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Abstract—Recent developments in machine learning (ML)
techniques enable users to extract, transmit, and reconstruct
information semantics at the semantic level through ML-based
semantic communication (SemCom). This significantly increases
network spectral efficiency and transmission robustness. The
semantic codecs among various users and modalities, based on
ML, however, inevitably experience semantic drift and necessitate
collaborative updating to preserve transmission quality. The
various heterogeneous characteristics of most networks, in turn,
introduce emerging but unique challenges for semantic codec
updating that are different from other general ML model updat-
ing. In this article, we propose a heterogeneity-aware semantic
codec updating scheme to achieve efficient and reliable updating
in heterogeneous networks. We begin with the introduction
of the core components of SemCom and then highlight key
issues in semantic codec updating under network heterogeneity,
discussing several potential methods. Furthermore, the scheme is
provided with performance metrics. Future research directions
for advancing SemCom in complex, multi-modal environments
are also discussed.

I. INTRODUCTION

HE next-generation communication is expected to present

revolutionary breakthroughs in global interconnectivity,
intelligent services, and the ultimate communications experi-
ence. Leveraging the advancement of key technologies such as
artificial intelligence (Al), reconfigurable intelligence surfaces
(RIS), and integrated sensing and communication (ISAC),
future communication is expected to deliver higher data rates,
lower latency, higher energy efficiency, and massive connec-
tivity capabilities [1]. These improvements enable the network
to support cutting-edge applications, including immersive XR
experiences, holographic communications, and the artificial
intelligence of things (AloT), driving the evolution of the
information society into a smart society.

Nevertheless, future communications still face transmission
challenges in terms of spectrum efficiency and robustness. On
the one hand, with the exponential growth of communication
requirements, spectrum resources are becoming increasingly
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constrained. The conventional construction of communication
systems has mainly been rooted in Shannon’s information the-
ory, with the study of communications centered on enhancing
the accuracy and efficiency of symbol transmission between
the transmitter and receiver [2]. This focus has yielded signifi-
cant advancements, but as communication technologies evolve,
the theoretical Shannon limit is increasingly being approached
[3]. This makes it difficult to further improve transmission
spectrum efficiency. On the other hand, in the presence of so-
phisticated dynamic environments and diversified application
requirements, the reliability and adaptability of conventional
communication systems remain to be upgraded. In this context,
it is difficult to meet the requirements of future networks by
relying only on the conventional communication paradigm. To
address these limitations, semantic communication (SemCom)
has emerged as a promising paradigm.

In typical SemCom systems, conventional codecs are re-
placed by semantic codecs that leverage machine learning
(ML) techniques. The semantic encoder at the transmitter
extracts the underlying meaning behind the transmitted in-
formation, rather than simply encoding raw symbols. It then
aligns with the semantic knowledge base (SKB) and transmits
only these extracted meanings. On the receiver, the semantic
decoder with SKB reconstructs the intended message based
on the received semantic representation [4]. By prioritizing
the transmission of meaning rather than raw data, SemCom
significantly reduces the volume of transmitted information,
thereby improving spectral efficiency. Furthermore, SemCom
enhances transmission robustness by reducing dependency
on precise symbol-level accuracy, making the communication
system more resilient to channel impairments and noise.

Predictably, the integration of SemCom into future wire-
less networks has the potential to significantly enhance the
quality of network services. Nevertheless, a key challenge in
SemCom from the task-oriented nature of semantic codecs. As
network conditions and application scenarios evolve, semantic
drift occurs, wherein the meaning of transmitted information
gradually degrades or diverges from its original interpreta-
tion, leading to a decline in communication accuracy. This
phenomenon necessitates continual updates to diverse modal
(e.g., text and image) codecs to maintain efficient and reli-
able communication [4]. In end-to-end communication, such
updates require the active participation of both the transmitter
and the receiver to synchronize their semantic encoder and
decoder. In the network, this challenge becomes even more
complex. Unlike a simple two-party scenario, network-wide
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Fig. 1: The SemCom framework.

updates involve multiple users employing SemCom, each
relying on a shared but evolving semantic understanding. Co-
ordinating these updates across numerous parties significantly
increases the complexity of maintaining a consistent and up-to-
date semantic encoder-decoder model throughout the network.
Managing these updates efficiently is crucial for ensuring
seamless communication and maintaining the robustness of
SemCom-enabled networks.

