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1 Proof HS is a distance metric

The HS measure is the weighted sum of the Hamming distance and the sym-
metric difference of cycles between two graphs. The Hamming distance is a
well-known distance metric, thus, to prove that the HS measure is also a dis-
tance metric, we need to prove that the symmetric difference between graphs’
cycles is a distance metric.
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Let Cn be the set of cycles for graphs of size n, and each CGi
, CGj

, CGk
∈ Cn

be the subset of cycles found in graphs Gi, Gj and Gk respectively. Thence,
the symmetric difference of the cycles of two graphs is dsymm =| CG·∆CG· |.
The function dsymm : Cn × Cn → [0,∞) is a distance metric if the following
conditions are satisfied:
1. dsymm(CGi

, CGj
) = 0 ⇔ CGi

= CGj

2. dsymm(CGi
, CGj

) = dsymm(CGj
, CGi

)
3. dsymm(CGi

, CGj
) ≤ dsymm(CGi

, CGk
) + dsymm(CGk

, CGj
)

Conditions 1 and 2 are clearly satisfied. Thus, we need to prove that the
triangle inequality holds for the symmetric difference of cycles. The symmetric
difference has the following property,

CGi
∆CGj

= (CGi
∆CGk

)∆(CGk
∆CGj

).

It follows that

CGi
∆CGj

⊆ (CGi
∆CGk

) ∪ (CGk
∆CGj

) ⇒
| CGi

∆CGj
|≤| CGi

∆CGk
| + | CGk

∆CGj
| .

Thus condition 3 is satisfied for the symmetric difference of cycles between
graphs.

2 Additional details for the Proposed Bayesian
inference framework for the SNF model
using Importance Sampling

We now present additional details on the inferential scheme used to obtain
draws from the posterior distributions of the parameters of the SNF model, as
discussed in Section 5.2 of the main article. Notably, we update the adjacency
matrix of the centroid AGm using either of the following two proposals,

(I) We perturb the edges of the current centroid A
(curr)
Gm as follows:

A
(prop)
Gm (i, j) =

{
1−A

(curr)
Gm (i, j), with probability ω

A
(curr)
Gm (i, j), with probability 1− ω

.

(II) We propose a new network representative A
(prop)
Gm , with each edge of the

proposed representative being drawn independently from a Bernoulli distri-
bution with parameter 1

N

∑N
l=1 AGl

(i, j), where {AGl
}Nl=1 denoting the N

observed networks.
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Under case (I), we accept the proposed network representative A
(prop)
Gm with

probability

min

{
1,

Ẑ(A
(prop)
Gm , γ(curr))−N exp{−γ(curr)

∑N
i=1 dG(AGi

, A
(prop)
Gm )}

Ẑ(A
(curr)
Gm , γ(curr))−N exp{−γ(curr)

∑N
i=1 dG(AGi

, A
(curr)
Gm )}

·

exp
{
−γ0dG(A

(prop)
Gm , AG0

)
}

exp
{
−γ0dG(A

(curr)
Gm , AG0

)
}}

,

while under case (II), we accept the proposed network representative A
(prop)
Gm

with probability

min

{
1,

exp{−γ(curr) ∑N
i=1 dG(AGi

,A
(prop)
Gm )}

Ẑ(A
(prop)
Gm ,γ(curr))N

exp
{
−γ0dG(A

(prop)
Gm , AG0)

}
exp{−γ(curr)

∑N
i=1 dG(AGi

,A
(curr)
Gm )}

Ẑ(A
(curr)
Gm ,γ(curr))N

exp
{
−γ0dG(A

(curr)
Gm , AG0)

} ·

Q(A
(curr)
Gm | A(prop)

Gm )

Q(A
(prop)
Gm | A(curr)

Gm )

}
,

We note here that the proposal distribution under case (I) is symmetric, and
thus it cancels out from the Metropolis ratio, while under case (II) the proposal

distribution Q(A
(·)
Gm | A(·)

Gm) does not cancel.
Accordingly, we use a mixture of K random walks to propose values for

the dispersion parameter γ, as follows:
1. Draw a uniform random variable u ∼ Unif(−vk, vk), with k indicating the

kth proposal.
2. Perturb the current state γ(curr) by the uniform random variable drawn,

y = γ(curr) + u.

3. The newly proposed value for γ is γ(prop) =

{
y, if y > 0

−y, if y < 0
,

which we accept with probability

min

{
1,

Ẑ(A
(curr)
Gm , γ(prop))−N exp{−γ(prop)

∑N
i=1 dG(AGi , A

(curr)
Gm )}

Ẑ(A
(curr)
Gm , γ(curr))−N exp{−γ(curr)

∑N
i=1 dG(AGi

, A
(curr)
Gm )}

·

P (γ(prop) | α0)

P (γ(curr) | α0)

}
.

Under this scheme, in each iteration of the MCMC algorithm, we draw a new
sample from the IS density to calculate Ẑ in the numerator and denominator
of the MH ratio, as detailed in Sections 5.1 and 5.2 of the main article.

3 Additional details for real data application
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Fig. 1 Network population of fish aggressive interactions with each network representing a
reef, at different regions in the Indo-Pacific ocean.
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