefore, with the well-designed RVE, more diverse and
discriminative information from visual features can be rec-
ollected and mined to enhance feature representation for
achieving fine-grained image captioning.

D. Ranking Loss

Besides proposing the Ranking Visual Encoder (RVE) to
mine diverse and discriminative information to enhance visual
features for image captioning, this paper further explores how
to promote visual-language semantic alignment by strength-
ening supervision on the diffusion process, i.e., we propose
a novel Ranking Loss (RL), which ranks the quality of
captions generated at different timesteps and treats them as

fine supervisory signals, thereby helping achieve fine-grained
image captioning.

In our RDT, we follow [21] and also use analog bits to
represent the sentences for achieving continuous diffusion
model. Since analog bits are continuous variables and inspired
by the idea that the average can provide useful summary
information, we define the sentence quality score as the mean
of all analog bits (before thresholding [21]), which will be
used to characterize the semantic information of a sentence.

Assuming that pairs of images (e.g., images Ik,a and Ik,b
with the same content) are input to our RDT, k is the index
of images in datasets. In the forward process of our RDT,
their corresponding input sentences (i.e., the ground-truth one)
are the same and Gaussian noises corresponding to different
timesteps will be added to them. Although both are optimized
towards the same goal, i.e., the ground-truth sentence, the
generated caption sentence qualities qk,a and qk,b should differ.
Generally, the more Gaussian noise is added to the input
sentence, the greater the difference between the generated
caption sentence quality score and the ground-truth caption
sentence quality score will be, as the added Gaussian noise
disrupts the semantics of the input sentence, thereby enlarging
the score difference. This motivates us to further distinguish
the generated captions by ranking them according to their
added Gaussian noise intensity during training. Additionally,
considering a more general case, i.e., the single case (not the
pairwise case), we can also achieve this goal with the help of
the ground-truth caption sentence quality score. The proposed
Ranking Loss can be defined as:

Li,jrank =
max

(
0,
∣∣q∗i − q∗j ∣∣− sign

(
q∗i , q

∗
j

) (
qi,ti − qj,tj

)) (24)

sign
(
q∗i , q

∗
j

)
=


1, q∗i > q∗j
0, q∗i = q∗j
−1, q∗i < q∗j

. (25)

where i and j denote two image indexes in a mini-batch,
with q∗i and q∗j representing their ground-truth caption quality
scores. The notations qi,ti and qj,tj denote the predicted
quality scores for the generated captions of images i and
j, respectively, when noise is injected at timesteps ti and
tj . The term sign(q∗i − q∗j ) encodes the relative ranking
order of the ground-truth captions. When the model predicts
rankings consistent with the ground truth–i.e., sign(q∗i − q∗j )
and

(
qi,ti − qj,tj

)
share the same sign–our RDT effectively

pushes qi,ti toward q∗i and qj,tj toward q∗j . In this case,
sign(q∗i − q∗j )

(
qi,ti − qj,tj

)
approximates |q∗i − q∗j |, and the

pairwise ranking loss Li,jrank approaches zero. Conversely,
when the predicted ranking conflicts with the ground truth, the
discrepancy between |q∗i − q∗j | and sign(q∗i − q∗j )

(
qi,ti − qj,tj

)
becomes large, producing a positive loss that signals the need
for adjustment. Moreover, even when q∗i and q∗j are close–
indicating highly similar ground-truth captions and visual
content–our ranking loss remains effective in distinguishing
subtle differences, thereby enabling fine-grained image cap-
tioning.