Several studies have focused on the challenge of collabora-
tive semantic codec update among multi-parties and identified
it as one of the primary challenges for SemCom applications
[5]. Distributed learning approaches look most promising for
user collaboration on codec updates as the privacy of the
data required for user updates can be preserved. The classical
federated learning (FL) approach for semantic codec update is
first proposed for general networks to prevent data privacy [6],
[7]. According to the different network scenarios’ limitations,
various schemes based on FL improvement are also presented
[81-[10].

In addition, growing attention is being given to the hetero-
geneous characteristics of network users during the semantic
codec updating process [5], [11], [12]. This consideration is
particularly crucial in diverse network environments, such as
non-terrestrial networks and vehicular networks, where signif-
icant heterogeneity exists in terms of users’ (e.g., autonomous
vehicles and small sensors) codec architectures, computational
capabilities, etc. In case the network environment undergoes
changes, failure to perform joint updates across these hetero-
geneous components can lead to significant degradation in
spectral efficiency. Users who do not adopt the newly updated
semantic codecs may continue to operate under outdated
codecs or a conventional communication paradigm, thereby
creating bottlenecks in transmission accuracy and resource

utilization, diminishing overall network performance. Hence,
it becomes imperative to investigate adaptive semantic codec
updating mechanisms in heterogeneous environments. It aims
to ensure seamless compatibility and optimal functionality
across evolving networks, enhancing both interoperability and
spectral efficiency in SemCom systems.

Existing methods designed for general machine learning
(ML) models, however, are not always directly applicable
to semantic codec updating in heterogeneous networks. Un-
like conventional ML-based models, semantic codecs must
ensure synchronization and compatibility between two com-
municating parties, i.e., the transmitter and the receiver, to
maintain effective task-oriented communication. This dual-
party dependency introduces unique challenges, including the
need for real-time coordination, adaptive learning mechanisms,
and robustness against heterogeneous network conditions.
Addressing these unique concerns is essential for ensuring
seamless and reliable semantic communication across diverse
and evolving network environments.

Despite the above-mentioned collaborative semantic codec
update efforts, the study and development of semantic codec
updates in heterogeneous networks are still at an early stage.
Many technical challenges still need to be addressed to enable
SemCom efficient and scalable deployment in real-world net-
works. Therefore, it is crucial to investigate these challenges
associated with semantic codec updates in heterogeneous
networks to help pave the way for more robust, efficient, and
scalable solutions and facilitate the widespread adoption of
SemCom across diverse communication scenarios.

In this article, we first review the key components in clas-
sical SemCom systems. We then discuss the main challenges
of semantic codec updating in the heterogeneous network and
potential methods. Next, we propose a heterogeneity-aware



semantic codec updating scheme as a viable solution. The open
issues are also discussed following that.

II. BASIC NETWORKING ARCHITECTURE

As shown in Fig. 1, we review classical ML-based SemCom
components in heterogeneous networks.

A. Semantic Knowledge Base

The SKB serves as a centralized repository of background
knowledge and contextual information pertinent to the ongoing
SemCom task. It contains task-related ontologies, domain-
specific concepts, and relationships among entities that enable
the semantic encoder and decoder to operate beyond symbol-
level processing. By utilizing the SKB, the encoder can map
raw data into semantically meaningful representations aligned
with the intended task, while the decoder can accurately
reconstruct and interpret the conveyed meaning even under
channel distortions or incomplete data. Moreover, the SKB
is shared between the transmitter and receiver, ensuring that
both parties rely on an identical semantic context during
encoding and decoding. This shared foundation enhances
mutual understanding, reduces ambiguity, and improves the
overall efficiency and robustness of SemCom across network
conditions.

B. Semantic Encoder and Decoder

The semantic encoder, residing at the transmitter, is respon-
sible for extracting and abstracting task-relevant meaning from
the input data. Different from conventional communication
paradigms, it employs ML to transform raw different modal
inputs into a semantic representation that preserves the under-
lying intent and contextual meaning.

