Benedikt, M. and Zimmermann, F. and Ratoff, P. N. (2025) Future circular collider feasibility study report : Volume 2 Accelerators, technical infrastructure and safety. European Physical Journal - Special Topics, 234 (19). pp. 5713-6197. ISSN 1951-6355
Full text not available from this repository.Abstract
In response to the 2020 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) Feasibility Study was launched as an international collaboration hosted by CERN. This report describes the FCC integrated programme, which consists of two stages: an electron-positron collider (FCC-ee) in the first phase, serving as a high-luminosity Higgs, top, and electroweak factory; followed by a proton-proton collider (FCC-hh) at the energy frontier in the second phase. The FCC-ee is designed to operate at four key centre-of-mass energies: the Z pole, the WW pair production threshold, the ZH production peak, and the top/anti-top production threshold—each delivering the highest possible luminosities to four experiments. Over 15 years of operation, FCC-ee will produce more than 6 trillion Z bosons, 200 million WW pairs, nearly 3 million Higgs bosons, and 2 million top anti-top pairs. Precise energy calibration at the Z pole and WW threshold will be achieved through frequent resonant depolarisation of pilot bunches. The sequence of operation modes between the Z, WW, and ZH substages remains flexible. The FCC-hh will operate at a centre-of-mass energy of approximately 85 TeV—nearly an order of magnitude higher than the LHC—and is designed to deliver 5 to 10 times the integrated luminosity of the upcoming High-Luminosity LHC. Its mass reach for direct discovery extends to several tens of TeV. In addition to proton-proton collisions, the FCC-hh is capable of supporting ion-ion, ion-proton, and lepton-hadron collision modes. This second volume of the Feasibility Study Report presents the complete design of the FCC-ee collider, its operation and staging strategy, the full-energy booster and injector complex, required accelerator technologies, safety concepts, and technical infrastructure. It also includes the design of the FCC-hh hadron collider, development of high-field magnets, hadron injector options, and key technical systems for FCC-hh.