To further distinguish the less discriminative captions and
achieve fine-grained image captioning, our RL introduces
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Algorithm 1: Sampling of RDT

Input: grid feature G, conditional sentence xc
Output: predicted sentence x0.
1: Randomly initialize xT , xstart = None
2: for t = T, ..., 1 do
3: s′ = (t− 1−∆)/T , t′ = t/T
4: xstart = embed (cat ((xt, γ (t′)) ,−1))
5: xstart = cat ((xstart, xc) , 1)
6: xstart = ST(xstart)
7: xstart = xstart[:, : seq len, :] # cut operation
8: xstart = SD(xstart,G)
9: αs =

√
σ (−γ (s′)), αt =

√
σ (−γ (t′))

10: µs=
√
σ (γ (s′)), c= −expm1 (γ (s′)− γ (t′))

11: u (xt; s
′, t′) = αs (xt (1− c) /αt + c ∗ xstart) ,

12: µ2(s′, t′) = µ2
sc,

13: xt−1 = u(xt; s
′, t′) + µ(s′, t′)ε

14: return x0

constraints on timestep difference and sentence quality s-
core difference. For constraints on timestep difference, we
assume that qualities of captions generated by adding noise
corresponding to close timesteps are regarded to have close
quality scores to their corresponding ground-truth ones, and
only when their timestep difference is less than δtim (i.e.,
they are less discriminative), the corresponding Ranking Loss
is used to adjust the model. Also for the sentence quality
score difference, we only need to adjust the model when their
ground-truth caption sentence quality score difference is less
than δsen. The new RL can be defined as:

Lrank =
1

n2
M i,j
timM

i,j
sen

n∑
i=1

n∑
j=1

Li,jrank, (26)

M i,j
tim =

{
1, |ti − tj | ≤ δtim
0, else

, (27)

M ij
sen =

{
1,
∣∣q∗i − q∗j ∣∣ ≤ δsen

0, else
, (28)

With the above timestep mask Mtim and sentence difference
mask Msen, the proposed RL accurately ranks and distinguish-
es the generated less discriminative captions, thereby providing
finer supervision signals to optimize the diffusion process
and helping achieve fine-grained image captioning. Moreover,
since the diffusion process is carried out step by step, a certain
step may focus on a specific sub-semantic. By adjusting and
optimizing in the intermediate steps, the accuracy and fluency
of the generated captions can be gradually improved, and the
image details and contextual information (e.g., color, shape
of an object) are effectively captured. Hence, the proposed
RL can promote the diffusion model to pay more attention to
visual information related to certain sub-semantics at a certain
timestep, thereby mining diversity and discriminative visual
information to strengthen vision-language semantic alignment.

IV. EXPERIMENTS

This section begins by introducing the datasets and im-
plementation details. Subsequently, the comparison of our
proposed RDT and state-of-the-art image captioning models

TABLE I
NOTATION USED IN THE RANKING DIFFUSION TRANSFORMER (RDT).

Symbol Meaning

I Input image
Y = {y1, . . . , yNs} Ground-truth caption tokens
x0, xt Clean / noised sentence at timestep t
T, t, Number of timesteps, current step
γ(·), σ(·) Noise schedule and sigmoid function
ε Gaussian noise N (0, 1)
G = (g1, . . . , gN ) CLIP grid features (N grids, dim Dg)
V̂ Enhanced visual tokens after RVEs
Q,K, V Query/Key/Value in attention
A Grid-to-grid affinity matrix
R Ranked routing indices from A
RF , RE Forward-/Inverse-ranking routes
KF , VF Gathered KV after forward-ranking
KE , VE Gathered KV after inverse-ranking
OF , OE Attended outputs (forward / inverse)
λF , λE Keep/reuse ratios for ranking attention
H, d Number of heads; per-head dimension
MHRA(·) Multi-Head Ranking-Attention layer
αs, αt, µs, c Reverse process coefficients
u(·) Mean update in reverse transition
ST, SD Sentence Transformer; Sentence Decoder
LXE, Lbit, Lrank Cross-entropy, bit loss, ranking loss
λ1, λ2, λ3 Loss weights in the total objective
i, j Indices of two images in a mini-batch
q∗i , q

∗
j Ground-truth caption quality scores

qi,ti , qj,tj Predicted quality scores at timesteps ti, tj
sign(q∗i − q∗j ) Ground-truth ranking relation
Li,j

rank Pairwise ranking loss
M i,j

tim , M
i,j
sen Timestep mask; sentence-difference mask

δtim, δsen Thresholds for masks
D@2, D@3,Voc-u Diversity evaluation metrics

[45], [46], [26], [13], [40] is given. Ablation studies and
self-evaluations are then conducted. Finally, we present the
experimental results and engage in discussions.