The semantic decoder, located at the receiver, reconstructs
the conveyed semantics from the received representation. Ac-
curate interpretation depends on close collaboration with the
encoder, as even minor drift between the two can introduce
semantic errors or task-level misinterpretations. Hence, to
maintain fidelity across heterogeneous network conditions, the
encoder and decoder for various modalities must be collabo-
ratively updated in real time, ensuring that both parties share
an aligned and adaptive semantic codec.

C. Semantic Channel

The semantic channel is a medium for information transmis-
sion, similar to the physical channel in traditional communi-
cation. The concern of the semantic channel, however, is not
only the transmission of signals but also semantic integrity
and fidelity. In practical communications, this may involve
noise in the physical channel as well as noise at the semantic
level (e.g., misinterpretation of semantics at the receiver).
The robustness of the transmission is usually better than in
conventional communications due to the small quantity of data
and the fault tolerance of the semantic information.

III. KEY CHALLENGES

The key challenges in updating the semantic codec model
in heterogeneous networks include system heterogeneity, data
heterogeneity, model heterogeneity, and personalized many-to-
one (M20) model requirements.

A. System Heterogeneity

In a heterogeneous network, diverse users, e.g.,
autonomous-driving vehicles, portable carrying devices,
and edge clouds, transmit information through SemCom
under markedly different operating conditions. They vary
in computational capabilities (e.g., CPU cycles) and
communication transmission capabilities (e.g., transmission
power, bandwidth). Furthermore, their communication
capabilities are affected by dynamic channel conditions
and noise. These disparities create pronounced system
heterogeneity, making it challenging to achieve mutual
understanding and coordination during collaborative updating.

B. Data Heterogeneity

Since semantic codecs are learned models, users locally
update them using private data, which inevitably introduces
data heterogeneity in terms of data size, distribution, modal-
ity, and semantic granularity. Data heterogeneity in semantic
communication is task-oriented and semantic level. Users may
observe different modalities (e.g., text, image, and speech) or
different semantic contexts, which directly impact semantic
alignment and meaning reconstruction between the transmitter
and receiver. More importantly, this effect manifests over
time during online communication. Heterogeneous local data
can gradually induce inconsistent semantic mappings across
users, leading to semantic drift even when local training
converges, and ultimately causing task-level misinterpretation
or communication failure.

C. Model Heterogeneity

System and data heterogeneity naturally lead users to adopt
different semantic codec architectures with varying model
sizes, computational complexity, and modality-specific de-
signs. For instance, some users may employ a large pre-
trained encoder optimized for high transmission accuracy for
one modality. Others may rely on a smaller, lightweight
model designed for faster computation with lower resource
consumption for another modality. In the case of combining
various modalities of data, updating multiple modality-specific
codecs substantially increases the complexity and energy cost
of the updating process. This disparity makes it difficult to
establish a generally applicable global semantic codec, as
users have varying constraints related to storage capacity,
computational power, pre-training cost, semantic granularity
requirements, and modality-specific needs. Users tend to use
their initial encoder/decoder architectures, which render gen-
eral collaborative training approaches inapplicable, e.g., FL,
as they typically require model homogeneity for aggregation.
Model heterogeneity in SemCom is further constrained by
the tight coupling between the encoder and decoder deployed



at different communication parties. Heterogeneous semantic
encoders and decoders must remain mutually interpretable to
ensure consistent semantic understanding during transmission.
Over time, independent updates of heterogeneous models
can gradually distort the shared semantic space, leading to
incompatibility between transmitters and receivers even if each
local model is individually well optimized.