A. Datasets and Implementation Details

Datasets. 1) MS-COCO [22]. This dataset consists of a
total of 164,062 images, with 82,783 images for training,
40,504 images for validation, and 40,775 images for testing.
Each image in the dataset is annotated with 5 captions. We
adopt the Karpathy split [52] with 113,287 training images
and 5,000 each for validation and testing. 2) Flickr30k [23].
It includes 31,000 images collected from the Ficker website,
along with 158 thousand captions written by humans. In our
experiments, we use the Karpathy split [52] for Flickr30k. 3)
Nocaps [24]. It is divided to three parts, in-domain contains
images portraying only COCO classes, near-domain contains
both COCO and novel classes, and out-of-domain consists of
only novel classes. We evaluate RDT on the validation set.

Evaluation Metrics. We follow the standard evaluation
protocol and report results on widely used captioning metrics,
including BLEU-N (B@N) [53], METEOR (M) [54], ROUGE
(R) [55], CIDEr (C) [56], and SPICE (S) [57]. In addition,
we employ Dist-2 (D@2) and Dist-3 (D@3) [58], as well as
vocabulary usage (Voc-u) [59], to assess the diversity of the
generated captions.
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TABLE II
PERFORMANCE COMPARISONS WITH THE STATE-OF-THE-ART IMAGE CAPTIONING MODELS ON COCO KARPATHY TEST SPLIT, WHERE B@N, M, R, C

AND S ARE SHORT FOR BLEU@N, METEOR, ROUGE-L, CIDER AND SPICE SCORES. ♦ MEANS USING THE CLIP VISUAL FEATURES AS INPUT.

Method Cross-Entropy Loss CIDEr Score Optimization
B@1 B@2 B@3 B@4 M R C S B@1 B@2 B@3 B@4 M R C S

Autoregressive
RSTNetCVPR21 [40] - - - - - - - - 81.1 - - 39.3 29.4 58.8 133.3 23.0
TF-CompleteCVPR22 [19] - - - - - - - - 80.2 - - 38.8 29.0 58.3 129.5 22.7
CIICCVPR22 [20] - - - - - - - - 81.7 - - 40.2 29.5 59.4 133.1 23.2
X-Transformer♦CVPR20 [26] 78.3 62.9 49.3 38.2 29.2 58.3 124.5 22.6 82.0 67.2 53.1 41.2 30.2 60.0 137.2 24.2
ClipCap♦ [16] - - - 33.5 27.5 - 113.1 21.1 - - - - - - - -
I-Tuning♦ [17] - - - 35.5 28.8 - 120.0 22.0 - - - - - - - -
SMALLCAP♦

CVPR23 [18] - - - 37.2 28.3 - 121.8 21.5 - - - - - - - -
DTNetTNNLS24 [42] - - - - - - - - 81.5 - - 40.0 29.5 59.2 134.9 -
I2OATIP25 [43] 77.4 - - 37.7 28.9 57.8 121.3 22.1 81.9 - - 40.5 29.9 59.9 136.2 23.5
ViPCapAAAI25 [35] - - - 37.7 28.6 - 122.9 21.9 - - - - - - - -
EVCAPCVPR24 [34] - - - 41.5 31.2 - 140.1 24.7 - - - - - - - -