D. Personalized Many-to-One Model Requirements

In case users collaborate on updating semantic codecs, it is
impractical for one user to tailor the appropriate, personalized
encoders or decoders for all other users. We take the downlink
as an example. The base station utilizes the semantic encoder
to transmit the information to personal devices equipped
with semantic decoders. From a cost-efficiency perspective,
maintaining and updating separate semantic encoders for a
large number of personal devices imposes a substantial com-
putational burden on the base station. Moreover, storing multi-
ple distinct encoders significantly increases storage overhead,
making such an approach infeasible in large-scale networks.
Base stations thus aim to deploy a single, efficient semantic
encoder capable of extracting and transmitting information that
can be interpreted by various personal devices. Each personal
device, in turn, utilizes a personalized heterogeneous semantic
decoder to reconstruct the transmitted message based on its
specific contextual understanding. This paradigm introduces a
personalized M20O challenge, where a single (homogeneous)
encoder/decoder needs to effectively serve a diverse (hetero-
geneous) set of decoders/encoders, each with unique semantic
interpretations and requirements.

IV. MAIN POTENTIAL METHODS

In this section, we introduce several potential approaches to
mitigate the challenges confronting SemCom in heterogeneous
networks.

A. Updating Based On Federated Learning

FL-based methods enable collaborative semantic codec up-
dating across distributed devices while preserving data privacy.
By allowing users to locally update semantic codecs and share
only model parameters, rather than raw data, FL is well-
suited for heterogeneous networks where system heterogeneity
and data heterogeneity. This approach can facilitate efficient
semantic codec updates without centralized data collection,
making it a promising solution for scalable and privacy-aware
SemCom systems.

Nevertheless, the FL struggles with model heterogeneity
and data heterogeneity, since different modal encoder/decoder
architectures cannot be directly aggregated. Even with ho-
mogeneous models, the averaged global model often fails to
address personalized M20 model requirements, as a single
shared model cannot optimally serve all receivers.

B. Updating Based On Split Learning

Split learning (SL)-based approaches partition the updating
process between distributed devices and a central server,

enabling collaborative codec updating while preserving data
privacy and reducing computational burdens on individual
devices. In a typical setup, the transmitter updates the semantic
encoder locally, while the receiver updates the corresponding
decoder. Throughout the updating process, only intermediate
features during updating are exchanged between the parties
rather than the codec model, thereby sharing data while ensur-
ing privacy. It is thus particularly advantageous in personalized
one-to-many model requirements, system heterogeneity, and
model heterogeneity, as it allows distributed users to train their
personalized encoder/decoder and a joint decoder/encoder
while ensuring synchronization between heterogeneous com-
ponents.

Nonetheless, in order to achieve the Loss value, the privacy
training data and labels need to be known by the encoder
parties and the decoder parties, respectively. It introduces crit-
ical privacy vulnerabilities. Moreover, SL-based approaches
perform poorly with data heterogeneity and data heterogeneity.
The reliance on local data for loss calculation causes the
modality-specific codec to overfit particular data distributions,
especially under non-1ID conditions. This bias is worsened by
its sequential updating, which skews the global model toward
the latest user’s data.

C. Updating Based On Transfer Learning

Transfer Learning (TL) leverages pre-trained semantic
codecs to adapt to new tasks or environments with minimal
retraining. By updating models using only local data without
relying on collaborative aggregation, TL-based methods ef-
fectively mitigate model heterogeneity, system heterogeneity,
and personalized M20 model requirements, etc. For example,
a base station could deploy a universal encoder, while users
personalize their decoders via TL.

However, TL involves fine-tuning only the latter parts of the
model while keeping the earlier layers fixed, which limits its
flexibility in certain scenarios. For example, a base station may
deploy a universal decoder, while users struggle to effectively
personalize their encoders through TL. Furthermore, the lack
of model/data sharing results in missing data distributions
during updating. Designing distinct transfer strategies is also
necessary for data heterogeneity, increasing the complexity of
model adaptation and storage load.

D. Hybrid Approaches

The integration of FL, SL, and TL has shown consider-
able promise in mitigating the individual limitations of each
paradigm when applied independently. For instance, federated
transfer learning has been effectively introduced into vehicular
SemCom networks to improve knowledge sharing across struc-
turally and functionally heterogeneous nodes [5]. Similarly,
federated split learning frameworks have been proposed to
enhance collaborative training while reducing computational
burdens and communication overheads in distributed settings
[12], [13].