Non-Autoregressive
CMALIJCAI21 [44] 78.5 - - 35.3 27.3 56.9 115.5 20.8 80.3 - - 37.3 28.1 58.0 124.0 21.8
SATICICCV21 [27] 77.3 - - 32.9 27.0 - 111.0 20.5 80.6 - - 37.9 28.6 - 127.2 22.3
BitDiffusion22 [21] - - - 34.7 - 58.0 115.0 - - - - - - - - -
SCD-NetCVPR23 [9] 79.0 63.4 49.1 37.3 28.1 58.0 118.0 21.6 81.3 66.1 51.5 39.4 29.2 59.1 131.6 23.0
SCD-Net♦CVPR23 [9] 79.8 - - 37.8 29.0 58.7 121.3 22.1 82.1 - - 40.8 29.9 59.8 135.9 23.8
Our RDT♦ 81.2 - - 38.9 29.7 59.4 125.9 22.7 82.7 - - 41.5 30.5 60.4 139.3 24.4

TABLE III
LEADERBOARD OF THE PUBLISHED STATE-OF-THE-ART IMAGE CAPTIONING MODELS ON THE COCO ONLINE TESTING SERVER, WHERE B@N, M, R

AND C ARE SHORT FOR BLEU@N, METEOR, ROUGE-L AND CIDER SCORES. ♦ MEANS USING THE CLIP VISUAL FEATURES AS THE INPUT.

Method B@1 B@2 B@3 B@4 M R C
c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Ensemble Model
ETAICCV19 [47] 81.2 95.0 65.5 89.0 50.9 80.4 38.9 70.2 28.6 38.0 58.6 73.9 122.1 124.4
AoANetICCV18 [45] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
M2 TransformerCVPR20 [46] 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
X-TransformerCVPR20 [26] 81.3 95.4 66.3 90.0 51.9 81.7 39.9 71.8 29.5 39.0 59.3 74.9 129.3 131.4
DLCTAAAI21 [13] 82.0 96.2 66.9 91.0 52.3 83.0 40.2 73.2 29.5 39.1 59.4 74.8 131.0 133.4
RSTNetCVPR21 [40] 81.7 96.2 66.5 90.9 51.8 82.7 39.7 72.5 29.3 38.7 59.2 74.2 130.1 132.4
VCTTCVST23 [48] 82.2 96.2 67.2 91.2 52.7 83.5 40.6 73.8 29.6 39.3 59.6 75.0 132.0 134.5
Liu et al. TMM24 [49] 82.5 96.7 68.3 92.3 54.2 84.8 42.2 75.5 30.2 40.2 61.0 77.0 136.3 138.0

Single Model
CMALIJCAI21 [44] 79.8 94.3 63.8 87.2 48.8 77.2 36.8 66.1 27.9 36.4 57.6 72.0 119.3 121.2
CAVPACMMM19 [50] 80.1 94.9 64.7 88.8 50.0 79.7 37.9 69.0 28.1 37.0 58.2 73.1 121.6 123.8
SGAECVPR19 [51] 80.6 95.0 65.0 88.9 50.1 79.6 37.8 68.7 28.1 37.0 58.2 73.1 122.7 125.5
CIICCVPR22 [20] - - - - - - 38.5 70.1 29.1 38.4 58.6 74.0 126.4 129.2
SCD-NetCVPR23 [9] 80.2 95.1 64.9 89.3 50.1 80.1 38.1 69.4 29.0 38.2 58.5 73.5 126.2 129.2
SCD-Net♦CVPR23 [9] 81.2 95.9 66.2 90.3 51.7 82.6 39.2 71.9 29.8 39.2 59.2 74.3 130.9 133.2
Our RDT♦ 82.3 96.5 67.1 91.3 52.5 83.4 40.3 73.2 30.6 39.8 59.9 75.2 134.1 136.9

Implementation Details. Our RDT implementation is based
on SCD-Net [9], with two cascaded RDT models to further
enhance captioning performance. The visual input is the CLIP
feature2 , whose grid feature dimension is transformed to 512.
Following [21], [9], 14 bits are used to represent each word.
We set three Ranking Visual Encoders, and both the Semantic
Transformer and Sentence Decoder consist of 3 Transformer
blocks with hidden size 512. In the RVE, λF and λE are set
to 0.75 and 0.55, while the Ranking Loss parameters δtim and
δsen are set to 0.12 and 0.15. To balance cross-entropy (LXE),
binary (Lbit), and ranking losses (Lrank), λ1, λ2, and λ3 are
set to 1, 1, and 5, respectively.

The image-to-text retrieval block is built on CLIP ViT-B/323

features of images and captions, where captions are precom-

2CLIP-RN101-448, https://github.com/jianjieluo/OpenAI-CLIP-Feature
3CLIP-ViT-B/32, https://github.com/jianjieluo/OpenAI-CLIP-Feature

puted from COCO training data and indexed with FAISS [60]
(IndexFlatIP, normalized, no training) for efficient nearest-
neighbor search. For each image, the top 20 captions with
the highest cosine similarity are retrieved. During training, 5
retrieval sentences are randomly sampled from the 5 ground-
truth captions per image, while in inference the sentence with
the highest similarity is used as the conditional input.

The training of RDT consists of two stages. In the first
stage, the model is optimized with Adam on a single RTX
4090 GPU using `2, ranking, and cross-entropy losses for 60
epochs with a batch size of 16. In the second stage, parameters
are initialized from the best first-stage model (highest CIDEr
score) and further trained for 60 epochs using the guided self-
critical sequence training mechanism [9], with a fixed learning
rate of 0.00001 and batch size of 16. During training, t′ =
t/T is sampled from U(0, 0.999). Algorithm 1 outlines the
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TABLE IV
PERFORMANCE COMPARISONS WITH THE STATE-OF-THE-ART IMAGE

CAPTIONING MODELS ON FLICKR30K AND NOCAPS.

Method

Flickr30k NoCaps Val
Test In Near Out Entire

C S C C C C
Autoregressive

ClipCap♦ [16] - - 84.9 66.8 49.1 65.8
I-Tuningbase [17] 61.5 16.9 83.9 70.3 48.1 65.8
I-Tuningmedium [17] 72.3 19.0 89.6 77.4 58.8 75.4
SMALLCAP♦

CVPR23 [18] 60.6 - 87.6 78.6 68.9 77.9
ViPCapAAAI25 [35] 66.8 17.2 93.8 81.6 71.5 81.3

Non-Autoregressive
SCD-NetCVPR23 [9] 58.4 15.4 84.3 68.2 55.4 67.9
SCD-Net♦CVPR23 [9] 61.5 16.7 87.9 76.4 68.1 76.3
Our RDT♦ 64.2 17.1 93.9 80.3 70.4 80.2

sampling process, where T = 50 and ∆ = 0, and ST and
SD denote the Sentence Transformer and Sentence Decoder,
respectively. Table I provides an overview of the mathematical
symbols used in this paper along with their definitions.

Detailed comparisons with state-of-the-art captioning meth-
ods are presented below.

B. Performance Comparison

In-domain. The in-domain evaluation is conducted on
COCO (Tables II, III) and Flickr30k (Table IV). For COCO,
we report both offline (Table II) and online (Table III) results,
with separate reporting for the two training stages to ensure
fair comparison. Since our RDT belongs to non-autoregressive
models, we compare it against both autoregressive and non-
autoregressive approaches. Overall, RDT achieves superior
performance over state-of-the-art region-based [10], [45], [46],
[26] and grid-based models [11], [13], [14]. Specifically,
RDT♦ attains 139.3% CIDEr and 24.4% SPICE, surpassing
strong autoregressive [46], [26], [13], [40], [19], [20], non-
autoregressive [44], [27], [21], [9], and large-scale vision-
language models [16], [17], [26]. Although EVCAP [34]
slightly outperforms RDT, it leverages an external visual–
name memory and large-scale pretrained LLMs (Vicuna–13B).
Online results (Table III) further show that a single RDT model
outperforms all single captioning baselines [44], [50], [51],
[20], [9] and even ensemble models [46], [26], [13], [40].
On Flickr30k (Table IV), RDT also surpasses recent state-
of-the-art models [18], [9], [35]. These results demonstrate
that RDT generates more descriptive captions by enhancing
visual features and aligning them effectively with language
representations.