However, while these methods have partially alleviated
challenges related to heterogeneity, e.g., system heterogeneity
[13], model heterogeneity [12], and personalized M20 model
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Fig. 2: SKB-assisted Modal Alignment.

requirements [5], they still fall short of fully accommodating
the multifaceted updating requirements imposed by heteroge-
neous networks. There remains a critical need for adaptive,
scalable, and granular updating schemes that can respond to
varying degrees of heterogeneity across devices, data, and
modalities.

V. HETEROGENEITY-AWARE SEMANTIC CODEC UPDATING
SCHEME

To cope with the heterogeneity of networks in future se-
mantic communication systems, in this section, we propose a
heterogeneity-aware semantic codec updating scheme. We de-
couple encoder updates from decoder maintenance by aligning
all modality-specific representations to a shared SKB, enabling
lightweight and efficient updating via FL.

A. SKB-assisted Modal Alignment

Instead of retraining the entire encoder—decoder pair for
every user, the proposed scheme only collaboratively updates
the encoder part by utilizing the centralized SKB that defines
a unified semantic space. Each user retains a frozen hetero-
geneous encoder to extract modality-specific features, e.g.,
image, speech, or text. To make the encoder model federated
aggregation available for modal and model heterogeneity, we
designed a global adapter capable of integrating diverse modal-
ities and encoder architectures. A global multi-modal adapter
further performs semantic feature extraction and transforms
these multimodal features into semantic tokens aligned with
the SKB, and only the aligned tokens are transmitted. At the
receiver, the decoder reconstructs the intended meaning by
consulting the same SKB, effectively isolating the decoder
from upstream drift. By shifting the update focus entirely
to the encoder side, in particular, the global adapter, this
design mitigates M20O personalization issues, accommodates
system and model heterogeneity, and streamlines semantic
codec updating.

B. Adapter Construction

The multimodal adapter is realized through a graph-based
network that operates on a unified semantic graph built
from heterogeneous modal inputs. Each modality output from
the heterogeneous encoder is transformed into “tokens” for
transmission, and each modality region or token becomes a
node in the graph. The same modal relations are captured
by Gaussian-kernel similarities with top-k sparsification to
emphasize salient dependencies. Moreover, associations across
modalities are derived by computing node similarity and
refining it through a lightweight neural mapping with top-k se-
lection and mean pooling, yielding edges that encode semantic
correspondence across modalities. Through iterative message
passing, the adapter propagates semantic cues, aligns disparate
features with the dimensions of the SKB, and produces
modality-invariant token embeddings ready for transmission.
This graph-based design naturally scales to different modalities
and allows fine-grained control over semantic interactions.

C. Error-aware Labeling for Adapter Updating

Nevertheless, in full encoder—decoder training, the model
can directly compare input and reconstructed output to com-
pute a well-defined loss [13]. In our proposed scheme, the
encoders are frozen and only update the global adapter,
which references the target labels disappearing. Encoder-only
adaptation, hence, disrupts the conventional SemCom codec
updating loop because reliable ground-truth labels for aligned
tokens are unavailable during live operation. To circumvent
this, the adapter interprets its own SKB-aligned output as
a provisional label. However, such labels inevitably contain
semantic drift, i.e., most tokens remain correct, but a minority
are mismatched. To maintain training stability, before each
update epoch, the adapter performs an estimate of the similar-
ity matrix across a mini-batch of multi-modal samples. Con-
fidence for each label/token is inferred from the matrix, and



low-confidence labels are temporarily excluded from encoder
gradient updates in this epoch.

Federated aggregation across multiple users further im-
proves label quality. Because different users observe distinct
but related data, their error patterns are unlikely to coincide.
Aggregating label statistics exposes outliers and reinforces
consensus on correct alignments, effectively mitigating error
without explicit ground truth. The users, thus, do not immedi-
ately discard low-confidence labels but track them. They will
keep these potential labels across several rounds, and only
those persistently inconsistent with other federated aggregation
users are pruned. Multiple users collaborate through federated
aggregation, cross-validating labels, and leveraging inter-user
diversity to suppress error and recover accurate supervision.
This dynamic denoising mechanism preserves semantic align-
ment even under local drift or highly non-IID data, ensuring
that encoder updates remain robust while the decoder remains
untouched.