Cross-domain. The cross-domain evaluation is conducted
on Nocaps using the COCO-trained first-stage model. As
shown in Table IV, RDT surpasses state-of-the-art models
[18], [9], [35] on in-domain data and achieves competitive
results on other subsets. In particular, it improves over the
baseline by 5.1% on near-domain and 3.4% on out-of-domain
data, underscoring its effectiveness for zero-shot and real-
world scenarios. These improvements are mainly attributed
to 1) the RVE, which leverages forward- and inverse-ranking
attention to recover or suppressed cues for more domain-
invariant visual representations, and 2) the RL, which applies

TABLE V
IMPACT ON DIFFERENT PROPOSED MODELS ON COCO KARPATHY SPLIT.

base RVE RL B@1 B@4 M R C S D@2 D@3 Voc-u
X 82.1 40.8 29.9 59.8 135.9 23.8 11.6 24.5 10.3
X X 82.5 41.2 30.3 60.2 138.1 24.2 12.4 25.8 10.9
X X 82.4 41.4 30.3 60.1 138.4 24.1 12.5 26.0 11.0
X X X 82.7 41.5 30.5 60.4 139.3 24.4 12.7 26.4 11.1

TABLE VI
ABLATION OF RANKING ATTENTION ON COCO KARPATHY TEST SPLIT.

λF λE B@1 B@4 M R C S
0.6 0 79.9 37.9 29.1 58.7 122.2 22.0
0.7 0 80.0 37.9 29.2 58.9 123.8 22.2
0.75 0 80.5 38.3 29.4 59.1 124.4 22.4
0.8 0 80.4 38.2 29.3 59.9 124.2 22.3
0.9 0 80.3 38.1 29.2 59.0 123.8 22.3
1 0 80.3 38.1 29.2 58.9 123.6 22.3
0.75 0.25 80.9 38.6 29.5 59.2 125.1 22.5
0.75 0.4 81.1 38.7 29.6 59.2 125.5 22.5
0.75 0.5 81.1 38.8 29.6 59.3 125.7 22.6
0.75 0.55 81.2 38.9 29.7 59.4 125.9 22.7
0.75 0.6 80.5 38.4 29.5 59.1 124.8 22.4
0.75 1 80.3 38.2 29.3 59.0 123.9 22.4

sentence-level ranking across diffusion timesteps to enhance
semantic alignment, together fostering robust generalization to
unseen domains.

Qualitative Analysis. We present image captioning results
of three methods–the Transformer, the baseline (SCD-Net)
[9], and our RDT–in Fig. 5(a). GT1, GT2, and GT3 denote
the ground-truth captions. All three methods use the same
grid features, and while the Transformer and SCD-Net pro-
duce semantically relevant but less descriptive captions, RDT
leverages the RVE and RL to achieve fine-grained captioning.
As shown in Fig. 5, RDT not only discovers new objects
(e.g., two men behind him”, red coat”) but also captures
detailed attributes (e.g., dry leaves”, white frisbee”, left handed
baseball player”, open umbrella”), leading to more accurate
and descriptive captions.

C. Ablation Study

Ablation Study. To comprehensively evaluate our model,
we start with the baseline SCD-Net [9] and progressively
integrate the RVE and RL. As shown in Table V, adding
RVE improves captioning performance, and incorporating both
RVE and RL yields the full RDT, which achieves further
gains. These results indicate that RVE enhances visual rep-
resentations by extracting diverse and discriminative features,
RL strengthens vision–language alignment by ranking caption
quality across timesteps, and their integration enables fine-
grained captioning that surpasses state-of-the-art models.

Ablation on Ranking Attention. By ranking and opti-
mizing attended key-value pairs, the proposed RVE enhances
visual representations for fine-grained captioning. To study the
impact of λF and λE , we conduct experiments using CLIP
features without Guided Self-Critical Sequence Training. As
illustrated in Table VI, when λF = 1 and λE = 0, i.e., the o-
riginal MHSA with the RL, the model outperforms SCD-Net♦

(Table II), confirming the effectiveness of the proposed RL. To
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Fig. 5. Examples of image captioning results. (a) RDT identifies new objects (red) and detailed attributes (green), producing more descriptive captions. (b)
RDT generates more discriminative captions for visually similar images.

determine the optimal λF , we fix λE = 0 and vary λF from
0.6 to 1, finding the best performance at λF = 0.75, which
suggests that emphasizing important visual features improves
captioning. Moreover, introducing inverse-ranking attention
(λE > 0) further boosts performance, indicating that CLIP
features ignore some visual details that can be reactivated and
reweighted. When 0.25 < λE < 0.55, RDT achieves better
results than at λE = 0.25, highlighting the effectiveness of
inverse attention. However, scaling λE to 1, i.e., concatenating
OF and all tokens O, yields worse results than using only
forward-ranking attention (λF = 0.75, λE = 0), suggesting
that the concatenation of O will hinder and interfere with
the learning of more effective features. Overall, these results
validate the effectiveness of both forward and inverse ranking
attention, as well as their balanced combination.

D. Self Evaluations

Evaluation of image token visualization. The enhanced
visual features has a dimension of 50 × 512, from which we
select 49 grid features (excluding the CLS feature) of size
49 × 512. For visualization, we compute the mean along the
last dimension, apply a softmax, and resize to 7 × 7. Fig. 6
compares the image tokens of SCD-Net (second column) and
our RDT (third column). The highlighted tokens indicate the
model’s attention, revealing that RDT captures more detailed
and discriminative features, enabling more descriptive caption-
s. For example, in the first row, RDT attends to the background
mountain and generates the phrase “with a cloud-mountain in
the background,” while the baseline neglects this detail.

Evaluation of Caption Sentence Discriminability. To
evaluate the discriminability of generated captions, we select
images with similar contents and present their captions in
Fig. 5(b). For such images, the baseline (SCD-Net) produces
nearly identical captions, indicating its failure to distinguish
them. In contrast, RDT generates more fine-grained captions
by extracting diverse and discriminative visual information
and precisely aligning it with language features through the

Fig. 6. (a) Image, (b) Image token visualization of the baseline–SCD-Net,
(c) Image token visualization of our proposed RDT, (d) generated caption
sentence. We can find that the highlighted tokens in the heatmap correspond
to the regions where the captioning model focuses its attention, thereby
capturing more detailed and discriminative visual features and producing more
descriptive captions.

collaboration of the Ranking Visual Encoder and Ranking Loss
within the proposed Ranking Diffusion Transformer.

Evaluation of Caption Sentence Diversity. To evaluate
caption diversity, we report Dist-2 (D@2), Dist-3 (D@3) [58],
and vocabulary usage (Voc-u) [59]. Existing methods typically
use top-k sampling, i.e., selecting the top 5 captions from
beam search, while SCD-Net and our RDT generate multiple
captions by randomly selecting 5 conditional sentences. As
shown in Table VII, RDT outperforms both autoregressive
and non-autoregressive methods, demonstrating its ability to
produce more diverse captions.

Impact of timestep threshold δtim and sentence differ-
ence threshold δsen. The proposed Ranking Loss introduces
a timestep threshold δtim and a sentence difference threshold
δsen to generate masks Mtim and Msen, which differentiate
caption quality and provide fine-grained supervisory signals
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TABLE VII
DIVERSITY COMPARISONS WITH THE STATE-OF-THE-ART IMAGE

CAPTIONING MODELS ON COCO KARPATHY TEST SPLIT. ♦ MEANS USING 
THE CLIP VISUAL FEATURES AS THE VISUAL INPUT.