By anchoring all representations to a shared SKB and con-
fining updates to lightweight adapters, the proposed scheme
reduces communication cost, preserves decoder fidelity, and
enables scalable personalization. The graph-based adapter and
label error-aware training jointly empower cross-modal gen-
eralization, making the approach a promising foundation for
robust SemCom updating in heterogeneous networks.

D. Case Study

To evaluate the performance of the proposed heterogeneity-
aware semantic codec updating scheme, we constructed a
distributed network comprising 10 heterogeneous users. Each
user transmits various modal data from the Flickr30K dataset
[14] using either a Faster R-CNN image encoder or the
BERT-base-uncased text encoder. The dataset contains 31,000
images and 158,000 captions, making it well-suited for se-
mantic transmission tasks involving multiple modalities. We
adopt RSUM as the evaluation metric, defined as the sum of
accuracies in both image-to-text and text-to-image retrieval
tasks performed by the adapter guided by the SKB. This
metric reflects alignment with the SKB and indicates the
precision of model updates. All simulations were conducted
on the Lancaster University HEC GPU cluster using NVIDIA
V100 (32 GB) and L40 (48 GB) GPUs via the gpu-short
and gpu-medium queues. In terms of model configuration, the
adapter consists of a single-layer graph neural network with
an attention scaling factor set to 1.5, a regularization weight
of 1.0, and a triplet loss margin of 0.2. During training, a
batch size of 128 is used along with the Adam optimizer at a
learning rate of 0.0001.

We first examine a baseline scenario where users perform
updates using clean (error-free) labels in the heterogeneous
network. Under this setting, users update their models directly
with correct supervision. To handle heterogeneity, each user
employs a lightweight CNN or BERT model with a uniform
architecture for single-modal federated aggregation [7] for
baseline. Additionally, a GNN model [15] serves as a cross-
modal adapter to aggregate updates from heterogeneous client
models. As illustrated in Figure 3, the proposed approach
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Fig. 3: Subscriber access number versus number of
subscribers.
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Fig. 4: Performance comparison under varying levels of label
error.

surpasses conventional methods in both convergence speed
and accuracy, confirming the efficacy of the proposed updating
scheme in achieving precise model evolution.

We further investigate a more challenging scenario where
real-time on-device training introduces label error due to se-
mantic drift. To mitigate the effects of randomness, we divide
users into two groups of five users each, i.e., those affected by
mild error and those affected by severe error. Fig. 4(a) and (b)
compare the accuracy of users under various training schemes
under different error levels. The proposed method consistently
achieves the best final accuracy in both groups, particularly in
severely affected environments. These results demonstrate its
robustness and practical relevance in real-world scenarios with
noisy label conditions. Moreover, the proposed adapter-based
updating scheme significantly reduces both computational and
communication overhead compared to traditional full-model
updates, as only the lightweight adapter parameters are trained
and transmitted, while the larger encoders remain frozen.

VI. OPEN RESEARCH TOPICS

In previous sections, we have shown that the SemCom is
expected to be adaptive updating in heterogeneous networks.
However, this research is still in its infancy. This section
discusses open research problems and possible solutions in
heterogeneous SemCom.



A. Discrimination Arising from Heterogeneous Model and
System

Due to the heterogeneity of the semantic codec models, the
traditional model aggregation approaches are not applicable
to the collaborative updating of semantic codecs. Leaving
heterogeneous models for local training causes incomplete in-
formation between users. Each user does not know each other’s
data information, model information, and system information
at the time of training. In the case of one user being slow
to update due to model or system reasons, other users may
exclude that user from joining the update due to considerations
such as accuracy or update efficiency. This occurs even if
the excluded user possesses richer data and could achieve
higher transmission accuracy after updating, since others lack
this information. This prevents this user from deploying se-
mantic communication properly due to discrimination during
updating, thus necessitating a high communication load via
employing conventional communication paradigm. To mitigate
this, potential solutions such as developing social-inspired
anti-discrimination mechanisms that tolerate stragglers could
be explored.