Method Diversity
D@2 ↑ D@3 ↑ Voc-u ↑

Autoregressive
M2 TransformerCVPR20 [46] 7.9 16.3 8.3
DLCTAAAI21 [13] 8.1 17.1 8.6
DIFNetCVPR22 [14] 9.3 19.5 9.1
CapDec[61] 8.3 14.9 1.9
ClipCap[16] 11.3 21.7 2.6

Non-Autoregressive
SCD-NetCVPR23 [9] 10.1 22.6 9.7
SCD-Net♦CVPR23 [9] 11.6 24.5 10.3
RDT♦ [9] 12.7 26.4 11.1

TABLE VIII
IMPACT OF TIMESTEP THRESHOLD δtim AND SENTENCE DIFFERENCE

THRESHOLD δsen ON COCO KARPATHY TEST SPLIT.

δtim δsen B@1 B@4 M R C S
0.05 - 80.2 38.3 29.3 59.0 123.2 22.3
0.10 - 80.5 38.6 29.5 59.2 124.8 22.4
0.12 - 80.9 38.7 29.6 59.3 125.2 22.5
0.15 - 80.5 38.5 29.6 59.2 124.9 22.5
0.20 - 80.4 38.4 29.5 59.1 124.5 22.4
0.12 0.05 80.4 38.4 29.4 59.1 123.7 22.3
0.12 0.1 81.0 38.7 29.6 59.2 125.3 22.5
0.12 0.12 81.1 38.9 29.6 59.3 125.7 22.6
0.12 0.15 81.2 38.9 29.7 59.4 125.9 22.7
0.12 0.2 81.1 38.8 29.6 59.3 125.4 22.5

for optimizing the diffusion process. To assess their impact,
we first set δsen = 2 (excluding Msen) and vary δtim from
0.05 to 0.20, with the best performance at δtim = 0.12 (Table
VIII). We then fix δtim = 0.12 and vary δsen from 0.05 to
0.20, achieving optimal performance at δsen = 0.15. These
results demonstrate that proper selection of δtim and δsen is
crucial for providing effective supervisory signals to optimize
the diffusion process for fine-grained captioning.

Time and Memory Analysis About MHRA. The time
complexity of multi-head self-attention (MHSA) consists of
similarity calculation (O(n2d)), softmax (O(n2)), and weight-
ed summation (O(n2d)), resulting in O(n2d) overall, where
n is the number of grids in the CLIP feature and d is the
feature dimension. For our RDT, n = 50 and d = 512. The
proposed multi-head ranking attention (MHRA) adds extra
operations (e.g., matrix addition, outer product, top-K ranking,
gathering), with a final complexity of O(n2d + n3). Thus,
both MHSA and MHRA scale linearly with d, but MHRA has
higher cost; since n < d, this increase is limited. In summary,
RDT improves captioning performance at the expense of
additional computation. The space complexity of both MHSA
and MHRA is O(n2 + nd), with MHRA incurring slightly
higher cost for better performance.

V. CONCLUSION

Discriminative and descriptive image captioning remains a
very challenging task due to limited visual information and
inefficient vision-language alignment. In this work, we pro-
pose a Ranking Diffusion Transformer to achieve fine-grained

image captioning by seamlessly integrating the Ranking Visual
Encoder (RVE) and Ranking Loss (RL). The well-designed
RVE effectively strengthens visual representations by mining
diverse and discriminative information from them through
ranking and optimizing the attended key-value pairs. Then, a
novel RL is proposed to optimize the diffusion process while
boosting the vision-language semantic alignment by taking the
quality difference ranking results of the generated captions as
additional supervisory signals. Hence, by cooperating RVE
and RL via a novel Ranking Diffusion Transformer, more
representative and discriminative visual features can be learned
and precisely aligned with language features to achieve fine-
grained image captioning. In the future, we plan to conduct
research on endowing human-like controllability to the cap-
tioning model and extend our model to other related topics.
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