B. Fairness issues with Heterogeneous Data

Datasets of users are generally considered non-IID data.
Yet, inconsistencies in the data ‘class’ not only influence
updates to transmission accuracy and convergence, but also
lead to an unfair SemCom after updating, since the user only
gets their personalized data and cannot determine the others’
data. For instance, in the United Kingdom, a minority ethnic
user performs collaborative semantic codec updates with other
users in a community of Britons. His training information
is related to his ethnicity, e.g., pictures and language. This
information, however, is a minority in this community, making
the updated semantic codec less accurate for him than for the
local Briton community users. This creates an unfair update
for the minority ethnic user, who is also involved in the update.
Potential solutions include the adoption of fairness-aware ag-
gregation algorithms or the introduction of gradient correction
mechanisms to mitigate bias against underrepresented data
distributions.

C. Privacy Risk of Personalized M20 Model

In the network, there is an M2O characteristic of semantic
models, the semantic encoders and decoders that should form
an integral ML model are distributed across different users.
During the updating of the SemCom model, if a malicious
user can get hold of the semantic encoder/decoder model of
one normal user, it can not only affect the coding/decoding
of that user but also cause the decoding/coding methods of
other users to be deduced. This leads to leakage of transmitted
information after the SemCom model updating is complete,
even though each user’s semantic model is individual and
heterogeneous. Hence, the semantic codec model is related to
the accuracy of signal transmission. Users need to consider
not only transmission data privacy and system information
privacy, but also, crucially, to consider the semantic codec

model privacy while employing SemCom. To enhance privacy,
methods such as homomorphic encryption for model updates
or differential privacy in collaborative learning could be ex-
plored.

D. M20 Collaborate SemCom/Inference

In the M20 SemCom paradigm, network heterogeneities
critically degrade communication reliability and accuracy. It
also influences the SemCom derivative paradigm, collabo-
rative inference (CI), in which multiple devices jointly in-
fer via semantics toward a common result. For instance,
data heterogeneity challenges the fusion of disparate inputs
into a coherent semantic representation, model heterogene-
ity introduces inconsistent feature abstractions that obscure
intended meanings, and system heterogeneity corrupts trans-
mitted semantics through varying channel conditions. These
compounded effects cause the final SemCom/CI outcome to
substantially deviate from the ideal, highlighting the necessity
for robustness-aware M20 SemCom designs. Potential solu-
tions could involve a graph-based semantic adapter to unify
heterogeneous features.

E. Dynamics in Heterogeneous Network

Several studies have discussed the integration of seman-
tic communication into practical networks, which are often
dynamic, e.g., vehicular networks [10] and satellite networks
[13]. In such networks for semantic codec updating, there exist
new users joining and veteran users leaving. The locations
of users are also changed. It is thus urgently needed to
address the above issues, such as privacy in heterogeneous
networks, while taking into account the dynamics of the user
during semantic encoder updates. Potential solutions involve
designing lightweight onboarding protocols for new users and
elastic aggregation strategies that adapt to network churn.

F. Incentive Mechanisms for Semantic Codec Updates

Facing a brand new task, users in the network associate to
perform semantic codec updates to transmit spectral efficiency
as well as robustness enhancements for that task. Furthermore,
due to heterogeneity, each user is not equally enthusiastic
in the same sense as to whether or not to transmit for this
task using SemCom, i.e., whether or not to participate in
the update. Nevertheless, if some users participate in the
update and some refuse, it does not simply affect a single
user. Because communication is mutual, users of two different
communication paradigms cannot communicate. Moreover,
network spectrum resources are limited, and users who refuse
to update. To encourage participation, incentive mechanisms
such as updated credit rewards or resource allocation priority
could be introduced.

VII. CONCLUSIONS

This article surveyed the deployment of SemCom in het-
erogeneous networks, highlighting the challenges during up-
dating semantic codecs to facilitate the widespread adoption
of SemCom. Moreover, a heterogeneity-aware semantic codec



updating scheme was proposed and constitutes a promising
candidate for supporting SemCom in heterogeneous networks.
Lastly, we also discussed some open issues, such as dis-
crimination, fairness, privacy, network dynamics, and updating
enthusiasm. We hope that the challenges and opportunities in
this article will pave the way to advance SemCom for large-
scale applications on the network in the future.
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